Improving Dissolved Oxygen and Aquatic Life Uses in the Delaware River Estuary

Steven J. Tambini, P.E.

Executive Director Delaware River Basin Commission

Photo: Delaware River Waterfront Corporation

NJ AWRA Water Leadership Forum

March 22, 2023

The Setting

The Problem

The Solution

The Setting

The Problem

The Solution

Credit: Nicholas A. Tonelli

The Benjamin Franklin Bridge is at River Mile 100:

Credit: Laura Chamberlin, WHSRN.org

This presentation will focus on water quality in the Delaware River Estuary

The main stem Delaware River provides an interstate boundary for its entire 330 miles.

Credit: Google Maps

The Delaware River Basin Compact states that...

DELAWARE RIVER BASIN

1961

...The water resources of the basin are subject to the sovereign right and responsibility of the signatory parties, and it is the purpose of this Compact to provide for a joint exercise of such powers of sovereignty in the common interests of the people of the region. The Delaware River Basin Commission "shall develop and effectuate plans, policies and projects relating to the water resources of the basin."

The water quality regulatory setting in the Basin includes two complementary foundational authorities.

DELAWARE RIVER BASIN COMPACT (1961)

"The commission may assume jurisdiction to control future pollution and abate existing pollution in the waters of the basin..."

CLEAN WATER ACT (1972)

"...restore and maintain the chemical, physical, and biological integrity of the Nation's waters." The co-regulators in the Basin have shared water quality goals to protect aquatic life uses.

DRBC uses to be protected include: "...wildlife, fish and other aquatic life..."

American shad Robert S. Michelson

EPA goals include: "...fishable waters..." "...for the protection and propagation of fish, shellfish, and wildlife..."

NOAA

The basin states regulations "refer or defer" to DRBC for management of WQ in "interstate" waters

We will use the Clean Water Act terms in this presentation.

The Setting

The Problem

The Solution

Before DRBC regulations and the CWA dissolved oxygen concentrations in the summer at Philadelphia in the Delaware River Estuary were at, or near, zero.

DRBC WQ regulations, the CWA, and significant infrastructure investments resulted in significant improvement in summer dissolved oxygen concentrations.

There has been limited improvement in the minimum (1st percentile) dissolved oxygen since about 2000.

DO concentrations are currently above the minimum water quality criteria.

The main stem Delaware River is separated into several water quality management and assessment "zones" Water Quality Assessment Units: Non-tidal (Upstream from Trenton) Zone 1: Estuary: **Zone 2 - 5:** Tidal Delaware River Estuary **Zone 6:** Delaware Bay

River Miles:

RM 0.0 = Atlantic Ocean

RM 70 = City of Wilmington

RM 100 = B. Franklin Bridge, Philadelphia / Camden

RM 133 = "Head of Tide", Trenton, NJ

Water quality aquatic life designated uses and WQ criteria to protect those uses differ throughout the Estuary.

Zone	River Mile	Aquatic Life Use	Migratory Fishes	24-hour average D.O. Criteria
2	108.4 – 133.4	maintenance and propagation of resident fish and other aquatic life	passage of anadromous fish	5.0 mg/l
3	95 – 108.4	maintenance of resident fish and other aquatic life	passage of anadromous fish	3.5 mg/l
4	78.8 – 95	maintenance of resident fish and other aquatic life	passage of anadromous fish	3.5 mg/l
	70 – 78.8	maintenance of resident fish and other aquatic life	passage of anadromous fish	3.5 mg/l
5	48.2 – 70	maintenance and propagation of resident fish and other aquatic life	passage of anadromous fish	4.5 – 6.0 mg/l
6	0 48 2	maintenance and propagation of resident fish and other aquatic life	passage of	6 0 mg/l
U	0 – 40.2	maintenance and propagation of shellfish	anadromous fish	0.0 mg/i
	Zone 2 3 4 5 6	ZoneRiver Mile2 $108.4 - 133.4$ 3 $95 - 108.4$ 4 $78.8 - 95$ 5 $70 - 78.8$ 5 $48.2 - 70$ 6 $0 - 48.2$	ZoneRiver MileAquatic Life Use2 $108.4 - 133.4$ maintenance and propagation of resident fish and other aquatic life3 $95 - 108.4$ maintenance of resident fish and other aquatic life4 $78.8 - 95$ maintenance of resident fish and other aquatic life4 $78.8 - 95$ maintenance of resident fish and other aquatic life5 $70 - 78.8$ maintenance of resident fish and other aquatic life5 $48.2 - 70$ maintenance and propagation of resident fish and other aquatic life6 $0 - 48.2$ maintenance and propagation of 	ZoneRiver MileAquatic Life UseMigratory Fishes2 $108.4 - 133.4$ maintenance and propagation of resident fish and other aquatic lifepassage of anadromous fish3 $95 - 108.4$ maintenance of resident fish and other aquatic lifepassage of anadromous fish4 $78.8 - 95$ maintenance of resident fish and other aquatic lifepassage of anadromous fish4 $78.8 - 95$ maintenance of resident fish and other aquatic lifepassage of anadromous fish5 $70 - 78.8$ maintenance of resident fish and other aquatic lifepassage of anadromous fish5 $70 - 78.8$ maintenance of resident fish and other aquatic lifepassage of anadromous fish6 $0 - 48.2$ maintenance and propagation of resident fish and other aquatic lifepassage of anadromous fish6 $0 - 48.2$ maintenance and propagation of resident fish and other aquatic lifepassage of anadromous fish

