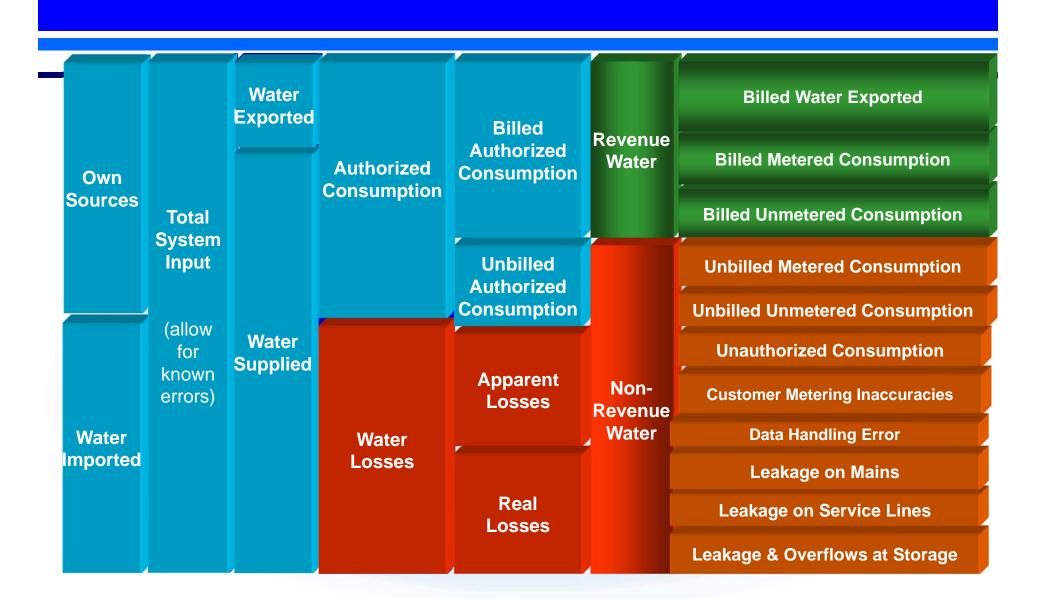


DRBC Workshop Water System Audits and Water Loss Control

Bordentown, NJ April 13, 2011


Module 3 Session 2

Controlling Apparent Losses: Recouping Revenue

George Kunkel P.E.

Philadelphia Water Department

IWA/AWWA Water Balance

Impacts of Apparent Losses

- ♠ Aggregate customer consumption volume is understated
 - Water supply planning suffers from inaccurate consumption data for customer populations
 - Analysis of conservation savings and other customer targeted impacts is hindered
- A portion of billings are understated or omitted, causing revenue loss
 - Paying customers effectively subsidize those who under-pay or don't pay at all for water service
 - High apparent losses exacerbate the need to increase water rates

Four Components of Managing Apparent Losses

Meter accuracy error: meters do not register actual volume passing

Unauthorized Consumption Theft and illegal consumption

This is a conceptual value only at this time; a suitable equation does not yet exist to calculate it

Existing Apparent Losses

Economic Level

Unavoidable Annual **Apparent Losses**

Data analysis Errors Between archived data and data used for billing/water balance

Data transfer errors between meter and archives Poor customer accountability

- As each component receives more or less attention the losses will increase or decrease
- The operator strives to keep losses to a minimum

Philadelphia's Water Audit Summary

July 1, 2009 - June 30, 2010 in Million Gallons Per Day (mgd)

Water into Supply - 244.4

◆ Customer Billed Consumption - <u>167.8</u>

Non-revenue Water 76.6

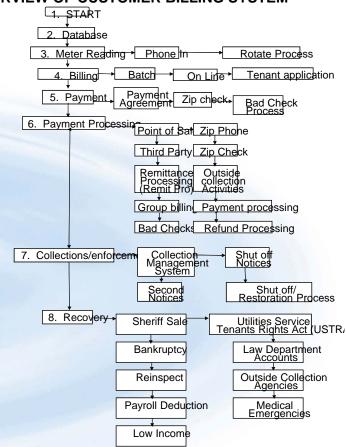
♦ Unbilled Auth. Consumption 2.0 \$ 778,000

