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Original Aims of project 
In the clinical neurosciences, an understanding of the relationship between axonal integrity and information-
processing efficiency has been sought in a range of studies including those examining normal aging [1], brain 
injury [2], and brain disease processes such as human immunodeficiency virus (HIV) [3] and multiple sclerosis 
(MS) [4].  Pathophysiological processes that disrupt axonal transmission have been theoretically linked to 
decrements in processing speed and efficiency, which are at the foundation of a number of cognitive functions, 
including learning, memory, and executive functions [5, 6].  Even given the implicit relationship between axonal 
injury and information-processing efficiency, the influence of local axonal injury on changes in brain function 
has rarely been directly examined.  Advances in MRI techniques such as diffusion tensor imaging (DTI) now 
permit noninvasive examination of axonal integrity.  Prior work using DTI to examine Traumatic Brain Injury 
(TBI) has demonstrated the relationship between fractional anisotropy (FA) and white matter degradation in 
mild and moderate and severe injuries [7-10], thus establishing the feasibility of using DTI to document axonal 
disruption TBI.  This work has largely focused on brain sites where TBI has commonly occurred as opposed to 
examining specific white matter lesion sites [11].  In parallel with studies using diffusion imaging to examine 
TBI, investigators have documented changes in functional neural networks following TBI using simple fMRI 
paradigms that require working memory (WM) and speeded information processing [12-16].  While these 
studies have consistently documented recruitment of additional neural networks during speeded WM tasks, 
they also have been limited by between-subjects designs and have often not examined underlying 
pathophysiology which has lead to difficulty in interpreting the origin of these activation differences [17].  It is a 
second goal in this study to integrate information about local axonal disruption (measured via DTI) with 
functional brain changes (measured via fMRI) following TBI.  The current proposal aims to foster collaborative, 
interdisciplinary efforts from investigators at three separate research institutions in order to facilitate the 
understanding of the TBI recovery process in humans via non-invasive MRI techniques.  By examining sites of 
local axonal disruption as well as sites where white matter injury commonly occurs (e.g., splenium), the current 
proposal aims to examine the evolution axonal disruption and its influence on functional brain activation.  
Specifically, the goal is to compare changes in FA values during recovery with functional activation observed 
cognitive tasks requiring speeded information processing in order to obtain information about the inter-
relationships between axonal integrity, functional brain activation and basic processing speed and efficiency.  
By directly examining these inter-relationships, the methods applied here may be used to better understand the 
nature of the recovery process following axonal and neural disruption in TBI, with the ultimate goal of 
standardizing these methods so that the efficacy of novel treatment interventions may be examined.  This 
study thus represents an important opportunity to use non-invasive methods to model the recovery trajectory of 
axonal and neural networks simultaneously in order to determine their collective influence on cognitive 
outcome in humans.   

Specific Aim 1:  To use DTI to examine axonal changes during recovery from TBI both at focal lesion sites and 
at sites where axonal injury commonly occurs (e.g., splenium, internal capsule).  Subjects will be examined at 
3 and 6 months post PTA to determine the trajectory of white matter change measured by DTI.   

Specific Aim 2:  To examine changes in functional brain activation during recovery from TBI and the 
relationship between these functional activation changes and changes in axonal integrity (quantified in Specific 
Aim 1).  It is anticipated that activation in PFC and ACC will diminish from the 3-month to 6-month time points 
and maintain a negative correlation with measures of axonal recovery (FA). This aim will also permit 
exploratory analyses using diffusion tensor tractography to examine the direct influence of local lesions on 
neural activity. 

Specific Aim 3:  To determine if early indicators of axonal and neural recovery (established in Aims 1 and 2, 
respectively) are predictive of cognitive functioning at 6 months post PTA.  Several MRI variables including 
change in FA at local lesion sites, total FA in large white matter tracts (e.g., anterior corpus callosum), and 
change in PFC and ACC activation will be used to predict cognitive outcome.  These indicators of axonal and 
neural recovery will be compared with traditional clinical descriptors of TBI severity (e.g., GCS, posttraumatic 
amnesia) to predict cognitive outcome.   
 
Project successes 
We have had great success with this project, despite having to overcome some challenges.  Over the course 
of the three years of the grant (and one year of no-cost extension), we have tested 31 TBIs and 31 HCs.  
These numbers do not fully represent our productivity on the grant, since each participant came in multiple 
times.  Thus, we conducted 75 total scans on TBIs and 55 total scans on HCs.  We were able to achieve this 



despite very demanding inclusion criteria and a need to follow each subject longitudinally. 
 
The three Aims of this study were to better understand connectivity following a TBI, and to understand how that 
connectivity changes across recovery.  When we conceptualized the grant, we envisioned that structural 
connectivity (DTI) would provide the clearest window into these issues, and we therefore emphasized DTI in 
the Specific Aims.  However, in the intervening years, interest in functional connectivity has blossomed, and 
with good reason.  Functional connectivity provides a more direct measure of cognition inasmuch as it is based 
on functional activation rather than on structural information.  This is not to minimize what can be learned from 
the analysis of structural connectivity data—much can be learned, and we are currently using our DTI data to 
better understand the trajectory of recovery after a TBI (Aim 1)—however, functional connectivity data is both 
more direct and has also proved to be more sensitive to TBI than the structural connectivity data.  These 
considerations have been fueled by recent advances in the tools available for the analysis of functional 
connectivity data (e.g., graph theoretical analyses and structural equation modeling of fMRI data), which we 
have applied to the data from this grant to motivate several grant applications (see below). 
 
Because of the sensitivity of the functional connectivity data to TBI-related changes in brain function, we were 
able to use a subset of the entire dataset for a paper, which was published in 2012 (see below), and which 
supports Aim 2.  In this paper, we reported a finding that—while counterintuitive—has proved to be highly 
replicable:  individuals with TBI show increased functional connectivity relative to HCs.  In our ongoing 
analyses of the full dataset, we are working to better understand this finding.   
 
Although we initially focused on functional connectivity, we are currently working on the DTI data that was the 
original focus of the grant.  We have analyzed these data not only in terms of fractional anisotropy (a measure 
of the integrity of the brain’s white matter) and mean diffusivity (a different, but related, measure of white matter 
integrity), but also in terms of ‘fractal dimension’.  Fractal dimension is a technique that allows for the 
quantification of the overall shape of the brain (specifically, the brain’s white matter). The shape of the white 
matter in a healthy brain is quite complex; the shape of the white matter in an atrophied or injured brain is less 
complex due to axonal loss.  In a paper we are currently preparing for publication, we have shown that fractal 
dimension predicts cognition in TBI better than other measures of white matter integrity such as fractional 
anisotropy or mean diffusivity (this work addresses Aims 1 and 3). 
 
In addition to the paper we have already published, we have presented data from this project at numerous 
International meetings/conferences (see below).  Furthermore, now that the data has all been collected, we are 
working on several more manuscripts, which will be sent out for review and publication in the coming months. 
 
Presentations: 
Wylie, G.R., Hillary, F.G., Leavitt, V.M. & Chiaravalloti, N.  Connectivity changes in Traumatic Brain Injury 

across recovery.  The 39th Annual Meeting International Neuropsychological Society, February, 2011, 
Boston, MA. 

 
Wylie, G.R. & Hillary, F.G.  Change is good:  brain activity in a working memory task is higher in TBI than in 

HC, but shows comparable changes across time.  The 38th Annual Meeting International 
Neuropsychological Society, February, 2010, Acapulco, Mexico. 

 
Chiou, K.S., Slocomb, J., Ramanathan, D., Medaglia, J.D., Wardecker B., Vesek, J., Wang, J., Hills, E., Good, D., Hillary, 

F.G. (2009, October). Longitudinal Investigation of White Matter Focal Lesions in Moderate to Severe TBI Using DTI. 
Poster presented at the annual meeting of the National Academy of Neuropsychology, New Orleans, LA. 

 
Chiou, K.S., Wardecker, B.M., & Hillary, F.G.  Effects of Task Structure on Metacognition in Traumatic Brain 

Injury.  (February, 2010).  Poster presented at the 38th annual meeting of the International Neuropsychological 
Society, Acapulco, Mexico.  [Abstract published in the Journal of the International Neuropsychological Society, 2010, 
16 (S1), pg 67]. 
 

Chiou, K.S., Cosentino, S., Carlson, R.A., Arnett, P.A., Wardecker, B.M., & Hillary, F.G.  Relationship between Executive 
Functioning and Metacognitive Monitoring Following Traumatic Brain Injury.  (February, 2010).  Poster presented at 
the 38th annual meeting of the International Neuropsychological Society, Acapulco, Mexico.  [Abstract published in 
the Journal of the International Neuropsychological Society, 2010, 16(S1), pg 118]. 
 



Wardecker, B.M., Medaglia, J.D., Ramanathan, D., Chiou, K.S.,  Slocomb, J., Hills, E., Good, B., & Hillary, F.G. (2010, 
March). Location of Functional Activation Changes During Recovery from Traumatic Brain Injury. Poster presented at 
the International Brain Injury Association’s Eighth World Congress on Brain Injury, Washington, D.C. 
 

Venkatesan, U.M., Medaglia, J.D., Slocomb, J., Hills, E.C., Fitzpatrick, N.M., Wang, J., Good, D.C., Wylie, G.R., & Hillary, 
F.G. (2011). Changes in Resting State Functional Connectivity during Recovery from Traumatic Brain Injury. 
Presented at the Brain 2012 Conference in Barcelona, Spain. 
 

