Benzene Benzene is a colorless liquid with a sweet odor. It evaporates into the air very quickly and dissolves slightly in water. It is flammable and is formed from both natural processes and human activities. Benzene is widely used in the United States; it ranks in the top 20 chemicals for production volume. Some industries use benzene to make other chemicals such as plastics, resins, and nylon and synthetic fibers. Benzene is also used to make rubber, lubricants, dyes, detergents, drugs, and pesticides. Natural sources of benzene include volcanoes and forest fires. Benzene is also a natural constituent of crude oil, gasoline, and cigarette smoke. Outdoor air contains low levels of benzene from tobacco smoke, automobile service stations, exhaust from motor vehicles, and industrial emissions. Indoor air generally contains higher levels of benzene from products such as glues, paints, furniture wax, and detergents.

Breathing very high levels of benzene can result in death, while high levels can cause drowsiness, dizziness, rapid heart rate, headaches, tremors, confusion, and unconsciousness. Eating or drinking foods containing high levels of benzene can cause vomiting, irritation of the stomach, dizziness, sleepiness, convulsions, rapid heart rate, and death. The major effect of benzene from long-term (365 days or longer) exposure is on the blood. Benzene causes harmful effects on the bone marrow and can cause a decrease in red blood cells leading to anemia. It can also cause excessive bleeding and can affect the immune system, increasing the chance for infection. Some women who breathed high levels of benzene for many months had irregular menstrual periods and a decrease in the size of their ovaries. It is not known whether benzene exposure affects the developing fetus in pregnant women or fertility in men. Animal studies have shown low birth weights, delayed bone formation, and bone marrow damage when pregnant animals breathed benzene.

The USDHHS has determined that benzene is a known human carcinogen. Long-term exposure to high levels of benzene in the air can cause leukemia, cancer of the blood-forming organs.

1,3-Butadiene Very large amounts of 1,3-butadiene are produced every year from petroleum. 1,3-Butadiene is used to make man-made rubber, which is then used mostly for car and truck tires. It is also used to make other kinds of rubber and plastics. 1,3-Butadiene is also found in small amounts in gasoline. Small amounts are found in the exhaust of automobiles and trucks at approximately 22.5 µg/m³ and in gasoline vapors at 9 µg/m³. 1,3-Butadiene is also found in cigarette smoke, and it may also be found in the smoke of wood fires.

Short-term exposure to high levels of 1,3-butadiene causes eye, nose, and throat irritation. Exposure to very high levels could occur during accidental release and could lead to symptoms like drunkenness and unconsciousness, or even to death. The exact levels in air that cause these effects in humans is unknown. Studies of rubber industry workers suggested possible harmful effects such as more cases of heart diseases, blood diseases, and lung diseases from the long-term exposure to low levels of 1,3-butadiene. These rubber industry workers were also exposed to other chemicals along with 1,3-butadiene, so it is not known for sure which chemical (or a combination of them) caused
these effects. In addition, the effect of harmful habits like smoking was not considered in the evaluation of health risks of occupational exposure to 1,3-butadiene.

Carbon tetrachloride Carbon tetrachloride does not occur naturally. Exposure to this substance results mostly from breathing air, drinking water, or coming in contact with soil that is contaminated with it. Exposure to very high amounts of carbon tetrachloride can damage the liver, kidneys, and nervous system. Carbon tetrachloride can cause cancer in animals. Carbon tetrachloride is a manufactured chemical that does not occur naturally. It is a clear liquid with a sweet smell that can be detected at low levels. It is also called carbon chloride, methane tetrachloride, perchloromethane, tetrachloroethane, or benziform.

Carbon tetrachloride is most often found in the air as a colorless gas. It is not flammable and does not dissolve in water very easily. It was used in the production of refrigeration fluid and propellants for aerosol cans, as a pesticide, as a cleaning fluid and degreasing agent, in fire extinguishers, and in spot removers. Because of its harmful effects, these uses are now banned and it is only used in some industrial applications.

High exposure to carbon tetrachloride can cause liver, kidney, and central nervous system damage. These effects can occur after ingestion or breathing carbon tetrachloride, and possibly from exposure to the skin. The liver is especially sensitive to carbon tetrachloride because it enlarges and cells are damaged or destroyed.

Kidneys also are damaged, causing a build up of wastes in the blood. If exposure is low and brief, the liver and kidneys can repair the damaged cells and function normally again. Effects of carbon tetrachloride are more severe in persons who drink large amounts of alcohol.

If exposure is very high, the nervous system, including the brain, is affected. People may feel intoxicated and experience headaches, dizziness, sleepiness, and nausea and vomiting. These effects may subside if exposure is stopped, but in severe cases, coma and even death may occur.

There have been no studies of the effects of carbon tetrachloride on reproduction in humans, but studies in rats showed that long-term inhalation may cause decreased fertility.

Studies in humans have not been able to determine whether or not carbon tetrachloride can cause cancer because usually there has been exposure to other chemicals at the same time. Swallowing or breathing carbon tetrachloride for years caused liver tumors in animals. Mice that breathed carbon tetrachloride also developed tumors of the adrenal gland. The Department of Health and Human Services (DHHS) has determined that carbon tetrachloride may reasonably be anticipated to be a carcinogen. The International Agency for Research on Cancer (IARC) has determined that carbon tetrachloride is possibly carcinogenic to humans, whereas the EPA determined that carbon tetrachloride is a probable human carcinogen.
Chloroform Chloroform is a colorless, volatile, nonflammable liquid. It is slightly soluble in water and is miscible with oils, ethanol, ether, and other organic solvents. Chloroform has a nonirritating odor and a slightly sweet taste. It is unstable when exposed to air, light, and/or heat. When heated to decomposition, chloroform emits toxic fumes of hydrochloric acid and other chlorinated compounds. The major use of chloroform is in refrigerant (hydrochlorofluorocarbon-22) and fluoropolymers production. Other uses include the extraction and purification of some antibiotics, alkaloids, vitamins, and flavors; as a solvent for lacquers, floor polishes, and adhesives; in artificial silk manufacturing; in resins, fats, greases, gums, waxes, oils, and rubber; as an industrial solvent in photography and dry cleaning; as a heat transfer medium in fire extinguishers; as an intermediate in the preparation of dyes and pesticides; and as a fumigant for stored grain crops.

The primary routes of exposure are ingestion, inhalation, and dermal contact with water (e.g., while showering, swimming, cleaning, and cooking). Ingestion of contaminated water is expected to be a primary source of exposure. Chloroform was detected in the atmosphere at concentrations ranging from 0.10 to 10.0 μg/m³ and in indoor air at 1.0 to 20.0 μg/m³. Exposure via inhalation results in 60% to 80% absorption. Placental transfer of chloroform has also been demonstrated.

Exposures to high levels of chloroform for long periods of time may damage liver and kidneys. Large amounts of chloroform can cause sores when chloroform touches your skin. Reproductive or birth defects in people is unknown. Animal studies have shown that miscarriages occurred in rats and mice that breathed air containing 30 to 300 ppm chloroform during pregnancy and also in rats that ate chloroform during pregnancy. Offspring of rats and mice that breathed chloroform during pregnancy had birth defects. Abnormal sperm were found in mice that breathed air containing 400 ppm chloroform for a few days.

Chloroform is reasonably anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity in experimental animals. There is inadequate evidence for the carcinogenicity of chloroform in humans. Several epidemiological and ecological studies indicate that there is an association between cancer of the large intestine, rectum, and/or urinary bladder and the constituents of chlorinated water.

1,4-Dichlorobenzene 1,4-Dichlorobenzene is a chemical used to control moths, molds, and mildew, and to deodorize restrooms and waste containers. It is also called para-DCB or p-DCB. Other names include Paramoth, Para crystals, and Paracide reflecting its widespread use to kill moths. At room temperature, p-DCB is a white solid with a strong, pungent odor. When exposed to air, it slowly changes from a solid to a vapor. Most p-DCB in our environment comes from its use in moth repellent products and in toilet deodorizer blocks.

In air, it breaks down to harmless products in about a month. It does not dissolve easily in water. It is not easily broken down by soil organisms. It evaporates easily from water and soil, so most is found in the air. It is taken up and retained by plants and fish.
There is no evidence that moderate use of common household products that contain p-DCB will result in harmful effects to your health. Harmful effects, however, may occur from high exposures. Very high usage of p-DCB products in the home can result in dizziness, headaches, and liver problems. Some of the patients who developed these symptoms had been using the products for months or even years after they first began to feel ill.

Workers breathing high levels of p-DCB (1,000 times more than levels in deodorized rooms) have reported painful irritation of the nose and eyes. There are cases of people who have eaten p-DCB products regularly for months to years because of its sweet taste. These people had skin blotches and lower numbers of red blood cells.