♦ Apparent Losses17.0 \$ 30,034,000

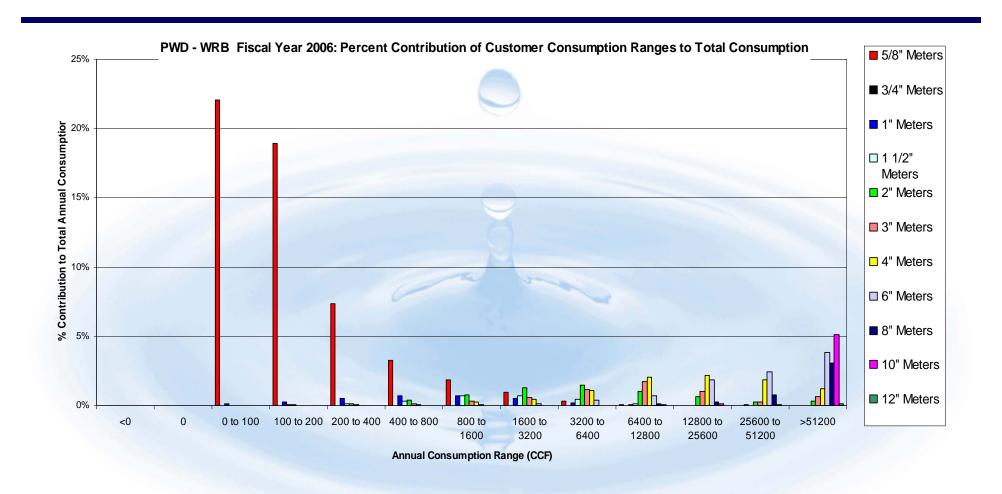
♦ Real Losses 59.6 \$ 5,869,000

Non-revenue Water Cost: \$36,681,000

Systematic Data Handling Error in Customer Billing Systems


Assembling Water Audit Data

Apparent Losses: systematic data overview of customer billing system


handling error

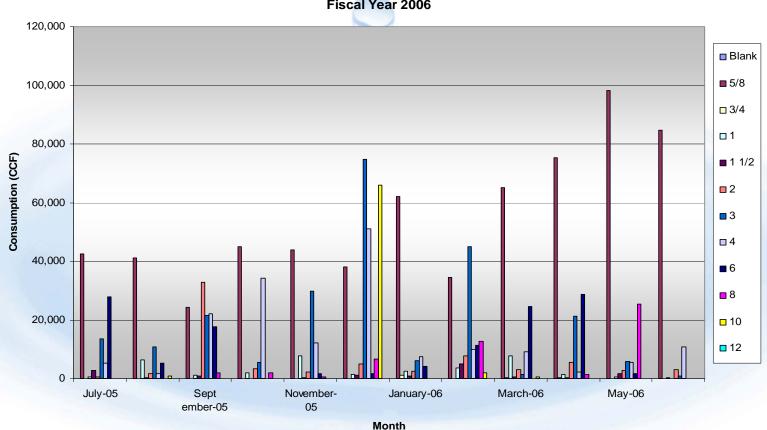
 Category of apparent loss was identified by AWWA WLC Committee

- Includes all forms of data transfer, handling and archiving error in billing
- The "dark horse" of loss auditing
 - Can be subtle and tedious
 - Can often be readily corrected by programming or procedures improvements
- Review of billing system data is a good starting point in the assessment of apparent losses – find out what goes on in the billing system! Start with a flowcharting process

Data Mining Analysis can be used to track billing trends

Data Analysis Error: Identify the effects of Billing Adjustments

- Philadelphia: Customer Metered Consumption
 Vs. Customer Billed Consumption
 - A sampling of Customer Billed Usage: 8-inch meters