Peechatka, A., Medaglia, J.D., Chiou, K.S., Slocomb, J., Ramanathan, D.M. & Hillary, F.G. (February, 2012).  A 
Longitudinal fMRI Study of Working Memory in TBI During Early Recovery. Poster presented at the 40th annual 
meeting of the International Neuropsychological Society, Montreal, Canada.  [Abstract published in the Journal of the 
International Neuropsychological Society, 2012, 18 (S1), page 158]. 
 

Chiou, K.S., Bryer, E., Slocomb, J., & Hillary, F.G. Longitudinal Examination of Brain Volume Change and Cognitive 
Functioning in Moderate to Severe Traumatic Brain Injury.  Poster presented at the 40th annual meeting of the 
International Neuropsychological Society, Montreal, Canada.  [Abstract published in the Journal of the International 
Neuropsychological Society, 2012, 18 (S1), pg 222] 
 

Venkatesan, U.M, Medaglia, J.D., Ram, N., Good,  D.C., & Hillary, F.G. (2013, August)   Dynamics in goal-directed and 
default mode networks during new learning after moderate or severe TBI.  Paper to be presented at the annual 
meeting of Division 40 of the American Psychological Association. Recipient of the Blue Ribbon Award. 

 
 
Publications: 
Hillary, F.G., Medaglia, J.D., Venkatesan, U. & Wylie, G.R. (in preparation). Whole-brain connectivity changes 

during recovery from traumatic brain injury. 
 
Medaglia, Wylie, G.R., J.D., Venkatesan, U. & Hillary, F.G. (in preparation). Network flexibility as an indicator 

of recovery after neurotrauma. 
 
Wylie, G.R., Hillary, F.G., Venkatesan, U. & Medaglia, J.D. (in preparation). Local structural brain changes 

predict whole-brain connectivity after TBI: a graph theoretical analysis. 
 
Rajagopalan, V, Das, A, Zhang, L, Wylie, GR, Yue, GH. (in preparation). Fractal dimension assessment of 

brain morphometry: a novel biomarker in Traumatic Brain Injury 
 
Hillary, F.G., Slocomb, J., Hills, E.C., Fitzpatrick, N.M., Medaglia, J.D., Wang, J., Good, D.C. & Wylie, G.R.  

(2012). Changes in Resting Connectivity during Recovery from Severe Traumatic Brain Injury. 
International Journal of Psychophysiology. 

 
Project challenges 
We have encountered several challenges during the course of this study.  The most challenging issue was 
recruitment:  it was unremittingly difficult to recruit moderate/severe TBIs three months after they had emerged 
from post-traumatic amnesia.  To overcome this, we set up an entirely new system that bridged the gap 
between The Kessler Foundation Research Center and the Kessler Institute for Rehabilitation (which are 
separate and independent institutions) that allowed us to contact patients at KIR but also protected the 
patients’ private health information (PHI), in compliance with HIPPA regulations.  Although it took an 
investment of time to get this system set up, that investment clearly ‘paid off’, inasmuch as it allowed us to 
meet our recruitment goals for the grant. 
 
Another challenge had to do with the tasks used in the study.  After collecting and analyzing the data from 
several subjects, we realized that the experimental paradigm we were using was not optimal.  We therefore 
redesigned the paradigm for the remaining subjects.  While this change necessarily meant that the data from 
the initial subjects was not fully compatible with the data from later subjects, it resulted in a stronger study 
because the bulk of the data was collected using the more robust experimental paradigm. 
 
The last challenge we faced with this study had to do with using the relatively old 3T scanner at the University 
of Medicine and Dentistry of New Jersey (now Rutgers).  Because this scanner is approaching 20 years old, 



there were numerous times when it was down for repairs to its components (e.g., the gradient amplifiers) or to 
its peripherals (e.g., the HVAC system, or the projector for stimulus presentation).  These issues delayed 
scans, but did not impact our ability to get the study done. 
 
Implications for future research and/or clinical treatment 
 
One implication of the research conducted in this grant is that TBI appears to be characterized by ‘hyper-
connectivity’ in the brain (see our 2012 paper).  That is, after sustaining a TBI, the brain seems to increase the 
extent to which disparate brain regions communicate with one another.  This is a counterintuitive finding, and 
one that we are actively working to better understand.  Without the data conducted in this grant, we might have 
continued to believe that the diffuse axonal damage that frequently attends a TBI would result in decreased 
(rather than increased) connectivity.  One consequence of this increased connectivity appears to be a 
decrease in brain efficiency, which leads to slower processing speed and response time, and may also lead to 
increased cognitive fatigue.   
 
Another implication from the data collected in this grant involves ‘fractal dimension’ (FD, see above). Because 
we have found that fractal dimension predicts cognition in TBI better than other measures of white matter 
integrity such as fractional anisotropy or mean diffusivity, this work promises to have important implications for 
future research and clinical treatment, because FD appears to be a sensitive marker for the overall health of 
the brain, and for the brain’s ability to maintain cognition. 
 
Plans to continue the research, including applications submitted to other sources for ongoing support 
The data from this study have been used to motivate two R01 applications.  The first application, entitled 
“Examining brain plasticity in neurotrauma using advanced connectivity modeling”, was not funded.  The 
second, entitled “Examining Neural Network Plasticity After Traumatic Brain Injury”, is currently under review. 
 
We have also recently begun to analyze the data from this grant from the standpoint of ‘fractal dimension’ (see 
above).  As stated above, we have shown that fractal dimension predicts cognition in TBI better than other 
measures of white matter integrity such as fractional anisotropy or mean diffusivity.  We anticipate submitting 
an R21 to investigate this issue further in the coming year. 
 
Explain how you have leveraged NJCBIR funding to obtain additional federal or other support for brain 
injury research and list the appropriate funding organizations. 
Our efforts to leverage NJCBIR funding to obtain additional federal support has yet to bear fruit.  In the current 
funding climate, obtaining such funding requires patience and determination.  The applications we have 
submitted have been strong and have received good scores.  We are confident that we will soon have greater 
success. 
 
List and include a copy of all publications emerging from this research, including those used in 
preparation. 
 
Hillary, F.G., Medaglia, J.D., Venkatesan, U. & Wylie, G.R. (in preparation). Whole-brain connectivity changes 

during recovery from traumatic brain injury. 
 
Medaglia, Wylie, G.R., J.D., Venkatesan, U. & Hillary, F.G. (in preparation). Network flexibility as an indicator 

of recovery after neurotrauma. 
 
Wylie, G.R., Hillary, F.G., Venkatesan, U. & Medaglia, J.D. (in preparation). Local structural brain changes 

predict whole-brain connectivity after TBI: a graph theoretical analysis. 
 
Rajagopalan, V, Das, A, Zhang, L, Wylie, GR, Yue, GH. (in preparation). Fractal dimension assessment of 

brain morphometry: a novel biomarker in Traumatic Brain Injury 
 
Hillary, F.G., Slocomb, J., Hills, E.C., Fitzpatrick, N.M., Medaglia, J.D., Wang, J., Good, D.C. & Wylie, G.R.  

(2012). Changes in Resting Connectivity during Recovery from Severe Traumatic Brain Injury. 
International Journal of Psychophysiology. 
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In the present study we investigate neural network changes after moderate and severe traumatic brain injury
(TBI) through the use of resting state functional connectivity (RSFC) methods. Using blood oxygen level
dependent functional MRI, we examined RSFC at 3 and 6 months following resolution of posttraumatic
amnesia. The goal of this study was to examine how regional off-task connectivity changes during a critical
period of recovery from significant neurological disruption. This was achieved by examining regional changes
in the intrinsic, or “resting”, BOLD fMRI signal in separate networks: 1) regions linked to goal-directed (or
external-state) networks and 2) default mode (or internal-state) networks. Findings here demonstrate
significantly increased resting connectivity internal-state networks in the TBI sample during the first
6 months following recovery. These findings were dissociable from repeat measurements in a matched
healthy control sample.
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1. Introduction

There is growing interest in the use of functional neuroimaging,
and in particular blood oxygen level dependent functional magnetic
resonance imaging (BOLD fMRI), to document brain changes asso-
ciated with traumatic brain injury (TBI). This developing literature
has focused primarily on the task-induced changes that differentiate
clinical and healthy samples during cognitive, motor and sensory
tasks. In one specific literature examining working memory (WM;
or the ability to maintain a small amount of information “in mind”
for online use) deficits after TBI, several consistent findings have
emerged. Investigators have almost universally observed increased
involvement of the regions critical for WM, including prefrontal
cortex (PFC) and anterior cingulate cortex (ACC) and occasionally
parietal regions in TBI (Christodoulou et al., 2001; Hillary et al., 2010;
McAllister et al., 1999, 2001; Newsome et al., 2007; Perlstein et al.,
2004; Scheibel et al., 2007). There is also rich literature examining
the role of frontal systems disruption and the critical contribution of
cognitive control to deficit after TBI (McDowell et al., 1997; Hillary et
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al., 2010; Perlstein et al., 2004; Larson et al., 2006, 2007; Scheibel et al.,
2007, 2009). These studies offer heuristics as for how large-scale
neuronal activity might adapt to TBI, including the potentially critical
role of anterior networks and those involved in cognitive (or
attentional) control.

While early studies of TBI have helped clarify some of the basic
“activation” changes associated with injury and afford the opportu-
nity to link specific cognitive deficits to brain activation changes, there
are a number of important future directions for this literature. First, a
majority of the studies to date have been cross-sectional observations
which pose significant methodological challenges for investigators
(e.g., differential task performance between groups) (Price et al.,
2006; Price and Friston, 2002) and often do not permit the exami-
nation of critical within-subject dynamics. As a remedy to this, the
current study makes use of a longitudinal design during a critical
window of recovery (i.e., between 3 and 6 months post injury) in
order to examine within-subject brain changes.

