New Jersey Department of Education

Centers in the P-3 Mathematics Classroom

Office of K-3
Division of Early Childhood Services
12/4/23

1. Introduction

2. Managing Centers

3. Scaffolding and Differentiation

4. Topics for Centers

5. Assessment

(Please be advised that neither the New Jersey Department of Education, nor its employees, specifically promotes, endorses, recommends, or favors any of the entities or resources listed herein Instead, this list of entities and resources is provided for informational purposes only. School districts must always evaluate and determine, based on the individualized needs of its student population, whether to utilize and/or expend its resources on the entities or resources herein.)

Introduction

The National Council of Supervisors of Mathematics (NCSM), The National Council of Teachers of Mathematics (NCTM) and National Association for the Education of Young Children (NAEYC) support flexible small group instruction and center-based play in mathematics. naeyc

Early Childhood Mathematics:
Promoting Good Beginnings

Supporting All Students Through Flexible Grouping Practices

NCSM Position Papers

NAEYC Position Paper

Centers/Workstations

What is a Mathematics

Center/Workstation?

Goatof Centers

What is the goal of mathematics centers?

- Purposeful, differentiated practice
- Enrichment
- Independent
- (teacher does not need to be there)
- Self checking
- Artifacts

About Differentiated Centers

Getting Started (1 of 7)

Activity Settings by Grade Level

- Transitions: Children are moving or waiting between Transitions locations or activity settings
- Whole Group: Most children are engaged in teacher-led activities

Text Version of Activity Settings By Grade Pie Chart

Percentage of Time Spent in Each Activity (by Grade)

Activity	Kindergarten	Grade 1	Grade 2	Grade 3
Transition	19	18	14	13
Whole group	42	42	49	45
Small group	5	3	6	5
Group work	4	6	7	5
Individual	21	27	23	29
Choice	7	2	0	1
Meals	2	2	1	

Getting Started (2 of 7)

An overview of math activity times:

Activity	Percentage of time
Routines	10%
Problem Solving	10%
Mini-lesson	10%
Small Group and Centers	60%
Debrief	10%

Getting Started (4 of 7)

What are we doing in the centers?
$2^{\text {nd }}$ Grade Centers: Addition and Subtraction; Place Value;
Geometry/Describing Analyzing Shapes, Measurement and Data, Problem Solving
$3^{\text {rd }}$ Grade Centers: Operations, Fractions, Geometry, Measurement and Data, Problem Solving

Getting Started (5 of 7)

What are we doing in centers?
Priority Goals for K-3

Getting Started (6 of 7)

Setting Expectations
Practice familiar games,
how to use recording
sheets (or exit slips), playing fair, being helpful, being respectful, perseverance, clean up.

Centers 1

Getting Started (7 of 7)

"Practice does not make perfect. Only perfect practice makes perfect." -Vince Lombardi

Differentiated Centers

Gamify Centers!

Differentiate within your centers.
Scaffold...don't over scaffold, but scaffold!

CPA (procedural fluency needs to happen after conceptual understanding).

Play together, children scaffold for each other. Students know how to help without giving the answer (teachers need to teach this). Teach children how to ask good questions.

Numbers and Operations (1 of 4)

Addition/Subtraction or

 Multiplication/Division Centers
Level Activities!

Within the Levels:

- Concrete
- Pictorial
- Abstract

Concrete Activity	Representational/ Pictorial Activity	Abstract Activity
Show different ways to make a number on a number bracelet.	Use a pictorial representation of a number bracelet to show the many ways a number can be composed.	Find many ways to make the number and write the number sentence.

Numbers and Operations (2 of 4)

Addition/Subtraction or Multiplication/Division Centers

Anchor Charts of Strategies

- At stations
- In student notebooks
- In a file folder

- On the wall
- Using technology

Text Version of Place Value Anchor Chart

Thousands	Hundreds	Tens	Ones
1	2	6	3

Standard form: 1,263

Written Form:

One thousand two hundred sixtythree

Model Form: (text version of model) 1000 cube, two 100 cubes, six stacks of 10 cubes, and one stack of 3 cubes

Expanded Form:

$1,000+200+60+3$

```
Thousands, hundreds, tens, ones:
1 thousands
2 hundreds
tens
3 ones
```


Numbers and Operations (3 of 4)

Generic Games or Evergreen Games

- Memory
- Dice
- Dominoes
- Deck of Cards
- Board Games

Numbers and Operations (4 of 4)

Generic Games or Evergreen Games

- Bump
- Capture 4
- Shake and Spill
-I have! Who has?

Problem Solving (1 of 6)

What does the research say?
Problem Solving PD

Problem Solving (2 of 6)

Problem Solving

Scaffolded: Templates and Tools

Read It

We caught 9 flies but then 3 flew away. How many flies are left?