<u>Month</u>	# of Accounts	Usage (100 cubic feet)
July 1999	71	177,312
Aug 1999	70	-134,825
Sept 1999	69	246,923
Oct 1999	68	178,278

It's important to find out what the Billing System does to Metered Data

Data Handling Error: "Negative" Consumption Philadelphia's Data Mining Analysis

PWD - WRB

Negative Monthly Consumption for Meter Size
Fiscal Year 2006

Data Handling Error: Policy Idiosyncrasies

- ♦ Philadelphia has roughly 472,000 Billed Accounts
- But - Philadelphia also has roughly 50,000 Non-Billed Accounts!
- ♦ Non-billed Accounts: Typically a temporary status, yet accounts can remain indefinitely if not monitored closely
- Eight categories of NB's include unoccupied properties, non-payment shutoffs, other
- Invalid NB Accounts: a primary target of Philadelphia's Revenue Protection Program
- New Stormwater billing program makes all accounts "billed", but policy needs to catch up

Customer Metering Inaccuracies

Impacts to Customer Meter Accuracy

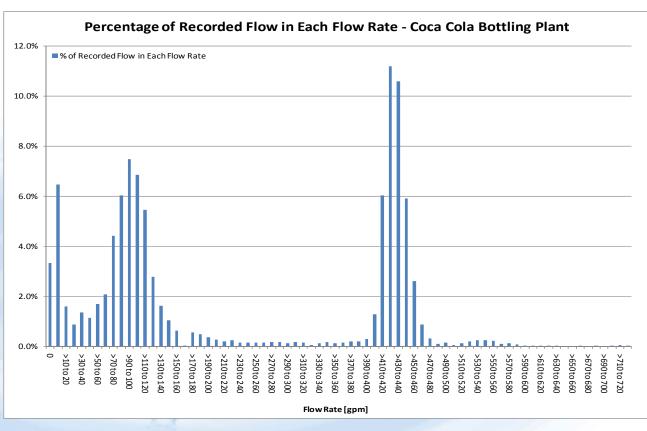
- Many reasons for Meters Error:
 - Wear over time, excess volume/abrasive water
 - Incorrect installation/poor maintenance
 - Incorrect sizing
 - Incorrect meter type for the application
 - Environmental problems such as freezing or over heating
- Good installation, selection, sizing, testing and replacement will resolve these issues

Managing Meters – establish a maintenance and inspection program to detect malfunctioning meters

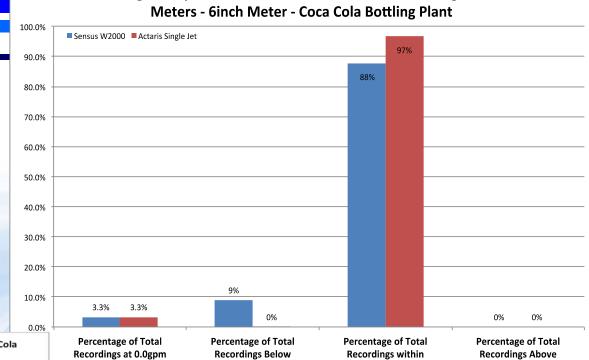
Inaccurate, malfunctioning or vandalized meters

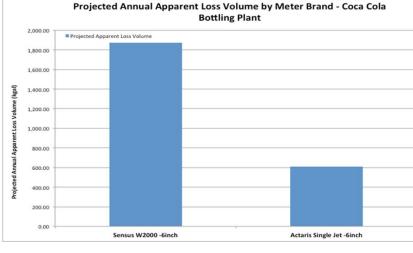
Tracking Customer Meter Accuracy

- Develop meter population demographics
 - Compile an inventory of meters based upon size, type, manufacturer, model, location (indoors or in outdoor meter pits)
 - Select a sample of billing accounts with various meters; look at billed consumption pattern – is the right meter in place?
- Conduct meter accuracy testing on samples of various meter types
 - Test randomly selected meters of different types
 - Test selected "high consumption" residential meters to determine lifetime accuracy threshold
- ▲ Large meter right-sizing: meters 1-inch and larger
 - Many existing meters are the wrong size/type
 - Consider data-logging meters to determine the customer consumption profile
 - Stay abreast of new types of meters: single jet meters and solid state meters are evolving to compete with the traditional turbine and compound meters