Second, most studies to date using functional imaging methods to
examine the consequences associated with TBI have focused on task-
related brain activation. The study of task “activation” offers the
opportunity to examine task-specific alterations in neural networks
after TBI, but such approaches limit the scope of study (focusing on
task induced regions of interest (ROIs), instead of whole brain
function) and are burdened by design challenges that are often
difficult to resolve. For example, examining task-related activation
requires the creation of appropriate control tasks and the need to
guarantee equivalent task performance between groups [e.g., task
ecovery from severe traumatic brain injury, Int. J.
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accuracy in TBI vs. healthy control (HC)]. Moreover, the work to
date has focused almost solely on the magnitude of the signal (i.e.,
topographical activation differences) as opposed to communication
within the network or covariance in (and between) ROIs.

In pioneering work conducted over 15 years ago, Biswal et al.
demonstrated that covariance in voxels comprising the primarymotor
cortex during rest showed spatial overlap with the observable change
in the BOLD response during motor stimulation. These influential
findingswere the foundation to an intriguingmethod for investigating
brain function through the use of “resting” BOLD data to understand
underlying neural connectivity, or “resting state functional connec-
tivity” (RSFC) throughout the brain (Biswal et al., 1995). In fMRI work,
RSFC methods often focus on isolating the covariance in very low
frequency (~0.1 Hz) fluctuations in the BOLD signal, thus permitting
analysis of non-task related brain activity which likely plays a non-
trivial role in both on-task and off-task functioning.

This early work was extended by Lowe et al. (1997) by
demonstrating similar effects in larger regions of sensorimotor cortex
(i.e., across multiple slices) and other examiners used these methods
to examine relationships between motor and association cortex
(Xiong et al., 1998, 1999). Of critical importance in this literature is
the demonstration that task-induced activation maps underestimate
the size and number of functionally connected regions and that
functional networks are more fully revealed by RSC analysis (Biswal
et al., 1995; Xiong et al., 1998, 1999). These studies established the
foundation for “resting-state functional connectivity studies” using
fMRI (Biswal et al., 1995; Greicius and Menon, 2004; Gusnard and
Raichle, 2001; Hampson et al., 2002; Lowe et al., 1997) and a literature
examining task negative or “default mode” networks (Fox et al., 2005;
Raichle et al., 2001; Raichle and Snyder, 2007). In the case of the latter,
examiners identified distinct “off-task” networks operating in concert
as one transitions in and out of goal-directed behavior.

One general interpretation differentiating task-on and task-off
networks is that they are reciprocal so that at moments where goal-
directed behavior is necessary, the “inward” or self-reflective default
mode network remits, giving way to neural activity relevant to task.
However, interpreting this relationship as an opponent process may
oversimplify this relationship; separate investigations have demon-
strated that the default mode activity plays a role in task and the
magnitude of deactivation in default mode regions contribute to task
performance (Cole et al., 2010; Hampson et al., 2010). These findings
offer guiding principles for understanding the role of resting states
in healthy neural systems, but questions remain regarding how
significant neural network disruption, such as that observed in TBI,
might influence the interplay between task-related positive and
negative brain activation.

The examination of both RSFC and default-mode networks in
clinical samples remains novel, but there are already several findings
that provide a framework for understanding how neurological
disruption influences the resting signal and for developing expecta-
tions in TBI. To date, resting connectivity has been used to examine
network changes in a number of clinical disorders including
schizophrenia (Camchong et al., 2009; Rotarska-Jagiela et al., 2010;
B. Zhou et al., 2010), normal aging (Koch et al., 2010), stroke (Carter
et al., 2010), mood disorders (Chepenik et al., 2010; Hamilton et al.,
2010; Sheline et al., 2010), multiple sclerosis (Rocca et al., 2010) and
dementias (J. Zhou et al., 2010). There have also been whole brain
analyses using resting data to examine alterations in cerebral blood
flow (Kim et al., 2010) and we recently applied graph theory to
examine “small-worldness” in networks after TBI (Nakamura et al.,
2009). In one of the more intriguing applications of resting connec-
tivity to date, Vanhaudenhuyse et al. (2010) used baseline BOLD
measures to differentiate cognitively intact and comatose non-
communicative brain injured patients. Not surprisingly, the outcome
of these studies has varied and this is likely due as much to meth-
odological differences as the effects of distinct pathophysiology in the
Please cite this article as: Hillary, F.G., et al., Changes in resting conn
Psychophysiol. (2011), doi:10.1016/j.ijpsycho.2011.03.011
clinical samples represented. Even so, two important findings emerge
from this literature that may be relevant for TBI in the current study.
The first is that neurological compromise has been demonstrated to
influence resting connectivity (broadly defined). Second, one conse-
quence for global brain connectivity is that connections between critical
nodes may be greatly diminished or even unobservable after neuro-
logical disruption (see Ongur et al., 2010; Skudlarski et al., 2010;
Vanhaudenhuyse et al., 2010).

We anticipate that network disruption results in less coherence in
resting connectivity during periods of goal-directed behavior and,
therefore, we should observe increased connectivity in internal-state
networks during recovery. That is, significant neurological disruption
of frontal systems (often observed in TBI), may result in a failure to
effectively transition between self-reflective processing and outward
goal-directed behavior.

1.1. Study purpose

The goal of this study is to examine resting state connectivity to
determine if there are systematic changes in whole-brain connectivity
during recovery from TBI. We aim to examine the changes in resting
fMRI connectivity during the first 6 months following injury when
behavioral recovery is known to occur (Millis et al., 2001; Pagulayan
et al., 2006). The use of resting fMRI circumvents the methodological
dilemmas that arise when using fMRI in clinical samples including
difficulty guaranteeing task compliance and assumptions surrounding
cognitive subtraction and pure insertion, where contributing compo-
nents to a task are presumed to be linear and/or additive (Hillary,
2008; Price et al., 2006; Price and Friston, 2002). Moreover, the
influences of diffuse neurological disruption (like that observed in
TBI) on whole-brain neural networks remain largely unknown.
Traditional fMRI studies in TBI have excluded much of the operating
brain in order to isolate specific task-related networks. While this
approach offers advantages for examining discrete cognitive deficits,
it offers very little information about global brain changes secondary
to injury. Consequently, there is very little work documenting how
large-scale neural networks adapt to neural disruption and resting
connectivity offers one approach to address this issue. For these
reasons, resting connectivity is ideal for identifying alterations in the
BOLD signal in the recovering brain. This approach may provide
additional insight into how neural plasticity is expressed in the injured
brain and offer context for findings in cross-sectional activation studies
to date, including determining the meaning of increased neural
involvement repeatedly observed in activation studies (for review see
Hillary, 2008).

Of note, RSFC and the DMN and even the notion of the brain at
“rest” have contextual meanings. For the purpose of this study, we
will focus on the intrinsic, or resting, BOLD signal during off-task
blocks that flank a visual working memory task. In this sense, we
are not isolating the off-task “deactivations” that are often the focus
in traditional studies of the DMN. Instead, we focus on covariance
between four seeded ROIs and the intrinsic BOLD signal during these
off-task blocks.

2. Materials and methods

2.1. Subjects

Ten participantswithmoderate and severe TBI between the ages of
19 and 56 years and ten healthy adults of comparable age underwent
MRI scanning at separate time points for this study. Individuals with
TBI underwent MRI data acquisition at 3 and 6 months after emerging
from posttraumatic amnesia (PTA). These study participants were
included from an original sample of 15 subjects. The data from five
subjects were not included in the current study due to attrition
(n=1), an inability to adequately perform the cognitive task at
ectivity during recovery from severe traumatic brain injury, Int. J.

http://dx.doi.org/10.1016/j.ijpsycho.2011.03.011
Original text:
Inserted Text
"Biswal and colleagues"

Original text:
Inserted Text
"six "



211Q39
212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238Q16Q17
239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Q18313 Q19
314

315

316

317

318 Q20
319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

Q16,Q17

Q18,Q19

3F.G. Hillary et al. / International Journal of Psychophysiology xxx (2011) xxx–xxx
3 months PTA (n=3), and claustrophobia (n=1). Because it was a
primary goal in this study to examine alterations in PFC following
disruption to frontal systems, subjects with small identified areas of
contusion or hemorrhage in the frontal regions were included (7/10
subjects in this study sustained injuries to frontal regions). TBI
severity was defined using the Glasgow Coma Scale (GCS) in the
first 24 h after injury (Teasdale and Jennett, 1974) and GCS scores
from 3 to 8 were considered “severe” and scores from 9 to 12 were
considered moderate. One individual with a GCS score of 13 was
included because acute neuroimaging findings were positive. During
recruitment for either group, potential study participants were
excluded if they had a history of previous neurological disorder
such as seizure disorder, significant neurodevelopmental psychiatric
history (such as schizophrenia or bipolar disorder), or had a history
of substance abuse requiring inpatient treatment. To control for
potential resting connectivity changes with repeated exposure to the
MRI environment, a HC sample of comparable age was enrolled in the
study and underwent two MRI scans separated by approximately
3 months (mean=90.2 days, SD=23.8).

2.2. TBI and focal lesions

There is accumulating evidence that, following moderate and
severe TBI, even cases that appear to result in isolated injury (e.g.,
subdural hematoma), there are likely whole-brain consequences
(Büki and Povlishock, 2006; Fujiwara et al., 2008). Findings from
these and other studies indicate that diffuse axonal injury is a nearly
universal finding (Wu et al., 2004). While there have been laudable
efforts to examine diffuse injury in the absence of conspicuous focal
lesions (Sanchez-Carrion et al., 2008a, 2008b), the samples examined
in these instances may not often represent what is commonly ob-
served in TBI which is most often represented by mixed patho-
physiology. For this reason, focal injury was not an exclusionary
criteria in the current study, unless the injury necessitated neurosur-
gical intervention and/or removal of tissue.