The US Department of Health and Human Services (DHHS) has determined that p-DCB may reasonably be anticipated to be a carcinogen. There is no direct evidence that p-DCB can cause cancer in humans. However, animals given very high levels in water developed liver and kidney tumors.

There is very little information on how children react to p-DCB exposure, but children would probably show the same effects as adults. No studies in people or animals show that p-DCB crosses the placenta or can be found in fetal tissues. Based on other similar chemicals, it is possible that this could occur. There is no credible evidence that p-DCB causes birth defects. One study found dichlorobenzenes in breast milk, but p-DCB has not been specifically measured.

No studies were located regarding gastrointestinal, immunological, developmental, reproductive, renal, hepatic effects of 1,3-butadiene in humans after inhalation exposure.

1,2-Dichloroethane 1,2-Dichloroethane, also called ethylene dichloride, is a manufactured, colorless liquid with a pleasant smell and sweet taste. It is primarily used in the production of vinyl chloride which is used to make a variety of plastic and vinyl products.

Breathing high levels of 1,2-dichloroethane can cause nervous system disorders, liver and kidney diseases, and affect the lungs and immune system. Livers, kidneys and lungs were the target organs in chronic exposures studies in animals. Studies have not been conclusive that 1,2-dichloroethane causes cancer in humans. In animal studies, increases in stomach, mammary gland, liver, lung, and endometrium cancers have been seen following inhalation, oral and dermal exposures. Exposure to 1,2-dichloroethane has not been shown to affect fertility in people or animals. The US Environmental Protection Agency (EPA) has determined that 1,2-dichloroethane is a probably human carcinogen and the International Agency for Cancer Research (IARC) considers it to be a possible human carcinogen.
1,2-Dichloropropane 1,2-Dichloropropane is a colorless, flammable liquid with a chloroform-like odor. It is moderately soluble in water and readily evaporates into air. It does not occur naturally in the environment. 1,2-Dichloropropane production in the United States has declined over the past 20 years. It was used in the past as a soil fumigant, chemical intermediate, and industrial solvent and was found in paint strippers, varnishes, and furniture finish removers. Most of these uses were discontinued. Today, almost all of the 1,2-dichloropropane is used as a chemical intermediate to make perchloroethylene and several other related chlorinated chemicals.

Individuals who intentionally or accidentally breathe high levels of 1,2-dichloropropane have experienced difficulty breathing, coughing, vomiting, nosebleed, fatigue, and damage to blood cells, liver, and kidneys. Ingestion of cleaning solutions containing 1,2-dichloropropane caused headaches, dizziness, nausea, liver and kidney damage, anemia, coma, and death.

Breathing low levels of 1,2-dichloropropane over short- or long-term periods causes damage to the liver, kidney, and respiratory system in animals. Breathing high levels causes death. Similar effects have been reported when animals were given 1,2-dichloropropane by mouth. Some studies indicate that ingesting 1,2-dichloropropane may cause reproductive effects. One study reported a delay in bone formation of the skull in fetal rats.

It is not known whether 1,2-dichloropropane causes cancer in people. The carcinogenicity of 1,2-dichloropropane has been evaluated in animal studies with rats and mice. Liver tumors have been observed in mice, and mammary gland tumors have been found in rats. The International Agency for Research on Cancer (IARC) has determined that 1,2-dichloropropane is unclassifiable as to human carcinogenicity.

Laboratory animals that breathed in high levels of 1,3-butadiene for a short time died. Mice that survived exposure to 1,3-butadiene longer than 14 days had damage in the organs that make blood cells and damage to nose tissues. Pregnant mice that breathed in low amounts of 1,3-butadiene had miscarriages. Birth defects were found in offspring of rats and mice exposed to 1,3-butadiene during pregnancy. Rats that breathed in lower levels of 1,3-butadiene for more than 1 year had kidney disease and damaged lungs; some of them died. Mice that breathed in lower levels of 1,3-butadiene for more than 1 year had harmful effects in their reproductive organs and damaged livers. Rats and mice that breathed in small amounts of 1,3-butadiene for a long time period developed cancer in many organs.

The Department of Health and Human Services has determined that 1,3-butadiene may reasonably be anticipated to be a carcinogen. This is based on animal studies that found increases in a variety of tumor types from exposure to 1,3-butadiene. Studies on workers are inconclusive because the workers were exposed to other chemicals in addition to 1,3-butadiene.
Methylene Chloride Methylene chloride is a colorless liquid with a mild, sweet odor. It is used as an industrial solvent and as a paint stripper. It may also be found in some aerosol and pesticide products and is used in the manufacture of photographic film. The most likely way to be exposed to methylene chloride is by breathing contaminated air.

Breathing in large amounts of methylene chloride may cause dizziness, nausea, and tingling or numbness of fingers and toes. A person breathing smaller amounts of methylene chloride may become less attentive and less accurate in tasks requiring hand-eye coordination. We do not know if methylene chloride can affect the ability of people to have children or if it causes birth defects. Some birth defects have been seen in animals inhaling very high levels of methylene chloride.

We do not know if methylene chloride can cause cancer in humans. An increased cancer risk was seen in mice breathing large amounts of methylene chloride for a long time. The USDHHS has determined that methylene chloride can be reasonably anticipated to be a cancer-causing chemical, and the EPA has determined that methylene chloride is a probable cancer-causing agent in humans.

Methyl Tert-Butyl Ether (MTBE) MTBE is a flammable liquid made from blending chemicals such as isobutylene and methanol. It has been used as an additive to unleaded gasoline since the 1980s to promote more efficient combustion.

Breathing small amounts of MTBE can cause nose and throat irritation, nausea, headaches, dizziness and mental confusion. People may be exposed to MTBE at gasoline service stations and with the use of gas-powered equipment. There is no evidence that MTBE causes cancer in humans. In animals studies, long term inhalation of high levels of MTBE may cause kidney cancer in rats and liver cancer in mice. The US Environmental Protection Agency (EPA) has not classified MTBE as to its carcinogenicity.

Tetrachloroethylene (PCE) PCE is a manufactured chemical that is widely used for dry cleaning of fabrics and for metal-degreasing. It is a nonflammable liquid at room temperature. It evaporates easily into the air and has a sharp, sweet odor. Most people can smell PCE when it is present in the air at a level of approximately 7,000 micrograms per cubic meter or more, although some can smell it at even lower levels. People are commonly exposed to PCE when they bring clothes from the dry cleaners.

High concentrations of PCE can cause dizziness, headache, sleepiness, confusion, nausea, difficulty in speaking and walking, unconsciousness, and death. Irritation may result from repeated or extended skin contact with it. These symptoms occur almost entirely in work (or hobby) environments when people have been exposed to high concentrations. In industry, most workers are exposed to levels lower than those causing obvious nervous system effects, although more subtle neurological effects are possible at the lower levels. The health effects of breathing in air or drinking water with low levels of PCE are not known. Results from some studies suggest that women who work in dry
cleaning industries where exposures to PCE can be quite high may have more menstrual
problems and spontaneous abortions than women who are not exposed. Results of animal
studies, conducted with amounts much higher than those that most people are exposed to,
show that PCE can cause liver and kidney damage. Exposure to very high levels of PCE
can be toxic to the unborn pups of pregnant rats and mice. Changes in behavior were
observed in the offspring of rats that breathed high levels of the chemical while they were
pregnant.

The U.S. Department of Health and Human Services (USDHHS) has determined
that PCE may reasonably be anticipated to be a carcinogen. PCE has been shown to cause
liver tumors in mice and kidney tumors in male rats.

Trichloroethylene (TCE) TCE is a nonflammable, colorless liquid with a
somewhat sweet odor and a sweet, burning taste. It is used mainly as a solvent to remove
grease from metal parts, but it is also an ingredient in adhesives, paint removers,
typewriter correction fluids, and spot removers. TCE dissolves a little in water, and can
remain in groundwater for a long time. It quickly evaporates from water, so it is
commonly found as a vapor in the air. People can be exposed to TCE by breathing air in
and around the home which has been contaminated with TCE vapors from shower water
or household products, or by drinking, swimming, or showering in water that has been
contaminated with TCE. Breathing small amounts of TCE may cause headaches, lung
irritation, dizziness, poor coordination, and difficulty concentrating. Breathing large
amounts of TCE may cause impaired heart function, unconsciousness, and death.
Breathing it for long periods may cause nerve, kidney, and liver damage. Drinking large
amounts of TCE may cause nausea, liver damage, unconsciousness, impaired heart
function, or death. Drinking small amounts of TCE for long periods may cause liver and
kidney damage, impaired immune system function, and impaired fetal development in
pregnant women, although the extent of some of these effects is not yet clear. Skin
contact with TCE for short periods may cause skin rashes.

Some studies with mice and rats have suggested that high levels of TCE may
cause liver, kidney, or lung cancer. Some studies of people exposed over long periods to
high levels of TCE in drinking water or in workplace air have found evidence of
increased cancer. The National Toxicology Program has determined that TCE is
“reasonably anticipated to be a human carcinogen,” and the International Agency for
Research on Cancer (IARC) has determined that trichloroethylene is “probably
carcinogenic to humans.”