Delaware River Basin Commission Delaware • New Jersey PENNSYLVANIA • NEW YORK UNITED STATES OF AMERICA

The "Fish Maintenance Area" (FMA) includes the "urban <u>Estuary</u>" from RM 70 to RM 108.

WQ criteria are being met, but a DO sag still exists.

Nitrogen levels are highest in the urban estuary where DO levels are lowest

Nitrogen levels are highest in the urban estuary where DO levels are lowest

Carbonaceous oxygen demand has been addressed. Nitrogenous oxygen demand has not.

River Mile

There are dissolved oxygen sensitive and threatened and endangered fish species in the Estuary.

Atlantic Sturgeon

Acipenser oxyrinchus oxyrinchus

Shortnose Sturgeon

Acipenser brevirostrum

In 2017 the Commission took formal action through unanimous vote (Resolution 2017-4).

Recognizing that evidence supports further study on the <u>inclusion of propagation</u> as a designated use in Zones 3 and 4 and the upper portion of Zone 5 of the Delaware River Estuary.

Directing the DRBC the Executive Director to initiate a rulemaking process to establish the designated uses and determine water quality criteria.

Recognizing the vital importance of determining the appropriate designated aquatic life uses of the ... through a <u>collaborative process informed by technical studies and specialized scientific and</u> <u>engineering expertise.</u>

Recognizing shared goals including that <u>water quality standards</u>, including designated uses and water quality criteria, <u>should be updated</u> consistent with Clean Water Act goals <u>as quickly as possible</u> and practicable

The Setting

The Problem

The Solution

Objective: Reduce Pollutant Loads

Resolution 2017-4 required that DRBC perform a series of studies and an analysis of attainability before rulemaking.

Aquatic life uses are strongly dependent upon dissolved oxygen (DO) levels in the water column

Identified eight DO-sensitive species in the estuary

Characterized occurrence and distribution of the life stages of DO-sensitive fish species

Identified relevant research on the oxygen requirements of each at different life stages

Determine the ranges of DO values that support propagation of DO-sensitive species

A suitability gradient was determined for DO sensitive species.

DO-sensitive fish species that currently exhibt some degree of propogation

Species Specific Dissolved Oxygen

- Upper DO Threshold
- Protective Value
- \times Minimum Suitable

Dissolved Oxygen for All Species

- Minimum Suitability Boundary
- Upper DO Threshold Boundary

DRBC developed a linked hydrodynamic and water quality model to calibrate and then simulate complex eutrophication processes in the Estuary.

Purpose:

To determine dissolved oxygen levels that would result from various pollutant reduction scenarios.

Model-data comparison of water surface elevation at NOAA Philadelphia

Horizontal cell: 1876 Vertical layer: 10 in nav. Channel Total segments: 11,490 Run time: ~32-hr in 3D

Vermont

Locator Map

Legend

State Variables and Processes Applied to Delaware Estuary Model

Dissolved Constituents

Gases

DISOX: dissolved oxygen

Inorganic Nutrients

- □ NH-34: ammonia nitrogen
- □ NO3O2: nitrate nitrogen
- D-DIP: inorganic phosphate
- IN-SI: inorganic silica

Organic nutrients

- □ CBODU1: ultimate CBOD from stream
- □ CBODU2: ultimate CBOD from PS
- CBODU3: refractory CBOD
- ORG-N: dissolved organic nitrogen
- ORG-P: dissolved organic phosphorus
- ORG-SI: dissolved organic silica

Particulate Constituents

Phytoplankton Biomass

- PHYTO1: spring marine diatom community
- PHYTO2: summer freshwater diatom community
- PHYTO3: summer marine diatom community

Detritus

- DET-C: detrital carbon
- DET-N: detrital nitrogen
- DET-P: detrital phosphorus
- DET-SI: detrital silica