2.3. MRI procedure and data acquisition

Data were acquired using a Philips Achieva 3.0 T system (Philips
Medical Systems, The Netherlands) with a 6-channel head coil and
a Siemens Magnetom Trio 3.0 T system (Siemens Medical Solutions,
Germany)with an 8-channel head coil both housed in the Department
of Radiology, Hershey Medical Center, Hershey, PA. Subjects were
made aware of the importance of minimizing head movement during
all MRI scanning and any trials where motion was recognized were
discontinued or repeated. For all subjects, high resolution brain ana-
tomical images with isotropic spatial resolution of 1.2 mm×1.2 mm×
1.2 mm were acquired using the MPRAGE sequence. Other imaging
parameters for the MPRAGE sequence consisted of: 468.45 ms/
16.1 ms/18°, repetition time (TR)/echo time (TE)/flip angle (FA), a
250×200 mm2

field of view (FOV), and a 256×180 acquisitionmatrix.
Echo planar imaging (EPI) was used for functional imaging. Imaging
parameters for EPI were 2000 ms/30 ms/89°, TR/TE/FA, a 230×
230 mm2 FOV and a 128×128 acquisition matrix.

2.3.1. fMRI WM paradigm and off-task blocks
While the current study focuses on non-task related covariance

in the BOLD fMRI signal, the resting connectivity observed here is
influenced by task (we focus on the “resting” blocks flanked by a WM
task), so a brief description of this visual working memory task is
provided here. This study used a visual WM paradigm requiring
rehearsal and memory of face stimuli. The task included exposure to
two pictures of male and female Caucasian faces presented in black
and white adapted from a standardized dataset (Beaupre and Hess,
2005). This paradigm requires the subject to match the identity and
location of two face stimuli. For example, the subject views a box
Please cite this article as: Hillary, F.G., et al., Changes in resting conn
Psychophysiol. (2011), doi:10.1016/j.ijpsycho.2011.03.011
divided into quadrants and within two quadrants are two faces which
appear for 3000 ms. After a delay of 3000 ms requiring focus on a
fixation point, the subject is provided a target stimulus, or two face
stimuli, presented in two of the four quadrants. At the time of
presentation of the target, the subject is required to make a yes/no
decision about the identity (match/no match) and the location of a
single face presented in one of the four quadrants. This non-verbal
working memory paradigm is initiated with a 20-second baseline
followed by individual 42-second experimental trials (blocks)
alternating with 20-second baseline measurements (i.e., fixation
stimulus). The current study focuses on covariance in the BOLD fMRI
signal during the 20-second baseline periods (between periods of
task), including a mean of 165.3 (SD=5.23) volumes per run (after
eliminating volumes with movement, poor signal-to-noise ratio)
across two runs (n=19; data for 1 subject included 1 run at 1 time
point).

2.3.2. fMRI resting connectivity: ROI determination and analytic
procedure

2.3.2.1. Regions of interest. It was a focus here to examine RSFC in two
separate classes of networks previously examined in this literature:
1) a network posited to have reciprocal interaction while engaging
in goal-directed behavior or external stimulation and 2) a network
believed to play a role in self-reflection or internal-states (Sheline
et al., 2010). Almost universally, medial PFC (MedPFC) and posterior
cingulate cortex (PCC) have been identified as central to the network
organized around “internal-states” (Raichle and Snyder, 2007; Zou
et al., 2009). In addition, because TBI most commonly disrupts frontal
systems (and therefore, executive control processes) (Hillary et al.,
2002;Whyte et al., 1998), we also aimed to examine fluctuation in the
BOLD signal in regions believed to be directly involved in cognitive
control and volitional behavior. Thus, we examined resting connec-
tivity in dorsolateral prefrontal cortex (DLPFC) and anterior cingulate
cortex (ACC) and related regions during rest that might be best
conceptualized as a “goal directed” network. These two networks will
henceforth be referred to as the “internal-state” and “goal-directed”
networks. The internal-state network was examined by correlating
activity in each voxel in the brain with two “seeds”: one in PCC
([X Y Z]=[−6−50 38]) and one in MedPFC ([X Y Z]=[0 48−2]). In
all cases, the seeds were the average time-series of a sphere with a
radius of 3 mm. The PCC and MedPFC seeds were derived from
a review of the literature on the “Default Mode Network” (e.g.,
Sumowski et al., 2010; Greicius et al., 2003). The goal-directed
network was examined in the same way, but with seeds placed in the
DLPFC (Brodmann's areas 9/46/10; [X Y Z]=[−36 31 13]) and ACC
(Brodmann's areas 6/32; [X Y Z]=[−1 7 55]). The placement of these
seeds was based on prior work summarizing attentional control
networks (Wager and Smith, 2003). Overall, this approach permits
the observation of networks reciprocal to those that are directly
related to task. Fig. 1A and B illustrates the four distinct seeding
locations.

2.3.2.2. Procedure for determining covariance in resting signal. For BOLD
time series analyses, data were preprocessed using both Analysis of
Functional NeuroImages (AFNI) software (Cox, 1996) and FSL (Smith
et al., 2004). In data preprocessing, the first 5 images of each time-
series were removed to ensure that magnetization had reached a
steady state. The data from both runs were then realigned with the
first image of the first run in the remaining time-series. The data were
then smoothed, using a Gaussian smoothing kernel (FWHM=6×
6×6 mm), scaled to the mean intensity across the entire time-series,
band-pass filtered (high-pass=0.005 Hz; low-pass=0.1 Hz), and
detrended (to remove any linear drifts remaining in the data). The
data were then deconvolved with a boxcar function representing the
time spent on the working memory task (described above) and signal
ectivity during recovery from severe traumatic brain injury, Int. J.
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Fig. 1. A and B illustrate “seed” placement for determining the four networks examined
in this study. A shows the seed for goal-directed networks (ACC and DLPFC) and B
displays the seed placements for the internal-state networks (PCC and MedPFC).

Table 1 t1:1

Demographic characteristics for both groups and injury information for the TBI sample.
t1:2
t1:3Demographic variables TBI mean (SD) HC mean (SD) Group comparison

t1:4Age 29.4 (11.0) 27.5 (12.1) p=0.71
t1:5Education 12.2 (0.63) 14.6 (1.6) p=0.001*
t1:6Gender 7 m, 3 f 4 m, 6 f pN0.05

t1:7Clinical variable TBI sample

t1:8GCS score Mean=5.4; SD=3.5; range=3–14
t1:9Acute hospital days Mean=18.3; SD=8.1; range=5–32
t1:10Acute CT/MRI result (n) F (7); T (7); DAI (4); IVH (3); shift (3); P (1); P/O (1);

Thal (1); BG (1); cerebellum (1)

F = frontal lobe, T = temporal lobe, IVH = intraventricular hemorrhage; shift =
ventricular compression; P = parietal; P/O = parietal–occipital; Thal = thalamus; BG=
basal ganglia. t1:11

Q22,Q23
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attributable to physiological parameters, signals from cerebrospinal
fluid and white matter, mean BOLD and signal six motion parameters
were included as regressors of no interest. The residuals from the
deconvolution were saved, and used as the resting-state data (see
Biswal et al., 2010 for a similar approach). Regressing the global signal
out of the data in this way has drawn some comment in relation
to anticorrelations in the networks that show correlated activity
(Murphy et al., 2009). However, because this is a commonly used
preprocessing step (see Kelly et al., 2009; Di Martino et al., 2008), and
because we do not specifically investigate anticorrelated activity in
the present article, we elected to remove the global signal (particu-
larly since the effect of gross differences in signal between groups on
patterns of connectivity is unknown).

Resting data were then demeaned and resampled into standard
(i.e., Montreal Neurologic Institute) space. Finally, correlations were
calculated between each seed time-series and each voxel in the brain,
resulting in 4 volumes per subject (the correlations between each
of our 4 seed regions and every voxel in the brain). To determine
statistical significance and in order to correct for multiple compari-
sons, we used a cluster-level threshold of 598 contiguous voxels that
was determined using Monte Carlo simulations (using the AlphaSim
program, available at http://afni.nimh.nih.gov). Because these are the
first serial data to examine significant neurological disruption, we also
employed an inclusive threshold in order to permit exploration of
more subtle findings or those from spatially smaller regions (cluster
size=550, or the equivalent of correcting to pb0.10). Two significant
findings with this second threshold are indicated as such in Table 3. To
ensure that the resulting r-values were normally distributed, Fisher's
r-to-z transformation was applied to the data.

The resulting z′ scores were used for two types of analyses:
1) group-level ANOVAs for each of the four seeded regions with
the factors Group (HC vs. TBI) and Time (Time 1 vs. Time 2) and
2) within-group influence of time on connectivity in the four ROIs
(Time 2−Time 1 connectivity). The purpose of the ANOVAs was to
comprehensively investigate the patterns of connectivity change
using a voxelwise approach (for each of the four seeds). Because we
were primarily interested in those regions that changed across time
differentially in the two groups, we will focus on the interaction
between Group and Time in the Results section. Moreover, because
we were primarily interested in the change across time in the TBI
Please cite this article as: Hillary, F.G., et al., Changes in resting conn
Psychophysiol. (2011), doi:10.1016/j.ijpsycho.2011.03.011
group, we further limited the regions to those in which there was
no statistically significant change across time in the HC group. The
purpose of this second analysis was to examine subthreshold effects
not observed in the ANOVA and to capture within-group effects, with
specific interest in change during this window of recovery in TBI.