Vinyl Chloride Vinyl chloride is a colorless gas. It burns easily and it is not
stable at high temperatures. It has a mild, sweet odor. It is a manufactured substance that
does not occur naturally. It is a biodegradation intermediate of trichloroethane,
trichloroethylene, and tetrachloroethylene. Vinyl chloride is used to make polyvinyl
chloride (PVC). PVC is used to make a variety of plastic products, including pipes, wire
and cable coatings, and packaging materials.
Breathing high levels of vinyl chloride can cause dizziness. Breathing very high levels can cause you to pass out, and breathing extremely high levels can cause death.

Some people who have breathed vinyl chloride for several years have changes in the structure of their livers. People are more likely to develop these changes if they breathe high levels of vinyl chloride. Some people who work with vinyl chloride have nerve damage and develop immune reactions. The lowest levels that produce liver changes, nerve damage, and immune reaction in people are not known. Some workers exposed to very high levels of vinyl chloride have problems with the blood flow in their hands. Their fingers turn white and hurt when they go into the cold.

It has not been proven that vinyl chloride causes birth defects in humans, but studies in animals suggest that vinyl chloride might affect growth and development. Animal studies also suggest that infants and young children might be more susceptible than adults to vinyl chloride-induced cancer. Animal studies have shown that long-term exposure to vinyl chloride can damage the sperm and testes.

The DHHS has determined that vinyl chloride is a known carcinogen. Studies in workers who have breathed vinyl chloride over many years showed an increased risk of liver cancer; brain cancer, lung cancer, and some cancer of the blood have also been observed in workers.
TETRACHLOROETHYLENE
CAS # 127-18-4

This fact sheet answers the most frequently asked health questions (FAQs) about tetrachloroethylene. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It’s important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Tetrachloroethylene is a manufactured chemical used for dry cleaning and metal degreasing. Exposure to very high concentrations of tetrachloroethylene can cause dizziness, headaches, sleepiness, confusion, nausea, difficulty in speaking and walking, unconsciousness, and death. Tetrachloroethylene has been found in at least 771 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What is tetrachloroethylene?
(Pronounced tê’të-rə-klor’ə-éthə-lēn’)
Tetrachloroethylene is a manufactured chemical that is widely used for dry cleaning of fabrics and for metal-degreasing. It is also used to make other chemicals and is used in some consumer products.

Other names for tetrachloroethylene include perchloroethylene, PCE, and tetrachloroethene. It is a nonflammable liquid at room temperature. It evaporates easily into the air and has a sharp, sweet odor. Most people can smell tetrachloroethylene when it is present in the air at a level of 1 part tetrachloroethylene per million parts of air (1 ppm) or more, although some can smell it at even lower levels.

What happens to tetrachloroethylene when it enters the environment?
- Much of the tetrachloroethylene that gets into water or soil evaporates into the air.
- Microorganisms can break down some of the tetrachloroethylene in soil or underground water.
- In the air, it is broken down by sunlight into other chemicals or brought back to the soil and water by rain.
- It does not appear to collect in fish or other animals that live in water.

How might I be exposed to tetrachloroethylene?
- When you bring clothes from the dry cleaners, they will release small amounts of tetrachloroethylene into the air.
- When you drink water containing tetrachloroethylene, you are exposed to it.

How can tetrachloroethylene affect my health?
High concentrations of tetrachloroethylene (particularly in closed, poorly ventilated areas) can cause dizziness, headache, sleepiness, confusion, nausea, difficulty in speaking and walking, unconsciousness, and death.

Irritation may result from repeated or extended skin contact with it. These symptoms occur almost entirely in work (or hobby) environments when people have been accidentally exposed to high concentrations or have intentionally used tetrachloroethylene to get a “high.”

In industry, most workers are exposed to levels lower than those causing obvious nervous system effects. The health effects of breathing in air or drinking water with low levels of tetrachloroethylene are not known.

Results from some studies suggest that women who work in dry cleaning industries where exposures to tetrachloroethyl-
TETRACHLOROETHYLENE
CAS # 127-18-4

ToxFAQs Internet home page via WWW is http://www.atsdr.cdc.gov/toxfaq.html

ene can be quite high may have more menstrual problems and spontaneous abortions than women who are not exposed. However, it is not known if tetrachloroethylene was responsible for these problems because other possible causes were not considered.

Results of animal studies, conducted with amounts much higher than those that most people are exposed to, show that tetrachloroethylene can cause liver and kidney damage. Exposure to very high levels of tetrachloroethylene can be toxic to the unborn pups of pregnant rats and mice. Changes in behavior were observed in the offspring of rats that breathed high levels of the chemical while they were pregnant.

How likely is tetrachloroethylene to cause cancer?
The Department of Health and Human Services (DHHS) has determined that tetrachloroethylene may reasonably be anticipated to be a carcinogen. Tetrachloroethylene has been shown to cause liver tumors in mice and kidney tumors in male rats.

Is there a medical test to show whether I’ve been exposed to tetrachloroethylene?
One way of testing for tetrachloroethylene exposure is to measure the amount of the chemical in the breath, much the same way breath-alcohol measurements are used to determine the amount of alcohol in the blood.

Because it is stored in the body’s fat and slowly released into the bloodstream, tetrachloroethylene can be detected in the breath for weeks following a heavy exposure.

Tetrachloroethylene and trichloroacetic acid (TCA), a breakdown product of tetrachloroethylene, can be detected in the blood. These tests are relatively simple to perform. These tests aren't available at most doctors' offices, but can be performed at special laboratories that have the right equipment.

Because exposure to other chemicals can produce the same breakdown products in the urine and blood, the tests for breakdown products cannot determine if you have been exposed to tetrachloroethylene or the other chemicals.

Has the federal government made recommendations to protect human health?
The EPA maximum contaminant level for the amount of tetrachloroethylene that can be in drinking water is 0.005 milligrams tetrachloroethylene per liter of water (0.005 mg/L).

The Occupational Safety and Health Administration (OSHA) has set a limit of 100 ppm for an 8-hour workday over a 40-hour workweek.

The National Institute for Occupational Safety and Health (NIOSH) recommends that tetrachloroethylene be handled as a potential carcinogen and recommends that levels in workplace air should be as low as possible.

Glossary
Carcinogen: A substance with the ability to cause cancer.
CAS: Chemical Abstracts Service.
Milligram (mg): One thousandth of a gram.
Nonflammable: Will not burn.
References
This ToxFAQs information is taken from the 1997 Toxicological Profile for Tetrachloroethylene (update) produced by the Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, Public Health Service in Atlanta, GA.
This fact sheet answers the most frequently asked health questions (FAQs) about trichloroethylene. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. This information is important because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Trichloroethylene is a colorless liquid which is used as a solvent for cleaning metal parts. Drinking or breathing high levels of trichloroethylene may cause nervous system effects, liver and lung damage, abnormal heartbeat, coma, and possibly death. Trichloroethylene has been found in at least 852 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What is trichloroethylene?
Trichloroethylene (TCE) is a nonflammable, colorless liquid with a somewhat sweet odor and a sweet, burning taste. It is used mainly as a solvent to remove grease from metal parts, but it is also an ingredient in adhesives, paint removers, typewriter correction fluids, and spot removers.

Trichloroethylene is not thought to occur naturally in the environment. However, it has been found in underground water sources and many surface waters as a result of the manufacture, use, and disposal of the chemical.

What happens to trichloroethylene when it enters the environment?
- Trichloroethylene dissolves a little in water, but it can remain in ground water for a long time.
- Trichloroethylene quickly evaporates from surface water, so it is commonly found as a vapor in the air.
- Trichloroethylene evaporates less easily from the soil than from surface water. It may stick to particles and remain for a long time.
- Trichloroethylene may stick to particles in water, which will cause it to eventually settle to the bottom sediment.
- Trichloroethylene does not build up significantly in plants and animals.

How might I be exposed to trichloroethylene?
- Breathing air in and around the home which has been contaminated with trichloroethylene vapors from shower water or household products such as spot removers and typewriter correction fluid.
- Drinking, swimming, or showering in water that has been contaminated with trichloroethylene.
- Contact with soil contaminated with trichloroethylene, such as near a hazardous waste site.
- Contact with the skin or breathing contaminated air while manufacturing trichloroethylene or using it at work to wash paint or grease from skin or equipment.

How can trichloroethylene affect my health?
Breathing small amounts may cause headaches, lung irritation, dizziness, poor coordination, and difficulty concentrating.

Breathing large amounts of trichloroethylene may cause impaired heart function, unconsciousness, and death. Breathing it for long periods may cause nerve, kidney, and liver damage.
TRICHLOROETHYLENE
CAS # 79-01-6

ToxFAQs™ Internet address is http://www.atsdr.cdc.gov/toxfaq.html

Drinking large amounts of trichloroethylene may cause nausea, liver damage, unconsciousness, impaired heart function, or death.