Other Solids

- TOTDE: particulate detrital organic material (dw)
- □ SOLID: inorganic solid

Major Processes Simulated

Chemical Processes

- Oxidation of CBOD
- **Nitrification of ammonia to nitrate**
- Dissolution and Mineralization
- Sediment oxygen demand

Physical Processes

- Settling
- Reaeration (influx and efflux)
- Sorption

Biological Processes

- Photosynthesis
- Respiration
- Phytoplankton growth and death
- Uptake

5

DRBC initiated <u>extensive monitoring</u> during the 2018-2019 eutrophication model calibration period

Analytical Parameter	Units	Filtration	Sample Type
Total Phosphorus (TP)	mg/L as P	Unfiltered	24-hour composite
Total Kjeldahl Nitrogen (TKN)	mg/L as N	Unfiltered	24-hour composite
Nitrate Nitrogen (NO3-N)	mg/L as N	Unfiltered	24-hour composite
Nitrite Nitrogen (NO2-N)	mg/L as N	Unfiltered	24-hour composite
20-day Biochemical Oxygen Demand (BOD ₂₀)	mg/L	Unfiltered	24-hour composite
day Carbonaceous Biochemical Oxygen Demand (CBOD ₅)*	mg/L	Unfiltered	24-hour composite
Chemical Oxygen Demand (COD)	mg/L	Unfiltered	24-hour composite
Total Organic Carbon (TOC)	mg/L	Unfiltered	24-hour composite
Dissolved Organic Carbon (DOC)*	mg/L	0.45 µm filter	24-hour composite
Total Suspended Solids (TSS)	mg/L	Unfiltered	24-hour composite
Soluble Reactive Phosphorus (SRP)	mg/L as P	0.45 µm filter	24-hour composite
Ammonia Nitrogen (NH3-N)	mg/L as N	0.45 µm filter	24-hour composite
Discharge Flow	MGD	N/A	daily average
Water Temperature	°C	N/A	24-hour mean
Dissolved Oxygen	mg/L	N/A	24-hour mean
pH	1-14 S.U.	N/A	24-hour mean
Specific Conductance or TDS	µS/cm or mg/L	N/A	24-hour mean

Nationally recognized model experts provided guidance for DRBC staff through out the modeling process.

Name	Organization	Service
Carl Cerco	U.S. Army Corps of Engineers (Retired)	
Bob Chant	Rutgers University	Panel
Steve Chapra	Tuffs University	Members
Tim Wool	U.S. EPA Region 4 (Retired)	
Vic Bierman	LimnoTech	Consultant to
Scott Hinz	LimnoTech	DRBC

Conclusions:

- Model is scientifically defensible over a wide range of environmental conditions in the Delaware Estuary.
- 2. Model is appropriate for its intended use to determine the improvement in dissolved oxygen condition that would result from specific reductions to point and nonpoint source loadings

The model tells us what factors have the most impact on dissolved oxygen improvements.

Factors that can most improve DO in the FMA	Factors that can slightly improve DO in the FMA	Factors that cannot measurably improve DO in the FMA
 Summer (May–Oct) ammonia loads from specific point-source discharges Carbon loads from Delaware River at Trenton (high % of total flow) 	 Combined sewer overflows (CSOs) DO concentration in treated effluent from the largest point-source discharges Carbon loads from Schuylkill River 	 Nutrient (C, N, P) loads from tributaries, except C loads from Delaware River at Trenton and Schuylkill River Winter (Nov–Apr) ammonia, CBOD, and TN from all point-source discharges Summer (May–Oct) ammonia loads from many point-source discharges Direct stormwater runoff into the

Delaware Estuary

Discharges by Class – 67 total

Class	Discharge Name	Zone	River Mile	Permitted Flow (MGD)	Effluent Ammonia (mg/L)	
	PWD Northeast	3	103.9	210	4.4	
	Camden County MUA	3	97.9	80	17.3	
۸,	PWD Southeast	3	96.7	112	8.6	
A (7)	PWD Southwest	4	90.7	200	19.0	
(7)	Gloucester County UA	4	89.9	27	23.9	
	DELCORA	4	80.4	70	3.8	
	City of Wilmington	5	71.6	134	9.5	
Α	Hamilton TWP WPCF	2	128.4	16	27.0	
(2)	Lower Bucks JMA	2	121.9	10	19.7	
	Morrisville BMA	2	132.5	7	9.7	
	Trenton SU	2	131.8	20	5.4	
(E0) R	Willingboro WPCP	2	111.4	5	1.4	
(50)	Cinnaminson SA	2	108.7	2	16.0	

How does ammonia reduction from an individual discharge impact low DO in the FMA?