3. Results

3.1. Demographic, clinical descriptors

The groups were well-matched for age and gender, but there were
significant between-group differences in education (see Table 1).

3.2. fMRI results: behavioral data

The current study does not focus on task-related BOLD signal
change, however, task performance is a reasonable indicator of cog-
nitive improvement from 3 to 6 months and here we compared the
second run of each time point (to permit task acclimation during the
first run and minimize the influence of early task practice effects).
Compared to the HC sample, accuracy was significantly reduced in
the TBI sample at Time 1 [TBI mean (SD)=0.81 (0.15), HC mean=
0.95 (0.05); t(17)=2.38; p=0.039] and this difference diminished
at Time 2 [TBI mean=0.89 (0.1), HCmean=0.95(0.07); t(17)=1.50;
p=0.15]. Similar change was evident in RT for the task at Time 1
[in ms: TBI mean (SD)=1454 (282), HC mean=1205 (214); t(17)=
−2.15; p=0.048] compared to Time 2 [in ms: TBI mean (SD)=1288
(253), HC mean=1106 (202); t(17)=−1.71; p=0.107]. Thus, these
findings indicate that the improvements in performance observed in
the TBI sample are greater than what was observed in the HC sample
and cannot be attributed to task practice alone. Note: behavioral data
at both time points were not available for one subject with TBI.

3.3. fMRI results: BOLD signal change during WM task

In order to provide context for understanding the current resting
connectivity results, it is noted that the “on-task” period of the current
paradigm elicits BOLD signal change primarily in PFC, parietal areas,
and the cerebellum. These findings are consistent with other studies
of non-verbal WM (Glahn et al., 2002).

3.4. Examining resting connectivity

It was a goal in the current study to examine both internal-state
and goal-directed networks in off-task resting BOLD fMRI data. The
current findings are separated into results for within-group change
for the TBI sample from the first to the second time point for both
networks (e.g., internal-state and goal-directed networks).
ectivity during recovery from severe traumatic brain injury, Int. J.

http://afni.nimh.nih.gov
http://dx.doi.org/10.1016/j.ijpsycho.2011.03.011
Original text:
Inserted Text
"."

Original text:
Inserted Text
"."

Original text:
Inserted Text
" – "

Original text:
Inserted Text
"’"

Original text:
Inserted Text
"’"

Original text:
Inserted Text
"–"

Original text:
Inserted Text
"msecs"

Original text:
Inserted Text
"msecs"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
","



414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

t2:1

t2:2
t2:3

t2:4

t2:5Q1
t2:6

t2:7

t2:8

t2:9

t2:10

t2:11

t2:12

t2:13

t2:14

Q2 t2:15

5F.G. Hillary et al. / International Journal of Psychophysiology xxx (2011) xxx–xxx
3.4.1. Resting connectivity results: Group×Time interaction
There were a number of regions demonstrating significant

Group×Time interaction effects. One important distinction between
groups was the separation between internal state and external state
networks in this analysis. That is, Group×Time effects dissociated
the groups along the “internal” and “external” network divisions.
Individuals with TBI demonstrated decreased connectivity in external
state networks while the HC sample showed increased connectivity in
these areas. By contrast, individuals with TBI demonstrated increased
internal state connectivity between time points and the HC sample
showed the opposite effect. Table 2 and Fig. 2 summarize the findings
that differentiated the groups when considering change over time.

3.4.2. Resting connectivity results — within-group
As noted, it was also a goal to examine the greatest connectivity

changes within the TBI sample from Time 1 to Time 2. In order to
examine the gross influence of time on connectivity results within TBI
(irrespective of the effect in HCs), the residual BOLD time series was
analyzed by placing a “seed” in each of the four ROIs (i.e., ACC, PCC,
MedPFC, and DLPFC) and comparing results between time points.
When considering only effects within the TBI sample we again
observed primarily increases in internal state networks and decreases
in goal-directed networks (see Figs. 3–5). The one exception to this
finding was increased connectivity observed between the DLPFC seed
and the insula. This increased connectivity is consistent with that
observed within the MedPFC seed (see Table 3).

3.4.3. Connectivity and performance change
While the current study does not focus on task-related BOLD signal

change, there are certainly findings in the literature demonstrating
that the relationship between internal and external-state networks
has implications for task performance. To examine those relationships
here, we conducted a Pearson correlational analysis for RT change
scores and 8 connectivity change scores for the primary regions
showing differences in Table 1 (ACC to BA40; DLPFC to thalamus/
parietal; PCC to BA6; PCC to BA37) and Table 2 (ACC to parietal/
precuneus; DLPFC to BA13; MedPFC to BA13; PCC to BA37). No
analyses here revealed statistically significant results, although small
effects were noted between change in RT and change in DLPFC to
insula connections (r=−0.44; p=23) and MedPFC to insula con-
nections (r=0.43; p=0.25).
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Table 2
Sites of significant connectivity change during Group×Time interaction analysis
(mixed effects ANOVA).

BA X Y Z Cluster Direction

ACC seed
Postcentral gyrus 3 30 −30 48 1267 +HC/TBI−
Postcentral gyrus
(into inferior parietal lobule)

40 −22 −36 60 999 +HC/TBI−

DLPFC seed
Thalamus [extending to parietal
(precuneus/cuneus) and
occipital areas]

– −24 −20 0 963 +HC/TBI−

Medial frontal seed
Inferior occipital gyrus 18 40 −88 −16 789 −HC/TBI+

PCC seed
Middle frontal gyrus 6 −24 4 60 720 −HC/TBI+
Middle temporal gyrus 37 −54 −60 0 686 −HC/TBI+
Precuneus 31 10 −66 22 826 −HC/TBI+

Key: BA refers to Brodmann's areas; XYZ refers to the location of the voxel with the
strongest connection to the seed, across the group; cluster refers to the number of
voxels in the cluster (voxel size=2×2×2 mm); direction refers to the direction of the
difference in each group: green text indicates that the relationship with the seed was
stronger at Time 2 than Time 1, and red text indicates that the relationship with the
seed was weaker at Time 2 than Time 1. Note: all findings here were statistically
significant at a corrected cluster size of 598 voxels (pb0.05).

Please cite this article as: Hillary, F.G., et al., Changes in resting conn
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4. Discussion

The current study aimed to examine intrinsic, or “resting” brain
connectivity during a period known to be of critical importance for
recovery followingmoderate and severe TBI. The approach used here in
a group of individuals sustaining moderate and severe TBI used BOLD
fMRI to examine fluctuations in the “off-task” BOLD signal. Primary
findings reveal increased involvementof internal-state networks during
recovery from TBI (elaborated below). We arrived at this finding by
examining two theoretically distinct resting networks: an internal-state
network thought to be involved in self-reflective processes and a goal-
directed network, that is thought to be associated with engaging
external stimuli.

The clinical context for these findings must be emphasized. This is
a sample of individuals with predominantly severe TBI where there
was known disruption in neural functioning corroborated by clinical
MRI (see Table 1) and we anticipate that these injuries have a direct
consequence on neural connectivity. It is essentially unknown how
large-scale neural networks adapt to significant neural disruption, in
particular during the first 6 months following moderate to severe
injury.While the findings clearly indicate changes in both internal and
goal-directed networks during this period of recovery, these data
should be interpreted only for the period of recovery measured here.
That is, the increases observed in connectivity are quite different
compared to the response in HCs and may be indicative of short or
long-term changes in connectivity and therefore the long-term
trajectory of these network connections remains uncertain. Of note,
individuals with TBI demonstrated significantly improved perfor-
mance from Time 1 to Time 2 and this is unlikely an improvement
that can be accounted for by practice alone. Inasmuch as improve-
ments in working memory function represent one metric of im-
provements in brain function, the changes in connectivity reported
here occur in the context of recovery from TBI.

The following discussion outlines two specific observations
permitted by the findings presented here. First when examining the
regions that dissociated groups over time (i.e., mixed-effects ANOVA),
the two groups were separated along the lines of “internal” and “goal-
directed” networks between time points. Second, there were
consistent increases in connectivity in several regions including the
middle temporal lobe and insula and these findings are largely
consistent with a larger literature and may have implications for
transition between internal and goal-directed states and learning and
task proceduralization.

4.1. Group by Time interactions

A Group×Time ANOVA revealed that, in multiple network regions
(see Table 2), there was a Group by Time interaction so that the two
groups showed clear dissociations along the two networks (i.e.,
internal-state and goal-directed). For those findings that dissociate
the groups over time, primary findings reveal down-regulation of goal-
directed attentional networks (ACC and DLPFC to parietal regions) and
increased connectivity in regions associatedwith internal-state respon-
sivity (i.e., MedPFC and PCC).

This finding reveals that these networks are shifting during this
three month period. The reason for this shift is not entirely clear, but
increased connectivity in similar networks has also been observed in
clinical samples, such as substance abuse (Ma et al., 2010) andmay be
indicative of a period of recalibration between internal and goal-
directed inputs permitting sufficient “release” from volitional on-task
processing. The importance of this release has been documented
previously, as the interplay between internal and external-state
networks has been determined to predict task performance (Fox et al.,
2007; Kelly et al., 2008). Finally, we do not anticipate that what is
observed here is directly attributable to distinct task load issues
between the groups. While there is some evidence that task “load”
ectivity during recovery from severe traumatic brain injury, Int. J.
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immediately during previous trials may influence internal-state
connectivity (see Pyka et al., 2009; van Dijk et al., 2010), the PCC
and MedPFC connections observed here are increasing over time and
occur in the context of improving performance.