Drinking small amounts of trichloroethylene for long periods may cause liver and kidney damage, impaired immune system function, and impaired fetal development in pregnant women, although the extent of some of these effects is not yet clear.

Skin contact with trichloroethylene for short periods may cause skin rashes.

How likely is trichloroethylene to cause cancer?
Some studies with mice and rats have suggested that high levels of trichloroethylene may cause liver, kidney, or lung cancer. Some studies of people exposed over long periods to high levels of trichloroethylene in drinking water or in workplace air have found evidence of increased cancer. Although, there are some concerns about the studies of people who were exposed to trichloroethylene, some of the effects found in people were similar to effects in animals.

In its 9th Report on Carcinogens, the National Toxicology Program (NTP) determined that trichloroethylene is “reasonably anticipated to be a human carcinogen.” The International Agency for Research on Cancer (IARC) has determined that trichloroethylene is “probably carcinogenic to humans.”

Is there a medical test to show whether I’ve been exposed to trichloroethylene?
If you have recently been exposed to trichloroethylene, it can be detected in your breath, blood, or urine. The breath test, if it is performed soon after exposure, can tell if you have been exposed to even a small amount of trichloroethylene.

Exposure to larger amounts is assessed by blood and urine tests, which can detect trichloroethylene and many of its breakdown products for up to a week after exposure. However, exposure to other similar chemicals can produce the same breakdown products, so their detection is not absolute proof of exposure to trichloroethylene. This test isn’t available at most doctors’ offices, but can be done at special laboratories that have the right equipment.

Has the federal government made recommendations to protect human health?
The EPA has set a maximum contaminant level for trichloroethylene in drinking water at 0.005 milligrams per liter (0.005 mg/L) or 5 parts of TCE per billion parts water.

The EPA has also developed regulations for the handling and disposal of trichloroethylene.

The Occupational Safety and Health Administration (OSHA) has set an exposure limit of 100 parts of trichloroethylene per million parts of air (100 ppm) for an 8-hour workday, 40-hour workweek.

Glossary
Carcinogenicity: The ability of a substance to cause cancer.
CAS: Chemical Abstracts Service.
Evaporate: To change into a vapor or gas.
Milligram (mg): One thousandth of a gram.
Nonflammable: Will not burn.
ppm: Parts per million.
Sediment: Mud and debris that have settled to the bottom of a body of water.
Solvent: A chemical that dissolves other substances.

References
This ToxFAQs information is taken from the 1997 Toxicological Profile for Trichloroethylene (update) produced by the Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, Public Health Service in Atlanta, GA.

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs™ Internet address is http://www.atsdr.cdc.gov/toxfaq.html. ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.
This fact sheet answers the most frequently asked health questions (FAQs) about 1,2-Dichloroethane. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to 1,2-dichloroethane usually occurs by breathing contaminated air in workplaces that use 1,2-dichloroethane. Breathing or ingesting high levels of 1,2-dichloroethane can cause damage to the nervous system, liver, kidneys, and lungs and may cause cancer. This substance has been found in at least 570 of the 1,585 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What is 1,2-dichloroethane?

1,2-Dichloroethane, also called ethylene dichloride, is a manufactured chemical that is not found naturally in the environment. It is a clear liquid and has a pleasant smell and sweet taste.

The most common use of 1,2-dichloroethane is in the production of vinyl chloride which is used to make a variety of plastic and vinyl products including polyvinyl chloride (PVC) pipes, furniture and automobile upholstery, wall coverings, housewares, and automobile parts. It is also used to as a solvent and is added to leaded gasoline to remove lead.

What is 1,2-dichloroethane?

- 1,2-Dichloroethane released in soil will either evaporate into the air or travel down through the soil and enter underground water.

How might I be exposed to 1,2-dichloroethane?

- The general population may be exposed to 1,2-dichloroethane by breathing air or drinking water that contains 1,2-dichloroethane.
- People who work or live near a factory where 1,2-dichloroethane is used, may be exposed to higher than usual levels.
- People living near uncontrolled hazardous waste sites may also be exposed to higher than usual levels of 1,2-dichloroethane.

How can 1,2-dichloroethane affect my health?

Nervous system disorders, liver and kidney diseases, and lung effects have been reported in humans ingesting or inhaling large amounts of 1,2-dichloroethane.

In laboratory animals, breathing or ingesting large amounts of 1,2-dichloroethane have also caused nervous system disorders and liver, kidney, and lung effects. Animal studies also suggest that 1,2-dichloroethane may damage the
immune system. Kidney disease has also been seen in animals ingesting low doses of 1,2-dichloroethane for a long time. Studies in animals indicate that 1,2-dichloroethane does not affect reproduction.

How likely is 1,2-dichloroethane to cause cancer?

Human studies examining whether 1,2-dichloroethane can cause cancer have been considered inadequate. In animals, increases in the occurrence of stomach, mammary gland, liver, lung, and endometrium cancers have been seen following inhalation, oral, and dermal exposure.

The Department of Health and Human Services (DHHS) has determined that 1,2-dichloroethane may reasonably be expected to cause cancer. The EPA has determined that 1,2-dichloroethane is a probable human carcinogen and the International Agency for Cancer Research (IARC) considers it to be a possible human carcinogen.

How can 1,2-dichloroethane affect children?

We do not know if exposure to 1,2-dichloroethane will result in birth defects or other developmental effects in people. Studies in animals suggest that 1,2-dichloroethane does not produce birth defects.

It is likely that health effects seen in children exposed to high levels of 1,2-dichloroethane will be similar to the effects seen in adults.

How can families reduce the risk of exposure to 1,2-dichloroethane?

The general population is not likely to be exposed to large amounts of 1,2-dichloroethane. In the past, it was used in small amounts in household products such as cleaning agents, pesticides, and wallpaper and carpet glue. Risk of exposure from this source could be eliminated if these older products were immediately discarded.

Children should avoid playing in soils near uncontrolled hazardous waste sites where 1,2-dichloroethane may have been discarded.

Is there a medical test to show whether I’ve been exposed to 1,2-dichloroethane?

Tests are available to measure 1,2-dichloroethane in breath, blood, breast milk, and urine of exposed people. Because 1,2-dichloroethane leaves the body fairly quickly, these tests need to be done within a couple of days of exposure. These tests cannot be used to predict the nature or severity of toxic effects. These tests are not usually done in the doctor’s office.

Has the federal government made recommendations to protect human health?

The EPA allows 0.005 milligrams of 1,2-dichloroethane per liter of drinking water (0.005 mg/L).

The Occupational Safety and Health Administration has set a limit of 50 parts of 1,2-dichloroethane per million parts of air (50 ppm) in workplace air for 8 hour shifts and 40 hour work weeks.

References

What is benzene?

Benzene is a colorless liquid with a sweet odor. It evaporates into the air very quickly and dissolves slightly in water. It is highly flammable and is formed from both natural processes and human activities.

Benzene is widely used in the United States; it ranks in the top 20 chemicals for production volume. Some industries use benzene to make other chemicals which are used to make plastics, resins, and nylon and other synthetic fibers. Benzene is also used to make some types of rubbers, lubricants, dyes, detergents, drugs, and pesticides. Natural sources of benzene include emissions from volcanoes and forest fires. Benzene is also a natural part of crude oil, gasoline, and cigarette smoke.

How might I be exposed to benzene?

- Outdoor air contains low levels of benzene from tobacco smoke, automobile service stations, exhaust from motor vehicles, and industrial emissions.
- Vapors (or gases) from products that contain benzene, such as glues, paints, furniture wax, and detergents, can also be a source of exposure.
- Air around hazardous waste sites or gas stations will contain higher levels of benzene.
- Working in industries that make or use benzene.

How can benzene affect my health?

Breathing very high levels of benzene can result in death, while high levels can cause drowsiness, dizziness, rapid heart rate, headaches, tremors, confusion, and unconsciousness. Eating or drinking foods containing high levels of benzene can cause vomiting, irritation of the stomach, dizziness, sleepiness, convulsions, rapid heart rate, and death.

The major effect of benzene from long-term exposure is on the blood. Benzene causes harmful effects on the bone...
marrow and can cause a decrease in red blood cells leading to anemia. It can also cause excessive bleeding and can affect the immune system, increasing the chance for infection.

Some women who breathed high levels of benzene for many months had irregular menstrual periods and a decrease in the size of their ovaries, but we do not know for certain that benzene caused the effects. It is not known whether benzene will affect fertility in men.

How likely is benzene to cause cancer?

Long-term exposure to high levels of benzene in the air can cause leukemia, particularly acute myelogenous leukemia, often referred to as AML. This is a cancer of the blood-forming organs. The Department of Health and Human Services (DHHS) has determined that benzene is a known carcinogen. The International Agency for Research on Cancer (IARC) and the EPA have determined that benzene is carcinogenic to humans.