Small meter test bench

Data-loggers installer on a 4-inch compound meter in a high school

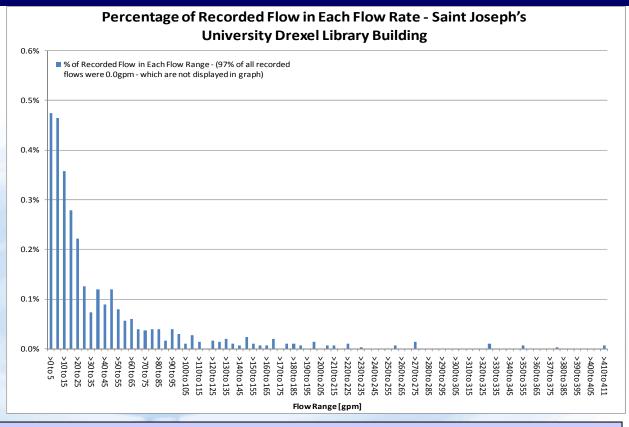

- Coca Cola Bottling Plant
 - 6-inch Sensus compound meter
 - Data-logging data collection: Sept 2010


Wide variations in flowrate occur. This meter is adequately sized, but a different meter (single jet) might register more flow

- Coca Cola Bottling Plant
- Time profile and economic analysis
 - Potential payback in 0.6 year with single jet meter, which costs \$4,050

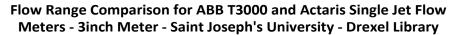
Recommended Flow Range

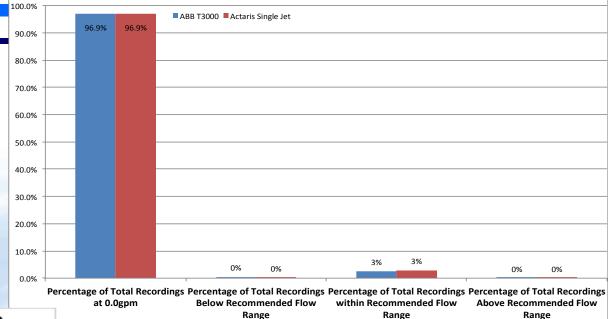
Flow Range Comparison for Sensus W2000 and Actaris Single Jet Flow


Projected Annual Savings	Monetary (\$/year)	Volume (kgal/year)
Sensus Total Apparent Losses	\$10,900.45	1,870.28
Actaris Total Apparent Losses	\$3,562.33	611.22
Savings from switching from Sensus to Actaris	\$7,338.12	1,259.06

Recommended Flow Range

Recommended Flow Range


- St. Joseph's
 University −
 Drexel Library
 – 3-inch ABB
 - 3-inch ABB turbine meter



Note: flow through this meter is zero for 97% of the data-logged values. The above graph shows the profile for the remaining 3% of data values. This meter is dramatically oversized.