Unfortunately, there were no statistically significant relationships
between RT change and resting connectivity change for either
analyses (i.e., ANOVA and between-time comparison). Nevertheless,
it does appear that DLPFC down-regulation may have at least some
modest influence on RT change; analysis of connectivity change that
dissociated these groups over time revealed a negative, but non-
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Fig. 3. Connectivity for the Time 2−Time 1 findings in the TBI sample. Data here display
the change in connectivity between the ACC seed and inferior parietal lobe and
precuneus. Error bars are standard error averaged over time.
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significant correlation between RT change and DLPFC change (r=
−0.44). Moreover, increased connectivity in MedPFC was positively
associated with RT albeit non-significantly (r=0.43). Thus, if
permitted to interpret these data, the diminished DLPFC to parietal
connections (referred to elsewhere as the “frontoparietal control
network”, see Spreng et al., 2010) coupled with increased MedPFC to
insula connectivitymay be an indicator of improving neural efficiency.
That is, greater connectivity to internal-state connections, may
operate to integrate demands from “internal” and “external”
environments, providing greater continuity between these environ-
ments over time; the insula has been posited to play a critical role in
developing and updating the “representations” of external demands
(Mennes et al., 2011).

What is unclear is why change during a period of recovery would
trend in the opposite direction with the network connections observed
in the HC sample? While provisional, we might infer this trend to be a
necessary, but temporary, release from control and “re-syncing” of
external and internal states from 3 to 6 months PTA. A follow-up
observation noting trends in these networks at 12–18 months post
injury might provide information about the relative permanence of
this down-regulation of DLPFC to parietal (i.e., “attentional control”)
connections.

In contrast with the diminished DLPFC connectivity observed over
time, one of the most consistent findings dissociating these two
groups was the increased involvement of PCC connectivity in the TBI
sample. Certainly there is data demonstrating that these two
networks (DLPFC and PCC) are dissociable and have often been
observed to be negatively correlated (see Greicus et al., 2003), so the
reciprocal findings here are consistent with a larger literature.
However, analyses in separate seeding findings for PCC to medial
temporal/hippocampus (i.e., BA37) and PCC to middle frontal areas
(BA6) revealed no significant correlations with RT (r=−0.01, r=
−0.9 and r=−0.03 respectively). Thus, connectivity change be-
tween PCC and medial temporal and anterior regions may have less
direct consequence for behavior compared to the changes observed in
DLPFC and MedPFC. In order to clarify the consequences large-scale
connectivity changes have for behavior, future work should include
larger samples observed at similar time points to isolate the clinical
ectivity during recovery from severe traumatic brain injury, Int. J.
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and performance factors that might influence the timing and
magnitude of these network shifts.

4.2. Within-group change over time

While the interaction results reveal distinctions between groups, it
was also a primary goal to observe those effects occurring over time
within the TBI sample that may have been either consistent with or
distinct from the HC sample, but did not rise to the level of statistical
significance during ANOVA analysis. For this reason, we also
conducted an analysis permitting observation of significant changes
within the network observed within the TBI sample (see Figs. 3–5).
This analysis of the direct effect of time (which we treat here as a
surrogate for recovery) with performance reveals largely overlapping
effects with the between-group comparison; internal-state networks
demonstrated increased connectivity and external-state networks
showed decreased connectivity. One important exception here was in
a connection between DLPFC and the insula. This finding was
unexpected, but converges with other connectivity data summarized
above (i.e., between-group analysis) and is interpreted below.

Overall, Fig. 2 illustrates the change in connectivity over time for
both groups and indicates that the internal state networks are more
Fig. 5. Connectivity for the Time 2−Time 1 findings in the TBI sample. Data here display t
convenience, these views are presented together. Error bars are standard error averaged ov
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highly connected within the TBI sample over time and dissociable
from the effects observed in the HC sample. The first 6 months
represent a critical window of recovery following TBI, but certainly
recovery can occur for several years following injury (Millis et al.,
2001). Given this, what is unknown in TBI is if this result is maintained
or if this is a nonlinear effect that later returns to approximate what is
observed in HCs once greater recovery has occurred. We anticipate
that the latter is an accurate depiction of this trajectory, but additional
analyses with a more protracted time line would be necessary to
confirm this.

4.3. Connectivity change and limbic system

The most consistent finding in these results is between seeded
regions and changes in connectivity to the insula andmiddle temporal
regions, including hippocampus. In all cases, connections to these
regions are increasing from Time 1 to Time 2 and these findings are
largely dissociable from the HC sample (see Table 1 and Fig. 2).

We offer here two interpretations of these primary shifts in the
data. First, the movement in these data from anterior “attentional
control” regions (e.g., DLPFC to parietal connections) to increased
connectivity in posterior and medial temporal regions (e.g., PCC to
he change in connectivity between the DLPFC seed and the insula and cerebellum. For
er time.

ectivity during recovery from severe traumatic brain injury, Int. J.
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Table 3t3:1

Sites of significant connectivity change during Time 2 minus Time 1 analysis in the TBI
sample.

t3:2
t3:3 BA X Y Z Cluster Direction

t3:4 ACC seed
t3:5 Postcentral gyrus

(extending back into parietal
(precuneus) areas)

3/4Q3 −4 −38 62 1380 TBI−

t3:6 DLPFC seed
t3:7 Insulaa 13 42 6 14 563 TBI+
t3:8 Culmen (extending up

into occipital areas
(fusiform gyrus))

– −24 −52 −26 767 TBI−

t3:9 Tail of the caudatea – −32 −42 12 554 TBI−
t3:10 Medial frontal seed
t3:11 Insula (extending forward

into inferior frontal areas)
13 36 8 −2 1038 TBI+

t3:12 PCC seed
t3:13 Middle temporal gyrus

(extending into hippocampus)
37 −50 −60 8 1636 TBI+

Note: In no case was this contrast significant for the HC group.
t3:14 a These areas were significant at a lower threshold, cluster size=550, pb0.10; all

other findings were statistically significant at a corrected cluster size of 598 (pb0.05).t3:15
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hippocampus connections) likely reflects greater task proceduraliza-
tion and formal integration of the task into memory. That is, at
6 months PTA, individuals with TBI may be better able to incorporate
memorial systems and consolidate the constraints and demands of
the task. This interpretation is consistent with the reductions in time-
on-task (i.e., RT), as formal “representations” of the task permit more
rapid processing and reduce demand on attentional control networks
for effortful task processing.

Second, the increased connectivity from the insula to PCC and
DLPFC is the only finding that does not dissociate the internal and
goal-directed networks. In all statistically significant observations
here, connectivity with the insula increased from 3 to 6 months PTA.
The insula has been linked to a number of functions during task
perturbation including emotion, task saliency, and monitoring
internal states (for review see Kurth et al., 2010). In the examination
of large-scale connections, there is recent evidence that the insula
plays a critical role in “salience processing” and permits negotiation
and shifting between internal-state and attentional control processes
(Menon and Uddin, 2010). Other examiners have noted the unique
topographical location of the insula placing it at the boundary
between “cognitive, homeostatic, and affective systems of the
human brain” serving as a conduit between external demands and
the internal milieu (Craig, 2009). With this literature as context, the
current data indicate that from 3 to 6 months PTA, increased connec-
tivity to the insula may play a critical role in recovery by increasing
interoception and permitting appropriate transitions between the
sub-networks examined in this study.

5. Study limitations and future directions

The current study holds the advantage of examining TBI during a
knownwindow of recovery at separate time points and it is the first to
do so using resting connectivity methods. Even so, there are several
limitations to this study that require mention. The most significant
shortcoming to this study is the small sample size for each of the
groups; certainly to conduct sub-group analyses (e.g., injuries to right
vs. left hemisphere), additional subjects would be required. In
addition, the control group was significantly more educated than
the TBI sample. However, it is unclear that a 2-year difference in
education observed here could account for fundamental differences in
internal and goal-directed networks examined. While there was
almost no variance in the TBI sample with regard to education, a
correlational analysis between education and connectivity change for
each of the four change scores revealed no relationships (the highest
Please cite this article as: Hillary, F.G., et al., Changes in resting conn
Psychophysiol. (2011), doi:10.1016/j.ijpsycho.2011.03.011
correlation was r=0.19 in ACC). Also, any between group differences
in connectivity attributable to education should be at least partially
ameliorated by the current emphasis on within-subject change over
time. As noted, direct comparisons between connectivity change and
task performance revealed only modest, non-significant relationships
between connectivity change and RT change; a larger sample is
required to determine if connectivity change observed here does
indeed have direct implications for performance. Even given these
concerns, the current data are unique and offer a preliminary look at
how large-scale networks change during recovery from significant
neurological disruption.
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Introduction 

Traumatic brain injury (TBI) is one of the leading causes of death and disability 

worldwide with immense negative impact on society, economy and health-care systems. 

The Centers for Disease Control and Prevention estimates that every year 1.7 million 

people in USA sustain TBI and TBI contributes to 30% of all injury related deaths in the 

USA (Faul et al., 2010). An estimated 5.3 million people (close to 2% of the population) 

are currently living with TBI-related disabilities in USA with an estimated cost of more 

than $60 billion per year due to injury-related work loss and disability (Faul et al., 2010, 

Finkelstein et al., 2006). However, the overall impact may be much higher as recent 

studies suggest that published statistics underestimate the TBI burden (Powell et al., 2008, 

Bazarian et al., 2006).  Despite these facts the approaches to the characterization of TBI 

severity and outcome have not changed in more than three decades (Maas et al., 2010). 