How can benzene affect children?

Children can be affected by benzene exposure in the same ways as adults. It is not known if children are more susceptible to benzene poisoning than adults.

Benzene can pass from the mother’s blood to a fetus. Animal studies have shown low birth weights, delayed bone formation, and bone marrow damage when pregnant animals breathed benzene.

How can families reduce the risks of exposure to benzene?

Benzene exposure can be reduced by limiting contact with gasoline and cigarette smoke. Families are encouraged not to smoke in their house, in enclosed environments, or near their children.

Is there a medical test to determine whether I’ve been exposed to benzene?

Several tests can show if you have been exposed to benzene. There is a test for measuring benzene in the breath; this test must be done shortly after exposure. Benzene can also be measured in the blood; however, since benzene disappears rapidly from the blood, this test is only useful for recent exposures.

In the body, benzene is converted to products called metabolites. Certain metabolites can be measured in the urine. The metabolite S-phenylmercapturic acid in urine is a sensitive indicator of benzene exposure. However, this test must be done shortly after exposure and is not a reliable indicator of how much benzene you have been exposed to, since the metabolites may be present in urine from other sources.

Has the federal government made recommendations to protect human health?

The EPA has set the maximum permissible level of benzene in drinking water at 5 parts benzene per billion parts of water (5 ppb).

The Occupational Safety and Health Administration (OSHA) has set limits of 1 part benzene per million parts of workplace air (1 ppm) for 8 hour shifts and 40 hour work weeks.

References

This fact sheet answers the most frequently asked health questions (FAQs) about 1,3-butadiene. For more information, call the ATSDR Information Center at 1-800-232-4636. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to 1,3-butadiene occurs mainly from breathing contaminated air. Effects on the nervous system and irritations of the eyes, nose and throat have been seen in people who breathed air contaminated with 1,3-butadiene. 1,3-Butadiene has been found in at least 13 of the 1,699 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What is 1,3-butadiene?

1,3-Butadiene is a chemical made from the processing of petroleum. It is a colorless gas with a mild gasoline-like odor. Recent production volumes are not available.

About 60% of the manufactured 1,3-butadiene is used to make synthetic rubber. Synthetic rubber is widely used for tires on cars and trucks.

1,3-Butadiene is also used to make plastics including acrylics. Small amounts are found in gasoline.

What happens to 1,3-butadiene when it enters the environment?

- It quickly evaporates to the air as a gas from leaks during production, use, storage, transport, or disposal.
- Half of the 1,3-butadiene that enters into air is expected to be broken down in 6 hours.
- It evaporates very quickly from water and soil.
- Since it evaporates so easily, it is not expected to be found in water or soil, but adequate tests are not available to measure the amounts.

- 1,3-Butadiene may be broken down by microorganisms in the soil.
- It is not expected to accumulate in fish.

How might I be exposed to 1,3-butadiene?

- Breathing urban and suburban air, but these levels are generally very low except in polluted cities or near chemical, plastic, and rubber facilities that use it.
- Breathing contaminated workplace air where it is manufactured or used.
- Breathing contaminated air from car and truck exhaust, waste incineration, or wood fires.
- Breathing cigarette smoke.
- Drinking contaminated water near production or waste sites.
- Ingesting foods contained in plastic or rubber food containers, but levels are generally very low or not present at all.
- Skin contact with gasoline and breathing gasoline fumes, but levels are low.
How can 1,3-butadiene affect my health?

Breathing high levels of 1,3-butadiene for a short time may cause nausea, dry mouth and nose, headache, and decreased blood pressure and pulse rate.

In laboratory animals, 1,3-butadiene causes inflammation of nasal tissues, changes to lung, heart, and reproductive tissues, neurological effects, and blood changes.

How likely is 1,3-butadiene to cause cancer?

The Department of Health and Human Services (DHHS), the International Agency for Research on Cancer (IARC), and EPA have determined that 1,3-butadiene is a human carcinogen.

Studies have shown that workers exposed to 1,3-butadiene may have an increased risk of cancers of the stomach, blood, and lymphatic system.

Animal studies found increases in a variety of tumor types from exposure to 1,3-butadiene.

How can 1,3-butadiene affect children?

It is likely that health effects seen in children exposed to high amounts of 1,3-butadiene will be similar to the effects seen in adults.

We do not know if exposure to 1,3-butadiene will result in birth defects or other developmental effects in people. Animal studies showed that breathing 1,3-butadiene during pregnancy can increase the number of birth defects.

How can families reduce the risk of exposure to 1,3-butadiene?

- Take precautions to minimize the amount of smoke released into the home during wood burning.
- Make sure car engines are shut off when in an enclosed space such as a garage.
- Minimize time spent near areas of heavy traffic and avoid living very close to busy roads.
- 1,3-Butadiene is a component of tobacco smoke. Avoid smoking in enclosed spaces like inside the home or car in order to limit exposure to children and other family members.

Is there a medical test to determine whether I’ve been exposed to 1,3-butadiene?

There is currently no reliable medical test to determine whether you have been exposed to 1,3-butadiene. However, scientists are working on tests to show if 1,3-butadiene attaches to compounds in the blood.

Has the federal government made recommendations to protect human health?

The Occupational Safety and Health Administration (OSHA) has set an occupational exposure limit of 1 part of 1,3-butadiene per million parts of air (1 ppm).

References

This fact sheet answers the most frequently asked health questions (FAQs) about carbon tetrachloride. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Carbon tetrachloride does not occur naturally. Exposure to this substance results mostly from breathing air, drinking water, or coming in contact with soil that is contaminated with it. Exposure to very high amounts of carbon tetrachloride can damage the liver, kidneys, and nervous system. Carbon tetrachloride can cause cancer in animals. Carbon tetrachloride has been found in at least 425 of the 1,662 National Priority List sites identified by the Environmental Protection Agency (EPA).

What is carbon tetrachloride?
Carbon tetrachloride is a manufactured chemical that does not occur naturally. It is a clear liquid with a sweet smell that can be detected at low levels. It is also called carbon chloride, methane tetrachloride, perchloromethane, tetrachloroethane, or benziform.
Carbon tetrachloride is most often found in the air as a colorless gas. It is not flammable and does not dissolve in water very easily. It was used in the production of refrigeration fluid and propellants for aerosol cans, as a pesticide, as a cleaning fluid and degreasing agent, in fire extinguishers, and in spot removers. Because of its harmful effects, these uses are now banned and it is only used in some industrial applications.

What happens to carbon tetrachloride when it enters the environment?
- It moves very quickly into the air upon release, so most of it is in the air.
- It evaporates quickly surface water.
- Only a small amount sticks to soil particles; the rest evaporates or moves into the groundwater.
- It is very stable in air (lifetime 30-100 years).
- It can be broken down or transformed in soil and water within several days.
- When it does break down, it forms chemicals that can destroy ozone in the upper atmosphere.
- It does not build up in animals. We do not know if it build up in plants.

How might I be exposed to carbon tetrachloride?
- Breathing contaminated air near manufacturing plants or waste sites.
- Breathing workplace air when it is used.
- Drinking contaminated water near manufacturing plants and waste sites.
- Breathing contaminated air and skin contact with water while showering or cooking with contaminated water.
- Swimming or bathing in contaminated water.
- Contact with or eating contaminated soil (pica child) at waste sites.

How can carbon tetrachloride affect my health?
High exposure to carbon tetrachloride can cause liver, kidney, and central nervous system damage. These effects can occur after ingestion or breathing carbon tetrachloride, and possibly from exposure to the skin. The liver is especially sensitive to carbon tetrachloride because it enlarges and cells are damaged or destroyed. Kidneys also are damaged, causing a build up of wastes in the blood. If exposure is low and brief, the liver and kidneys can repair the damaged cells and function normally again. Effects of carbon tetrachloride are more severe in persons who drink large amounts of alcohol. If exposure is very high, the nervous system, including the brain, is affected. People may feel intoxicated and experience headaches, dizziness, sleepiness, and nausea and vomiting. These effects may subside if exposure is stopped, but in severe cases, coma and even death may occur.
There have been no studies of the effects of carbon tetrachloride on reproduction in humans, but studies in rats showed that long-term inhalation may cause decreased fertility.

How likely is carbon tetrachloride to cause cancer?

Studies in humans have not been able to determine whether or not carbon tetrachloride can cause cancer because usually there has been exposure to other chemicals at the same time. Swallowing or breathing carbon tetrachloride for years caused liver tumors in animals. Mice that breathed carbon tetrachloride also developed tumors of the adrenal gland. The Department of Health and Human Services (DHHS) has determined that carbon tetrachloride may reasonably be anticipated to be a carcinogen. The International Agency for Research on Cancer (IARC) has determined that carbon tetrachloride is possibly carcinogenic to humans, whereas the EPA determined that carbon tetrachloride is a probable human carcinogen.