1st Percentile DO

Percent Time above 5 mg/L DO

Baseline design condition represents protection of existing water quality and uses

Percent Time above 5 mg/L DO

Bringing minimum DO above 4 mg/L requires reducing effluent ammonia from Class A' dischargers to 1.5 mg/L

Class	Discharge Name	Zone
	PWD Northeast	3
	Camden County MUA	3
Λ/	PWD Southeast	3
A ² (7)	PWD Southwest	4
(7)	Gloucester County UA	4
	DELCORA	4
	City of Wilmington	5

Reducing total nitrogen (TN) brings no additional benefit to improve minimum DO.

DO is less sensitive to Class A ammonia levels, but ammonia reduction does have an impact.

1st Percentile DO

City of Wilmington

Hamilton TWP WPCF

Lower Bucks JMA

2

2

Reducing effluent ammonia to **1.5** mg/L for Class A' dischargers and **5** mg/L for Class A discharges **improves habitat** in the urban estuary (Run AA08)

Percent Time above 5 mg/L DO

What is the highest attainable dissolved oxygen (HADO) condition in the Delaware Estuary considering all factors?

- <u>Wastewater treatment:</u>
 - ✓ 7 Class A' dischargers at ammonia = 1.5 mg/L
 - 2 Class A discharges at ammonia = 5 mg/L
- <u>Additional factors</u> <u>considered:</u>
 - CSO reductions (based on LTCPs)

✓ Effluent DO

- Seasonally variable nitrification
- ✓ 10% Reserve Capacity

TOTAL COST vs. DISSOLVED OXYGEN IMPROVEMENT

The costs of the additional treatment will not increase the affordability burden category on households within the service areas of the affected wastewater treatment plants.

Table 8: Household affordability score

Utility Name	<u>Baseline</u>	<u>Ammonia</u> 10 mg/L	<u>Ammonia</u> 5 mg/L	<u>Ammonia</u> 1.5 mg/L	Total Nitrogen 4 mg/L
ССМИА	Moderate-Low Burden	Moderate-Low Burden	Moderate-Low Burden	Moderate-Low Burden	Moderate-Low Burden
City of Trenton	Moderate- High Burden	Moderate-High Burden	Moderate-High Burden	Moderate-High Burden	Moderate-High Burden
DELCORA	Moderate-Low Burden	Moderate-Low Burden	Moderate-Low Burden	Moderate-Low Burden	Moderate-Low Burden
GCUA	Low Burden	Low Burden	Low Burden	Low Burden	Low Burden
Hamilton Twp WPCF	Low Burden	Low Burden	Low Burden	Low Burden	Low Burden
LBCJMA	Low Burden	Low Burden	Low Burden	Low Burden	Low Burden
Morrisville	Low Burden	Low Burden	Low Burden	Low Burden	Low Burden
PWD	Moderate- High Burden	Moderate-High Burden	Moderate-High Burden	Moderate-High Burden	High Burden
Willingboro	Moderate-Low	Moderate-Low	Moderate-Low	Moderate-Low	Moderate-Low
WPCF	Burden	Burden	Burden	Burden	Burden
Wilmington	Moderate-Low Burden	Moderate-Low Burden	Moderate-Low Burden	Moderate-Low Burden	Moderate-Low Burden

The Analysis of Attainability shows that:

Water quality supporting the aquatic life use of <u>"fish propagation"</u> is attainable.

Upgrading nine (9) major wastewater treatment plants will significantly improve the level of dissolved oxygen.

<u>The costs</u> of advanced treatment associated with the recommended scenario <u>are significant</u>.

The Commission should proceed with rulemaking and adopt new water quality standards.

September 2022 DRAFT ANALYSIS OF ATTAINABILITY: IMPROVING DISSOLVED **OXYGEN AND AQUATIC LIFE USES IN THE DELAWARE RIVER ESTUARY** Technical Report No. 2022-X a. Protecting and Improvident Approximation of the second seco he Water Resources of th Delaware River Basin since 19

The next steps are ongoing and involve a coordinated coregulator process for :

- Development of revised science-based water quality standards, including revised water quality criteria.
- Rule proposals.
- Public input processes.
- Adoption of new water quality standards.

Thank you DRBC Technical Team!

Name	Title	
Thomas Amidon	Manager, Water Resource Modeling	
Sarah Beganskas	Water Resource Scientist	
Jacob Bransky	Aquatic Biologist	
Fanghui Chen	Senior Water Resource Engineer	
Vince DePaul	Hydrologist (USGS)	
Kristen B. Kavanagh	Deputy Executive Director	
Elaine Panuccio	Water Resource Scientist	
Sara Sayed	Water Resource Scientist	
Namsoo Suk	Director, Science and WQ Management	
John Yagecic	Manager, Water Quality Assessment	
Li Zheng	Senior Water Resource Modeler	