Currently, crude severity grades of mild, moderate, and severe TBI are defined by using 

clinical and radiographic indices. Glasgow Coma Scale (GCS), length of loss of 

consciousness, and post-traumatic amnesia form some of the clinical criteria; evidence of 

intracranial lesions on computed tomography (CT) scan or magnetic resonance imaging 

(MRI) are the basis of the radiographic criteria and outcome is measured using the 

Glasgow Outcome Scale Extended (GOS-E) (Teasdale and Jennett, 1976, Wilson et al., 

1998). However, TBI is highly heterogeneous in cause, severity, pathology and clinical 

course and these measures often fail to capture this complexity (Yue et al., 2013). For 

example, current neuroimaging techniques have limited sensitivity to detect physiological 

alterations caused by TBI. The focal lesions detected by CT or MRI in TBI, such as 

contusions and axonal shearing injuries, are often not predictive of long-term functional 

disability after TBI, especially in mild cases. Overall, approximately 70% of patients with 



TBI did not show any visible lesions using conventional MRI or CT techniques (Huang et 

al., 2009). In addition, the absence of abnormality on conventional neuroimaging 

techniques in the majority of mild TBI patients, even with post-concussive symptoms and 

cognitive and/or behavioral deficits, illustrates the limited prognostic value of 

conventional neuroimaging techniques (Johnston et al., 2001, Kirkwood et al., 2006). The 

heterogeneity of TBI, combined with the lack of accurate radiological indices for TBI, is 

thus hindering development of targeted treatment and neuroprotective strategy over the 

last four decades (Maas et al., 2010). A novel neuroimaging based biomarker, which can 

address this neurobiological heterogeneity, would enable the rapid classification, clinical 

trial stratification, and follow up rehabilitation care plans of patients with TBI.  

Neuroimaging in TBI: the unsolved issues 

The most consistent finding of brain tissue injury as a consequence of TBI is 

axonal injury (Gennarelli et al., 1982).  TBI causes axon (nerve fiber) damage resulting 

from the stretching and shearing of white matter fibers due to rotational forces on the 

brain within the cranial cavity, a condition often referred to as diffuse axonal injury (DAI) 

(Adams et al., 1989). With newer MRI techniques to visualize the axonal damage, DAI 

has been almost universally demonstrated in fatal TBI (Gentleman et al., 1995). DAI is 

also considered as the common cause of poor outcome in TBI (Maas et al., 2008) and the 

mechanism most likely to be responsible for many of the cognitive deficits resulting from 

moderate to severe TBI (Scheid et al., 2006). However, current evaluation of DAI with 

MRI  is often problematic as it depends on the sensitivity of the MR imaging sequences, 

selection of patients, and time between injury and scan (Skandsen et al., 2010). Due to 

these reasons the results of studies correlating MR evaluation of DAI and functional 



outcome are often conflicting (Chelly et al., 2011).  A better quantitative measure for 

detecting white-matter axonal injury will thus be a very suitable addition as a 

neuroimaging biomarker of TBI.  

Fractal Dimension analysis: a novel way to measure WM changes 

Because brain WM is consisted of axons, DAI would affect the WM network 

integrity at the system level, which can be detected by brain imaging techniques that can 

measure WM network structure’s shape (morphology)complexity (Kinnunen et al., 2011, 

Kraus et al., 2007). Biomechanics models of TBI also indicated that shear forces causing 

DAI leads to elastic shape deformations in intracranial brain tissues(Sayed et al., 2008). 

Fractal dimension (FD) is a novel and quantitative technique to estimate WM shape 

complexity (WMc) in brain. “Fractal” is a term coined by Mandelbrot (Mandelbrot, 1982) 

to describe the irregular but self-similar shapes of natural objects. A fractal is defined as 

any rough and irregular object composed of smaller versions of itself. The cortical fractal 

structure, therefore, can be characterized by a single numerical value (the fractal 

dimension, FD) that summarizes the irregularity of the external cortical surface and the 

boundary between subcortical grey and white matter (Bullmore et al., 1994). FD 

measures have been successfully applied to reveal gender and age structural differences 

in the cerebral cortex in the absence of disease and to investigate various psychiatric and 

neurological disorders. (Esteban et al., 2007, Mustafa et al., 2012, Zhang et al., 2008, 

Zhang et al., 2007). However, to the best of our knowledge, FD is yet to be evaluated in 

the TBI population. There are several reasons why fractal analysis may be a useful 

paradigm for analyzing brain WM shape in TBI: (1) FD can capture very complicated 

morphology of structures in a simple and quantitative description and can characterize the 



way in which the WM fills up the brain. (2) Given the high spatial resolution 

(1X1X1mm3) of the 3D anatomic images based on which the analysis will be made, the 

WMc index  can capture the WM changes which are beyond the resolution capability of 

other WM assessment techniques such as Diffusion Tensor Imaging (DTI).  In this study, 

therefore, we examined whether white matter complexity (WMc) is reduced in chronic 

TBI subjects and whether the FD measures correlate with cognitive outcome in TBI 

patients. 

Comparing FD with DTI and other volumetric markers 

As FD offers additional benefits over other structural measurement of WM (e.g., 

DTI/WMVBM), we also examined how FD compares with these measures in predicting 

cognitive parameters in TBI. The comparison with DTI was of special interest. DTI 

provides quantitative information about integrity of WM microstructures by evaluating 

isotropic and anisotropic water diffusion within neuronal fiber tracts. DTI based measures 

are quite promising in evaluating DAI and emerging as important tool in TBI research 

(Kinnunen et al., 2011, Kraus et al., 2007). However, as noted above FD may provide 

additional benefits beyond the spatial resolution achieved by DTI.  We also estimated 

whole brain intracranial WM volume using SPM. As FD will evaluate the WM 

complexity of the whole brain, it is important to know how this correlates with 

volumetric change of WM. In addition to WM,  we also compared FD with GM volume 

and thickness changes using popular openware FreeSurfer. FreeSurfer is a set of 

automated tools for reconstruction of the brain’s cortical surface from structural T1-

weighted data. FreeSurfer can generate maps of whole brain GM atrophy. Generalized 

cerebral atrophy is a well-established consequence of moderate-to-severe TBI and the 



degree of atrophy is related to injury severity (Ghosh et al., 2009). It is therefore 

imperative to evaluate how WM complexity change may relate to overlying GM changes. 

 

Hence, given the potential importance of white matter pathology to outcome in 

TBI, and the sensitivity of FD in determining the integrity of white matter beyond 

currently available techniques, studies of FD are warranted in TBI population. In this 

study, a group of chronic TBI subjects of moderate-to-severe severity and a group of 

demographically matched healthy controls underwent MRI (anatomical and diffusion 

tensor imaging) and neuropsychological testing. The primary objective of the current 

investigation was to test the hypothesis that white matter complexity (WMc) is reduced in 

chronic TBI subjects. The secondary objective was to examine the relationship between 

WMc and cognition assessed with standard neuropsychological testing. Additionally we 

compared the WMc vs DTI/volumetric measures in predicting cognitive outcome.   

Methods 

Institutional review boards responsible for ethical standards at the Rutgers 

University - NJMS and the Kessler Foundation Research Center approved this study. 

Written informed consent was obtained from all subjects prior to participation.  

Demographics 

We recruited TBI patients of all severity (mild, moderate and severe) assessed 

using the Glasgow coma scale (n=17) and healthy controls (HC) (n=13) matched for age, 

gender and education. ( Table 1) 



 

 

Neuropsychological assessment 

On the day of MRI, all participants completed a standardized neuropsychological 

test battery sensitive to cognitive impairment associated with traumatic brain injury. The 

following cognitive functions of specific interest were evaluated: (i) verbal short-term 

learning and memory performance via the Hopkins Verbal Learning Test – Revised 

(HVLT-R); (ii) the executive functions of set-shifting, inhibitory control and cognitive 

flexibility were measured using the Delis–Kaplan Executive Function System (Delis et al., 

2001). We used the alternating-switch cost index (time to complete alternating letter and 

number Trails B—time to complete numbers-only Trail A) from the Trail Making subtest 

and the inhibition/switching minus baseline score from the Color–Word subtest (high 

scores indicating poor performance); (iii) information processing speed via the Symbol 

Digit Modalities Test (SDMT). (iv) Attention - via the Visual Search and Attention Test 

(VSAT). 

Z-scores were calculated for all subjects, with the mean and SD of data from 

healthy subjects used to define z-scores for all subject groups. Negative scores indicate 

performance below the mean of healthy subjects. Domain scores for measures of 

executive function, attention, processing speed and memory were generated by averaging 

the standardized data from tests assessing these cognitive domains 

Imaging Protocol 



High resolution 3D T1-weighted axial magnetic resonance images (MRI) of the 

whole brain were obtained using magnetization prepared rapid gradient echo (MPRAGE) 

sequence on 3 T Siemens Allegra (Erlangen, Germany) scanner. TBI patients were scanned 

three months after their post traumatic amnesia. Imaging parameters were: TR (repetition 

time) = 2000 ms, TE (echo time) =4.9 ms, flip angle=8°, inversion time (TI) =900 ms, 

slice thickness=0.96 mm, in-plane resolution=0.96×0.96mm2, and number of slices=172. 

DTI data were also acquired using single shot echo planar imaging (SS-EPI) sequence 

along 12 diffusion weighted (b = 1000 s/mm2) directions and one b = 0 s/mm2. Imaging 

parameters were: 26 slices, thickness 4 mm, with 2.0×2.0 mm in-plane resolution; pulse 

sequence parameters were: repetition time TR = 7300 ms, echo time TE = 88 ms, number 

of averages = 8. 