How can carbon tetrachloride affect children?

The health effects of carbon tetrachloride have not been studied in children, but they are likely to be similar to those seen in adults exposed to the chemical. We do not know whether children differ from adults in their susceptibility to carbon tetrachloride.

A few survey-type studies suggest that maternal drinking water exposure to carbon tetrachloride might possibly be related to certain birth defects. Studies in animals showed that carbon tetrachloride can cause early fetal deaths, but did not cause birth defects. A study with human breast milk in a test tube suggested that it would be possible for carbon tetrachloride to pass from the maternal circulation to breast milk, but there is no direct demonstration of this occurring.

How can families reduce the risks of exposure to carbon tetrachloride?

- Discard any product that contains carbon tetrachloride that you may have at home and may have used in the past.
- Household chemicals should be stored out of the reach of children in their original containers.

- Sometimes older children sniff household chemical products to get high. Talk to your children about the dangers of sniffing chemicals.

Is there a medical test to determine whether I’ve been exposed to carbon tetrachloride?

Several sensitive and specific tests are available to measure carbon tetrachloride in exposed persons. The most convenient way is simply to measure carbon tetrachloride in the exhaled air. Carbon tetrachloride also can be measured in blood, fat, or other tissues. These tests are not usually done in the doctor’s office because they require special equipment. Although these tests can show that a person has been exposed to carbon tetrachloride, the results cannot be used to reliably predict whether any adverse health effect might result. Because carbon tetrachloride leaves the body fairly quickly, these methods are best suited to detecting exposures that have occurred within the last several days.

Has the federal government made recommendations to protect human health?

The EPA has set a limit for carbon tetrachloride in drinking water of 5 parts of carbon tetrachloride per billion parts of water (5 ppb). The EPA has also set limits on how much carbon tetrachloride can be released from an industrial plant into waste water and is preparing to set limits on how much carbon tetrachloride can escape from an industrial plant into outside air.

The Occupational Safety and Health Administration (OSHA) set a limit of 10 ppm for carbon tetrachloride in workplace air for an 8-hour workday, 40-hour workweek.

References

Where can I get more information?

For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-0093. ToxFaqs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html. ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.
This fact sheet answers the most frequently asked health questions (FAQs) about chloroform. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It’s important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to chloroform can occur when breathing contaminated air or when drinking or touching the substance or water containing it. Breathing chloroform can cause dizziness, fatigue, and headaches. Breathing chloroform or ingesting chloroform over long periods of time may damage your liver and kidneys. It can cause sores if large amounts touch your skin. This substance has been found in at least 717 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What is chloroform?
(Pronounced klôrˈə-fôrmˈ)

Chloroform is a colorless liquid with a pleasant, nonirritating odor and a slightly sweet taste. It will burn only when it reaches very high temperatures.

In the past, chloroform was used as an inhaled anesthetic during surgery, but it isn’t used that way today. Today, chloroform is used to make other chemicals and can also be formed in small amounts when chlorine is added to water.

Other names for chloroform are trichloromethane and methyl trichloride.

What happens to chloroform when it enters the environment?
- Chloroform evaporates easily into the air.
- Most of the chloroform in air breaks down eventually, but it is a slow process.
- The breakdown products in air include phosgene and hydrogen chloride, which are both toxic.
- It doesn’t stick to soil very well and can travel through soil to groundwater.
- Chloroform dissolves easily in water and some of it may break down to other chemicals.
- Chloroform lasts a long time in groundwater.
- Chloroform doesn’t appear to build up in great amounts in plants and animals.

How might I be exposed to chloroform?
- Drinking water or beverages made using water containing chloroform.
- Breathing indoor or outdoor air containing it, especially in the workplace.
- Eating food that contains it.
- Skin contact with chloroform or water that contains it, such as in swimming pools.

How can chloroform affect my health?

Breathing about 900 parts of chloroform per million parts air (900 ppm) for a short time can cause dizziness, fatigue, and headache. Breathing air, eating food, or drinking water containing high levels of chloroform for long periods of time may damage your liver and kidneys. Large amounts of chloroform can cause sores when chloroform touches your skin.
Has the federal government made recommendations to protect human health?

The EPA drinking water limit for total trihalomethanes, a class of chemicals that includes chloroform, is 100 micrograms per liter of water (100 μg/L).

The EPA requires that spills or accidental releases of 10 pounds or more of chloroform into the environment be reported to the EPA.

The Occupational Safety and Health Administration (OSHA) has set the maximum allowable concentration of chloroform in workroom air during an 8-hour workday in a 40-hour workweek at 50 ppm.

Glossary

Carcinogenicity: A substance with the ability to cause cancer.
CAS: Chemical Abstracts Service.
Ingesting: Taking food or drink into your body.
Microgram (μg): One millionth of a gram.
Miscarriage: Pregnancy loss.
ppm: Parts per million.

References

This ToxFAQs information is taken from the 1997 Toxicological Profile for Chloroform (update) produced by the Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, Public Health Service in Atlanta, GA.
1,2-DICHLOROPROPANE
CAS # 78-87-5

This fact sheet answers the most frequently asked health questions (FAQs) about 1,2-dichloropropane. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It’s important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: 1,2-Dichloropropane is primarily used to make other chlorinated chemicals. Exposure to high levels of 1,2-dichloropropane can damage the liver, kidneys, blood, and lungs, and affect the brain. It has been found at 26 of the 1,177 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What is 1,2-dichloropropane?
(Pronounced 1,2-di-klór’-ö-prô’păn)
1,2-Dichloropropane is a colorless, flammable liquid with a chloroform-like odor. It is moderately soluble in water and readily evaporates into air. It does not occur naturally in the environment.

1,2-Dichloropropane production in the United States has declined over the past 20 years. It was used in the past as a soil fumigant, chemical intermediate, and industrial solvent and was found in paint strippers, varnishes, and furniture finish removers. Most of these uses were discontinued. Today, almost all of the 1,2-dichloropropane is used as a chemical intermediate to make perchloroethylene and several other related chlorinated chemicals.

What happens to 1,2-dichloropropane when it enters the environment?

- When released to soil, it is not easily broken down by bacteria, but will easily evaporate to the air and filter into the groundwater.
- 1,2-Dichloropropane does not build up in the food chain.

How might I be exposed to 1,2-dichloropropane?

- Most people are not likely to be exposed to 1,2-dichloropropane because of its limited use.
- If you work where 1,2-dichloropropane is made or used, you could be exposed by breathing air that contains its vapors or by spilling or splashing it on your skin.
- People who live near a waste site containing 1,2-dichloropropane could be exposed by drinking contaminated groundwater, breathing vapors released to the air, or getting contaminated soil on their skin.

How can 1,2-dichloropropane affect my health?

People who intentionally or accidentally breathe high levels of 1,2-dichloropropane have experienced difficulty breathing, coughing, vomiting, nosebleed, fatigue, and damage to blood cells, liver, and kidneys. People who accidentally drank cleaning solutions containing 1,2-dichloropropane experienced headaches, dizziness, nausea, liver and kidney damage, anemia, coma, and death.
Animal studies indicate that breathing low levels of 1,2-dichloropropane over short- or long-term periods causes damage to the liver, kidney, and respiratory system. Breathing high levels causes death. Similar effects have been reported when animals were given 1,2-dichloropropane by mouth. Some studies indicate that ingesting 1,2-dichloropropane may cause reproductive effects. One study reported a delay in bone formation of the skull in fetal rats following exposure of the mother rats to 1,2-dichloropropane.

How likely is 1,2-dichloropropane to cause cancer?

It is not known whether 1,2-dichloropropane causes cancer in people. The carcinogenicity of 1,2-dichloropropane has been evaluated in animal studies with rats and mice. Liver tumors have been observed in mice, and mammary gland tumors have been found in rats. The International Agency for Research on Cancer (IARC) has determined that 1,2-dichloropropane is unclassifiable as to human carcinogenicity.

Is there a medical test to show whether I’ve been exposed to 1,2-dichloropropane?

Urine and blood tests can be used to find out if you have been exposed to 1,2-dichloropropane. Levels measured in the urine can be used to predict the levels in the air. These tests cannot predict whether you will suffer harmful effects. Because special equipment is needed, these tests are not usually done in the doctor’s office.

Has the federal government made recommendations to protect human health?

The EPA has set a Maximum Contaminant Level (MCL) of 0.005 parts per million (0.005 ppm) for 1,2-dichloropropane in drinking water. The EPA recommends that the level of 1,2-dichloropropane in lakes and streams should be limited to 0.52 parts per billion (0.52 ppb) to prevent possible human health effects from drinking contaminated water or eating contaminated fish. Any release to the environment greater than 1,000 pounds of 1,2-dichloropropane must be reported to the EPA.

The Occupational Safety and Health Administration (OSHA) has set a workplace air concentration limit of 75 ppm over an 8-hour workday, 40-hour workweek.