- St. Joseph's UniversityDrexel Library
- Time profile and economic analysis
 - Potential payback in 46 years with single jet meter, which costs \$2,014

	Joseph's University	Drexel Library Building
2.00	■ Projected Apparent Loss Volume Per Year	
0.00 -		
8.00 -		
6.00 -		
4.00		
2.00 -		
0.00	ABB T3000 -3inch	Actaris Single Jet -3inch

Projected Annual Savings	Monetary (\$/year)	Volume (kgal/year)
ABB T3000 Total Apparent Losses	\$63.40	10.09
Actaris Total Apparent Losses	\$19.37	3.08
Savings from switching from ABB T3000 to Actaris	\$44.04	7.01

Automatic Meter Reading (AMR) Advanced Metering Infrastructure (AMI)

- AMR can efficiently gather meter readings with limited errors vs. manual meter reading
- AMI has capabilities of a permanent communication link with one way or two way communications
 - Provide consumption data at short intervals to reveal usage patterns
 - Can receive additional data: leak noise alerts, water pressure, tamper
 - Can send signals to automatic shutoff valves

Philadelphia: 2nd largest water utility AMR System in the United States

Unauthorized Consumption

Unauthorized Consumption occurs in many ways

- ♦ Fire Hydrants
- **♦** Tampering with Meters
- ◆ Tampering with Meter Reading Equipment
- Illegal Bypasses and connections
- Illegal restoration of shutoff service connections (payment delinquency)

Addressing Unauthorized Consumption

Strategy

- Policy & Regulations
- Detection
- Enforcement

- Investigate unusual billing patterns: zero consumption accounts, wildly varying consumption
- Automatic Meter Reading (AMR) Systems can provide tamper alerts
- Fire Hydrant locking devices

Unfortunately, bypassing a water meter isn't complicated. This photo shows a "cheater" or "jumper" pipe (top) that was illegally used to replace the meter in this meter setter in Morgantown, W Va. In the lower part of this meter pit, is a typical 5/8th-inch residential meter

Philadelphia's Revenue Protection & Reinspection Programs

	PWD - WRB Revenue Recovery History						
	PWD Revenue Protection Program				WRB Reinspection		Total
Fiscal Year	Accounts Recovered	Water Recovered, MGD	Revenue Recovered	Categories of Greatest Recovery**	Reinspection Recoveries	Reinspections Revenue Recovery	Total Recovered Revenue
2010	2,467	1.58	\$2,384,528	Investigation of Zero Consumption accounts: 61% of 2,467 recovered accounts were "missing meter"	1,516	\$169,733	\$2,554,261
2009	1,659	n/a	\$1,603,540	Investigation of Zero Consumption accounts: 80% of 1,659 recovered accounts were "missing meter"	1,632	\$199,732	\$1,803,272
2008	n/a	n/a	\$636,250	n/a	2597	\$390,670	\$1,026,920
2007	449	0.36	\$531,400	NB9 (Vacant properties) & NB3 (Shutoff for non-payment)	2,984	\$340,380	\$871,780
2006	1,436	1.01	\$1,413,000	Estimated Accounts (#1), Non- billed Accounts (#3,#9) and Zero Consumption Accounts	2,513	\$209,768	\$1,622,768
2005	2,397	1.74	\$2,835,000	NB3 & Zero consumption accounts	2,553	\$249,261	\$3,084,261
2004	1,941	1.67	\$2,003,000	Zero consumption accounts 0.74 MGD; tampering is most common cause of lost water in this group	1,991	\$446,327	\$2,449,327
2003	1,360	1.14	\$1,782,000	Zero Consumption Accounts	2,221	\$604,379	\$2,386,379
2002	932	0.69	\$1,037,000	Zero Consumption Accounts	2,721	\$668,932	\$1,705,932
2001	711	5.81	\$2,900,000	Missing Accounts, Hand Estimates, NB6 accounts	3,261	\$498,952	\$3,398,952
2000	716	1.39	\$2,100,000	NB6 accounts	2,737	\$393,949	\$2,493,949
Total	14,068	15.39	\$19,225,718		26,726	\$4,172,083	\$23,397,801

Summary

- Apparent Loss control improves the accuracy of customer consumption measures and optimizes the billing process
- Apparent Loss interventions are often expedient and highly cost effective
- Any water utility can utilize new tools to identify apparent losses, improve their customer consumption data, and recover uncaptured revenue