Build It

Problem Solving (3 of 6)

Story Mats

Dr. Nicki Newton on Pinterest

Ten Frame Mats

Story Mat: Savannah

A Number story
$9 \Phi \Phi \Phi Q \Phi \Phi$, 9000
$9+11=20$
I have 9 yellow
bears. Javien has
11 green bears. How
many bears in all?

Story Problem: Cars

Story Problem: Apples

Story Mat: Ocean

Problem Solving (4 of 6)

Contextualizing

- The answer is five rabbits. What's the question?
- The answer is 50 .
- The answer is three cows, the operation is division.

There are 5 apples. They can be red or green. Show the ways the apples could be.

Problem Solving (5 of 6)

Contextualizing

Find and Fix the Error:
Mel ate $1 / 2$ of her sandwich at lunch and ate $1 / 4$ of her sandwich at dinner. Joy said she ate $2 / 6$ of the sandwich. What did Joy do wrong?

Problem Solving (6 of 6)

Lawrence Hall of Science

- Beaded Braids
- Two and Three Bean Salad/Grandpa's Coins

Place Value (1 of 2)

Concrete

Understanding:

1. Build a ten
2. Base ten blocks

Use anchor charts modeling Place Value

Place Value (2 of 2)

Generic Games:

- Dice

- Cards Games/Memory Games
- Dominoes
- Board Games

1:-	$1 . \%$	1\%
$1 \because:$	$1:$	1\%
$1 \because:$	II	11.
13	14	15
16	17	18
19	20	21

Geometry (1 of 3)

- The geometry center needs to reflect the cycle of engagement: concrete, pictorial, abstract.
- Use the language of geometry! (faces, edges, vertices, angles)

Preschool- Children begin to conceptualize measurable attributes of objects. Children develop spatial and geometric sense.

Geometry (2 of 3)

K- Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, spheres).
Analyze, compare, create, and compose shapes.
1- Reason with shapes and their attributes.

Geometry (3 of 3)

2- Reason with shapes and their attributes.
3-. Reason with shapes and their attributes.
 V

- Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.
- Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as $1 / 4$ of the area of the shape.

Data

K- Classify objects and count the number of objects in categories.

1-3-Represent and interpret data.

Survey: Which do you like

 better?| Reading Alone | Buddy Reading | Adult Reads |
| :--- | :--- | :--- |
| | | |
| | | |

Measurement

K-Describe and compare measurable attributes.
1-Measure lengths indirectly and by iterating length units. Tell and write time.

2- Measure and estimate lengths in standard units. Relate addition and subtraction to length. Work with time and money.

3- Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects. Represent and interpret data.

Geometric measurement: understand concepts of area and relate area to multiplication and to addition.
Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.

rechnotogy

Technology should be embedded throughout all centers, small group, and whole group instruction.

Technology should be used to develop and deepen learner understanding, stimulate interest in the mathematics being learned, and increase mathematical proficiency. When technology is used strategically, it provides more equitable access and opportunities for each and every learner to actively engage and participate in the learning of mathematics.

Name

Magnet Experiment

Take out all of the items in the container. You are going to test if each object is magnetic. If the objects pulls towards the magnet than it is magnetic.

Are these items magnetic?

\square refrigerator yes
yes
\square paper \qquad cotton t-shirt no
toothpick \qquad
(3) penny
\square plastic cup
\qquad
safety pin \qquad
\square staples
rubber band \qquad
bobby pin \qquad
crayon \qquad ps \qquad
paper clips tack
Q
aluminum foil pnail
thread \qquad

A

pencil Use your oun \qquad
chalk board ${ }_{\text {in the from of tice }}$ mom)
white board ${ }_{\text {in the from of tie }}$ wom) glass
beck be window

$$
\begin{aligned}
& \text { P scisso } \\
& \text { screw }
\end{aligned}
$$

8
scissors (Use your oun
\qquad
t brass brads
虏fabric \qquad
(9) plastic button
F
tin can
plastic figures

What do you notice in this center compared to...

Assessment (1 of 2)

What should teachers assess?

Assessment (2 of 2)

Ongoing Assessment:

- Recording Sheets
- Anecdotal Notes
- Checklists
- Math Interviews/Conferences
- Math Journals
- Portfolios and Artifacts:
- Teacher Selected
- Student Selected

Just Stant!

Teachers should start small, start slow, but just start!

Follow Us on Social Media

Facebook: @njdeptofed

Threads: @NewJerseyDOE

Instagram: @newjerseydoe

X: @NewJerseyDOE

LinkedIn:
New Jersey Department of Education

- YouTube

YouTube:
@newjerseydepartmentofeduca6565

Thank You!

New Jersey Department of Education: nj.gov/education

K-3Office@doe.nj.gov