The federal recommendations have been updated as of July 1999.

Glossary

- **Anemia**: A decreased ability of the blood to transport oxygen.
- **Carcinogenicity**: Ability to cause cancer.
- **CAS**: Chemical Abstracts Service.
- **Evaporate**: To change into a vapor or a gas.
- **Long-term**: Lasting one year or longer.
- **National Priorities List**: A list of the nation’s worst hazardous waste sites.
- **ppb**: Parts per billion.
- **ppm**: Parts per million.
- **Short-term**: Lasting 14 days or less.
- **Tumor**: An abnormal mass of tissue.

References

This fact sheet answers the most frequently asked health questions (FAQs) about dichlorobenzenes. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because these substances may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to dichlorobenzenes mostly occurs from breathing indoor air or workplace air. Exposure to high levels of 1,2- or 1,4-dichlorobenzene may be very irritating to your eyes and nose and cause difficult breathing, and an upset stomach. Extremely high exposures to 1,4-dichlorobenzene can result in dizziness, headaches, and liver problems. 1,2-, 1,3-, and 1,4-Dichlorobenzenes have been identified in at least 281, 175, and 330, respectively, of the 1,662 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What are dichlorobenzenes?
There are three dichlorobenzene isomers- 1,2-dichlorobenzene, 1,3-dichlorobenzene, and 1,4-dichlorobenzene. Dichlorobenzenes do not occur naturally. 1,2-Dichlorobenzene is a colorless to pale yellow liquid used to make herbicides. 1,3-Dichlorobenzene is a colorless liquid used to make herbicides, insecticides, medicine, and dyes. 1,4-Dichlorobenzene, the most important of the three chemicals, is a colorless to white solid with a strong, pungent odor. When exposed to air, it slowly changes from a solid to a vapor. Most people can smell 1,4-dichlorobenzene in the air at very low levels.

What happens to dichlorobenzenes when they enter the environment?
- 1,4-Dichlorobenzene enters the environment when it is used in mothballs and in toilet-deodorizer blocks. Very little enters the environment from hazardous waste sites.
- Some 1,2- and 1,3-dichlorobenzenes are released into the environment when used to make herbicides and when people use products that contain these chemicals.
- Dichlorobenzenes do not dissolve easily in water, the small amounts that enter water quickly evaporate into the air.
- Sometimes, dichlorobenzenes bind to soil and sediment. Dichlorobenzenes in soil usually are not easily broken down by soil organisms. Evidence suggests that plants and fish absorb dichlorobenzenes.

How might I be exposed to dichlorobenzenes?
- You may be exposed to 1,4-dichlorobenzene by breathing vapors from products used in the home or in buildings, such as air fresheners, mothballs, and toilet-deodorizer blocks. 1,2-dichlorobenzene and 1,3-dichlorobenzene are not found frequently in the air of homes and buildings because these chemicals are not used in household products.
- You may be exposed to very low levels of dichlorobenzenes in drinking water. You are not likely to be exposed to dichlorobenzenes in soil.
- You may also be exposed to low levels of dichlorobenzenes in beef, pork, chicken, eggs, baked goods, soft drinks, butter, peanut butter, fruits, vegetables, and fish.

How can dichlorobenzenes affect my health?
Very little is known about the health effects of 1,3-dichlorobenzene, especially in humans, but they are likely to be similar to those of 1,2- and 1,4-dichlorobenzene. Inhalation of the vapor or dusts of 1,2-dichlorobenzene and 1,4-dichlorobenzene at very high concentrations could be very irritating to your eyes and nose and cause burning and tearing.
of the eyes, coughing, difficult breathing, and an upset stomach. Dizziness, headaches, and liver problems have also been observed in people exposed to very high levels of 1,4-dichlorobenzene. There is limited evidence that inhaling 1,4-dichlorobenzene may decrease lung function.

People who have eaten 1,4-dichlorobenzene products regularly for long periods (months to years) developed skin blotsches and anemia. 1,4-Dichlorobenzene might cause a burning feeling in your skin if you hold mothballs or toilet-deodorizer blocks against your skin for a long time.

Breathing or eating any of the dichlorobenzenes caused harmful effects in the liver of laboratory animals. Animal studies also found that 1,2- and 1,4-dichlorobenzene caused effects in the kidneys and blood, and that 1,3-dichlorobenzene caused thyroid and pituitary effects.

How likely are dichlorobenzenes to cause cancer?
The Department of Health and Human Services (DHHS) has determined that 1,4-dichlorobenzene may reasonably be anticipated to be a carcinogen. There is no direct evidence that 1,4-dichlorobenzene can cause cancer in humans. However, animals given very high levels in water developed liver tumors. 1,2-Dichlorobenzene was not carcinogenic in laboratory animals and 1,3-dichlorobenzene has not been tested for its potential to cause cancer. Both the International Agency for Research on Cancer (IARC) and the EPA concluded that 1,2- and 1,3-dichlorobenzene are not classifiable as to human carcinogenicity.

How can dichlorobenzenes affect children?
Children who are exposed to dichlorobenzenes are likely to exhibit the same effects as adults, although this is not known for certain. Children can also be exposed to dichlorobenzenes prenatally, because all three isomers have been detected in placenta samples, as well as through breast feeding. There is no reliable evidence suggesting that dichlorobenzenes cause birth defects, although animal data raise concern for effects of 1,4-dichlorobenzene on postnatal development of the nervous system.

How can families reduce the risk of exposure to dichlorobenzenes?
Exposure of children to 1,4-dichlorobenzene can be minimized by discouraging them from playing with, swallowing, or having skin contact with products containing 1,4-dichlorobenzene. These items should be stored out of reach of young children and kept in their original containers to prevent accidental poisonings. Keep your Poison Control Center’s number by the phone.

Is there a medical test to show whether I’ve been exposed to dichlorobenzenes?
Several tests can be used to show if you have been exposed to dichlorobenzenes. The most commonly used tests measure their dichlorophenol breakdown products in urine and blood. The presence of the dichlorophenol breakdown products in the urine indicates a person has been exposed to dichlorobenzenes within the previous day or two. Another test measures the levels of dichlorobenzenes in your blood, but this is used less often. These tests require special equipment that is not routinely available in a doctor’s office, but they can be performed in a special laboratory. Neither of these tests can be used to show how high the level of dichlorobenzene exposure was or to predict whether harmful health effects will follow.

Has the federal government made recommendations to protect human health?
EPA regulates the levels of dichlorobenzenes that are allowable in drinking water. The highest level of 1,4-dichlorobenzene allowed in drinking water is 0.075 parts 1,4-dichlorobenzene per 1 million parts of water (0.075 ppm).

The Occupational Safety and Health Administration (OSHA) has set a limit for 1,4-dichlorobenzene of 75 parts 1,4-dichlorobenzene per 1 million parts of air (75 ppm) in the workplace.

Reference

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology and Environmental Medicine, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333, Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html. ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.
This fact sheet answers the most frequently asked health questions (FAQs) about methylene chloride. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It’s important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to methylene chloride occurs mostly from breathing contaminated air, but may also occur through skin contact or by drinking contaminated water. Breathing in large amounts of methylene chloride can damage the central nervous system. Contact of eyes or skin with methylene chloride can result in burns. Methylene chloride has been found in at least 882 of 1,569 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What is methylene chloride?

Methylene chloride is a colorless liquid with a mild, sweet odor. Another name for it is dichloromethane. Methylene chloride does not occur naturally in the environment.

Methylene chloride is used as an industrial solvent and as a paint stripper. It may also be found in some aerosol and pesticide products and is used in the manufacture of photographic film.

What happens to methylene chloride when it enters the environment?

- Methylene chloride is mainly released to the environment in air. About half of the methylene chloride in air disappears in 53 to 127 days.
- Methylene chloride does not easily dissolve in water, but small amounts may be found in drinking water.
- We do not expect methylene chloride to build up in plants or animals.

How might I be exposed to methylene chloride?

- The most likely way to be exposed to methylene chloride is by breathing contaminated air.
- Breathing the vapors given off by products containing methylene chloride. Exposure to high levels of methylene chloride is likely if methylene chloride or a product containing it is used in a room with inadequate ventilation.

How can methylene chloride affect my health?

If you breathe in large amounts of methylene chloride you may feel unsteady, dizzy, and have nausea and a tingling or numbness of your finger and toes. A person breathing smaller amounts of methylene chloride may become less attentive and less accurate in tasks requiring hand-eye coordination. Skin contact with methylene chloride causes burning and redness of the skin.

How likely is methylene chloride to cause cancer?

We do not know if methylene chloride can cause cancer in humans. An increased cancer risk was seen in mice...
breathing large amounts of methylene chloride for a long time.

The World Health Organization (WHO) has determined that methylene chloride may cause cancer in humans.

The Department of Health and Human Services (DHHS) has determined that methylene chloride can be reasonably anticipated to be a cancer-causing chemical.

The EPA has determined that methylene chloride is a probable cancer-causing agent in humans.

How can methylene chloride affect children?

It is likely that health effects seen in children exposed to high amounts of methylene chloride will be similar to the effects seen in adults. We do not know if methylene chloride can affect the ability of people to have children or if it causes birth defects. Some birth defects have been seen in animals inhaling very high levels of methylene chloride.

How can families reduce the risk of exposure to methylene chloride?

- Families may be exposed to methylene chloride while using products such as paint removers. Such products should always be used in well-ventilated areas and skin contact should be avoided.
- Children should not be allowed to remain near indoor paint removal activities.

Is there a medical test to show whether I’ve been exposed to methylene chloride?

- Several tests can measure exposure to methylene chloride.

These tests are not routinely available in your doctor’s office.
- Methylene chloride can be detected in the air you breathe out and in your blood. These tests are only useful for detecting exposures that have occurred within a few days.
- It is also possible to measure carboxyhemoglobin (a chemical formed in the blood as methylene chloride breaks down in the body) in the blood or formic acid (a breakdown product of methylene chloride) in the urine. These tests are not specific for methylene chloride.

Has the federal government made recommendations to protect human health?

- The EPA requires that releases of methylene chloride of 1,000 pounds or more be reported to the federal government.
- The EPA recommends that exposure of children to methylene chloride be limited to less than 10 milligrams per liter of drinking water (10 mg/L) for 1 day or 2 mg/L for 10 days.
- The Food and Drug Administration (FDA) has established limits on the amounts of methylene chloride that can remain after processing of spices, hops extract, and decaffeinated coffee.
- The Occupational Safety and Health Administration (OSHA) has set limits of 25 parts methylene chloride per million parts of workplace air (25 ppm) for 8-hour shifts and 40-hour work weeks.

References

This fact sheet answers the most frequently asked health questions (FAQs) about methyl tert-butyl ether (MTBE). For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. This information is important because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Methyl tert-butyl ether (MTBE) is a flammable liquid which is used as an additive in unleaded gasoline. Drinking or breathing MTBE may cause nausea, nose and throat irritation, and nervous system effects. MTBE has been found in at least 11 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What is methyl tert-butyl ether?
(Pronounced měth‘əl tür‘shē-ər‘ə byōōt’l e‘thər)
Methyl tert-butyl ether (MTBE) is a flammable liquid with a distinctive, disagreeable odor. It is made from blending chemicals such as isobutylene and methanol, and has been used since the 1980s as an additive for unleaded gasolines to achieve more efficient burning.

MTBE is also used to dissolve gallstones. Patients treated in this way have MTBE delivered directly to their gall bladders through special tubes that are surgically inserted.

What happens to MTBE when it enters the environment?
- MTBE quickly evaporates from open containers and surface water, so it is commonly found as a vapor in the air.
- Small amounts of MTBE may dissolve in water and get into underground water.
- It remains in underground water for a long time.
- MTBE may stick to particles in water, which will cause it to eventually settle to the bottom sediment.
- MTBE may be broken down quickly in the air by sunlight.
- MTBE does not build up significantly in plants and animals.

How might I be exposed to MTBE?
- Touching the skin or breathing contaminated air while pumping gasoline.
- Breathing exhaust fumes while driving a car.
- Breathing air near highways or in cities.
- Drinking, swimming, or showering in water that has been contaminated with MTBE.
- Receiving MTBE treatment for gallstones.

How can MTBE affect my health?
Breathing small amounts of MTBE for short periods may cause nose and throat irritation. Some people exposed to MTBE while pumping gasoline, driving their cars, or working
Has the federal government made recommendations to protect human health?

The EPA has issued guidelines recommending that, to protect children, drinking water levels of MTBE not exceed 4 milligrams per liter of water (4 mg/L) for an exposure of 1-10 days, and 3 mg/L for longer-term exposures.

The American Conference of Governmental Industrial Hygienists (ACGIH) has recommended an exposure limit of 40 parts of MTBE per million parts of air (40 ppm) for an 8-hour workday, 40-hour workweek.

Glossary

Carcinogenicity: Ability to cause cancer.

CAS: Chemical Abstracts Service.

Evaporate: To change into a vapor or gas.

Milligram (mg): One thousandth of a gram.

ppm: Parts per million.

Sediment: Mud and debris that have settled to the bottom of a body of water.

References

This ToxFAQs information is taken from the 1996 Toxicological Profile for Methyl tert-Butyl Ether produced by the Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, Public Health Service in Atlanta, GA.

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.
This fact sheet answers the most frequently asked health questions (FAQs) about vinyl chloride. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to vinyl chloride occurs mainly in the workplace. Breathing high levels of vinyl chloride for short periods of time can cause dizziness, sleepiness, unconsciousness, and at extremely high levels can cause death. Breathing vinyl chloride for long periods of time can result in permanent liver damage, immune reactions, nerve damage, and liver cancer. This substance has been found in at least 616 of the 1,662 National Priority List sites identified by the Environmental Protection Agency (EPA).

What is vinyl chloride?
Vinyl chloride is a colorless gas. It burns easily and it is not stable at high temperatures. It has a mild, sweet odor. It is a manufactured substance that does not occur naturally. It can be formed when other substances such as trichloroethane, trichloroethylene, and tetrachloroethylene are broken down. Vinyl chloride is used to make polyvinyl chloride (PVC). PVC is used to make a variety of plastic products, including pipes, wire and cable coatings, and packaging materials.

Vinyl chloride is also known as chloroethene, chloroethylene, and ethylene monochloride.

What happens to vinyl chloride when it enters the environment?
- Liquid vinyl chloride evaporates easily. Vinyl chloride in water or soil evaporates rapidly if it is near the surface.
- Vinyl chloride in the air breaks down in a few days to other substances, some of which can be harmful.
- Small amounts of vinyl chloride can dissolve in water.
- Vinyl chloride is unlikely to build up in plants or animals that you might eat.

How might I be exposed to vinyl chloride?
- Breathing vinyl chloride that has been released from plastics industries, hazardous waste sites, and landfills.
- Breathing vinyl chloride in air or during contact with your skin or eyes in the workplace.
- Drinking water from contaminated wells.

How can vinyl chloride affect my health?
Breathing high levels of vinyl chloride can cause you to feel dizzy or sleepy. Breathing very high levels can cause you to pass out, and breathing extremely high levels can cause death.

Some people who have breathed vinyl chloride for several years have changes in the structure of their livers. People are more likely to develop these changes if they breathe high levels of vinyl chloride. Some people who work with vinyl chloride have nerve damage and develop immune reactions. The lowest levels that produce liver changes, nerve damage, and immune reaction in people are not known. Some workers exposed to very high levels of vinyl chloride have problems with the blood flow in their hands. Their fingers turn white and hurt when they go into the cold.
The effects of drinking high levels of vinyl chloride are unknown. If you spill vinyl chloride on your skin, it will cause numbness, redness, and blisters. Animal studies have shown that long-term exposure to vinyl chloride can damage the sperm and testes.

How likely is vinyl chloride to cause cancer?
The U.S. Department of Health and Human Services has determined that vinyl chloride is a known carcinogen. Studies in workers who have breathed vinyl chloride over many years showed an increased risk of liver, brain, lung cancer, and some cancers of the blood have also been observed in workers.

How can vinyl chloride affect children?
It has not been proven that vinyl chloride causes birth defects in humans, but studies in animals suggest that vinyl chloride might affect growth and development. Animal studies also suggest that infants and young children might be more susceptible than adults to vinyl chloride-induced cancer.

How can families reduce the risk of exposure to vinyl chloride?
Tobacco smoke contains low levels of vinyl chloride, so limiting your family’s exposure to cigarette or cigar smoke may help reduce their exposure to vinyl chloride.

Is there a medical test to show whether I’ve been exposed to vinyl chloride?
The results of several tests can sometimes show if you have been exposed to vinyl chloride. Vinyl chloride can be measured in your breath, but the test must be done shortly after exposure. This is not helpful for measuring very low levels of vinyl chloride. The amount of the major breakdown product of vinyl chloride, thiodiglycolic acid, in the urine may give some information about exposure. However, this test must be done shortly after exposure and does not reliably indicate the level of exposure.

Has the federal government made recommendations to protect human health?
Vinyl chloride is regulated in drinking water, food, and air. The EPA requires that the amount of vinyl chloride in drinking water not exceed 0.002 milligrams per liter (mg/L) of water.

The Occupational Safety and Health Administration (OSHA) has set a limit of 1 part vinyl chloride per 1 million parts of air (1 ppm) in the workplace.

The Food and Drug Administration (FDA) regulates the vinyl chloride content of various plastics. These include plastics that carry liquids and plastics that contact food. The limits for vinyl chloride content vary depending on the nature of the plastic and its use.

Reference