Data processing 

A comprehensive quantitative analysis was performed on brain grey and white 

matter structures of TBI and control subjects.  The techniques used to quantitatively 

assess WM damage were; a) FD dimension analysis, b) DTI and c) WM whole brain 

intracranial volume changes. Grey matter changes were quantitatively assessed using 

cortical thickness analysis. The purpose of this comprehensive analysis was to evaluate 

the sensitivity of FD measure (in detecting structural change of the WM system in TBI 

patients) over currently available techniques such as DTI. More details on each of these 

methods are given below.  

White matter analysis 

Fractal Dimension (FD) analysis 



FD analysis was carried out using our customized in-house routines (details 

described elsewhere) . Briefly the image processing included: skull stripping of T1-

weighted images using FMRIB Software Library (FSL) Brain Extraction Tool 

(BET)(Smith et al., 2004) (http://www.fmrib.ox.ac.uk/fsl/ Center for Functional Magnetic 

Resonance Imaging of the Brain (FMRIB), Oxford, UK). Brain extraction was followed 

by segmentation into WM, grey matter (GM) and cerebrospinal fluid (CSF) probability 

maps using FSL’s FAST tool(Zhang et al., 2001).  WM probability maps were then 

binarized using a threshold value of 0.5. A 3D thinning method was then applied to the 

WM binary image in order to obtain the 3D WM skeleton. The 3D thinning algorithm 

removed as many boundary voxels as possible without changing the general shape of the 

WM, until a center line of one voxel width (skeleton) remained. Left and right 

hemispheres were then separated from the whole brain using FSL tools. Masks of left and 

right hemispheres separated in the previous step were applied to WM skeleton and WM 

general structure images to get the WM skeleton and WM general structure of left and 

right hemispheres. FD values were estimated using a 3D box-counting method (details 

described elsewhere) (Zhang et al., 2006). The box-counting method was preferred since 

it can be applied to structures without self-similarity, such as the human brain. (The box-

counting method works by repeatedly applying different-sized meshes (r) to the fractal 

image and counting the number of boxes (N) needed to completely cover the fractal.) 

Finally, a linear regression fit after log transformation was used to estimate FD values 

using equation 1 given below  

lnN = FD ln(1/r) + lnk, ……………………………………1 

http://www.fmrib.ox.ac.uk/fsl/�


where k is a nuisance parameter, in self-similar scale (linear portion in the logarithmic 

function). 

In this study we estimated FD values of the three WM features (shape 

representations): skeleton, surface and general structure. Skeleton FD was calculated by 

counting the boxes needed to cover the WM skeleton; surface FD was evaluated by 

counting the boxes needed to cover the boundary of WM/GM interface; general structure 

FD was estimated by counting the boxes needed to cover all the WM voxels (which 

included skeleton and surface). The skeleton (consists of central line of each WM 

tract/bundle), also known as WM interior structure that preserves the topological and 

geometric information of the WM. The skeleton configuration represents the interior 

structure complexity of the brain WM. The surface structure consists of voxels at the 

boundary i.e. GM/WM interface, reflecting the shape of the gyral and sulcal convolutions 

in the GM/WM interface. General structure comprises of all WM voxels (including 

voxels in the GM/WM boundary and skeleton in WM segmented images, representing 

the volume changes. Because the WM skeleton, general structure and surface represent 

three different aspects of brain WM structure, it was expected that they may serve as 

more comprehensive and distinct shape complexity measures to evaluate the WM 

structure shape/structure changes brought out by pathophysiological mechanisms of TBI.  

DTI Analysis 

DTI images were processed using FSL openware (http://fsl.fmrib.ox.ac.uk/fsl). 

The processing steps include correction for eddy current distortion effects. The b-matrix 

was rotated after eddy current distortion effects in order to preserve correct orientation 

http://fsl.fmrib.ox.ac.uk/fsl�


information. Corrected images were then fitted to the diffusion tensor model using “dtifit” 

routine and maps of diffusion tensor metrics namely fractional anisotropy (FA), mean 

diffusivity (MD), axial diffusivity (AD) radial diffusivity (RD) were obtained.  Whole 

brain, right and left hemisphere WM masks obtained by segmenting T1-weighted  images 

were then multiplied (after registering with the DTI images) with FA,MD,AD and RD 

maps.Mode values of whole brain, right and left hemisphere FA, MD, AD and RD were 

measured from the histogram plots of each subject. Statistical analysis was performed 

using either T-test or Mann-Whitney U test depending on data meeting the assumptions 

of normality. 

White matter intracranial volume analysis  

Whole brain (intra-cranial) white matter, grey matter and cerebrospinal fluid volumes 

were obtained for both control and TBI patients using SPM software.  A T-test was 

performed to compare the difference in whole brain WM and cerebrospinal fluid (CSF) 

intracranial volume between TBI and controls. 

FreeSurfer based automated image analysis 

Cortical reconstruction and volumetric segmentation were performed with the 

FreeSurfer image analysis version 4.0.4 (Athinoula A. Martinos Center for Biomedical 

Imaging, c2005; http://surfer.nmr.mgh.harvard.edu.libproxy2.umdnj.edu/). Details 

described elsewhere (Fischl et al., 2004a and Jovicich et al., 2009). Briefly, this 

processing includes the removal of non-brain tissue using a hybrid watershed/surface 

deformation procedure, automated Talairach transformation, segmentation of the 

subcortical WM and deep GM volumetric structures (Fischl et al., 2002 and Fischl et al., 



2004a), intensity normalization (Sled et al., 1998) tessellation of the GM–WM boundary, 

automated topology correction (Fischl et al., 2001 and Segonne et al., 2007), and surface 

deformation following intensity gradients to optimally place the GM/WM and GM/CSF 

borders at the location where the greatest shift in intensity defines the transition to the 

other tissue class (Dale et al., 1999, Dale and Sereno, 1993 and Fischl and Dale, 2000). 

The resulting cortical models were registered to a spherical atlas, utilizing individual 

cortical folding patterns to match cortical geometry across subjects (Fischl et al., 1999) 

The cerebral cortex was parcellated into regions based on gyral and sulcal structure 

(Desikan et al., 2006 and Fischl et al., 2004b). Results for each subject were visually 

inspected to ensure accuracy of registration, skull stripping, segmentation, and cortical 

surface reconstruction.  

Both intensity and continuity information from the entire 3D MR volume were 

used to produce representations of cortical thickness, where thickness was measured as 

the closest distance from GM-WM to GM-CSF boundary at each vertex on the tessellated 

surface (Fischl and Dale, 2000). A p value of <0.05 corrected for multiple comparisons 

using a false discovery rate (FDR) was considered the level of significance for measures 

cortical thickness, cortical area and cortical volume. 

Statistical Analysis 

IBM SPSS for Windows version 21 (Armonk, New York) was used for database and 

statistical analysis. A two-tailed unpaired Student’s t-tests or Fisher’s exact test was used 

to compare demographic, neuropsychological and FD findings between healthy controls 

and patients with TBI. To investigate the correlation between FD and cognitive variables, 

univariate correlations between continuous variables were assessed using the Pearson 



correlation coefficient and those between discrete variables were assessed with the 

Spearman rank correlation coefficient. A stepwise linear regression analysis was 

performed to assess the relative contributions of the main demographic (age, education 

and sex) and WM parameters (FD, DTI parameters) in predicting the cognitive domain 

index scores. Forward and backward stepwise analyses were conducted using the Wald 

statistic as a criterion, with P = .05 for entry and P = .10 for removal.  

Results 

 

Standard magnetic resonance imaging 

Among the patients with TBI all had moderate to severe TBI according to GCS. T1 

imaging was normal in 2 patients (11.7%) and T2* normal in 3 patients (17.6%). Definite 

and possible intraparenchymal microbleeds indicative of diffuse axonal injury were found 

in 35% of the patients (Microbleed group: 6 patients, 5 males, mean age 28.2 ± 6.9 years, 

average time since injury 26 months; Non-microbleed group: 11 patients, 8 males, mean 

age 30.2 ± 14.5 years, average time since injury 25 months). There was no group 

difference for age, gender and duration of TBI. Microbleeds were mainly found in frontal 

and temporal white matter bilaterally.  

Neuropsychological testing 

Group means are presented for the each neuropsychological test in Table 2. Mean 

cognitive domain scores are also presented in Fig. 2. Patients with TBI differed from the 

controls on all cognitive domains - memory/learning (p=0.02), executive function (p = 

0.001), attention (p = 0.001) and processing speed (p=0.002).  



Fractal dimension and demographic parameters 

To understand the relation between FD parameters with age and education we ran a series 

of correlation analysis. There was no relation between age and any of the FD parameters 

(surface, general structure or skeleton). However, education in years was positively 

correlated with whole brain skeleton FD values (r=0.42, p=0.03), which meant higher 

education increased white matter complexity. There was no difference in any of the FD 

parameters (surface, general structure or skeleton) between males and females (t tests, 

p>0.05). 

Fractal dimension changes in TBI 

Significant (p < 0.05) reduction were observed in the skeleton FD values of right (TBI - 

2.24 ± 0.06; HC - 2.30 ± 0.06 (Mean±SD)) and left hemispheres (TBI - 2.25 ± 0.04; HC - 

2.30 ± 0.05 (Mean±SD)) with TBI group showing lower structural complexity compared to 

controls. This is shown in Figure 1. However; we failed to observe any significant 

difference in surface or general structure FD values between TBI and controls.    

Relation between intraparenchymal microbleed and fractal dimension 

Significant (p < 0.05) reduction were observed in the skeleton FD values of right 

(Nonmicrobleed - 2.28 ± 0.05; Microbleed - 2.19 ± 0.04 (Mean±SD)) and left 

hemispheres (Nonmicrobleed - 2.27 ± 0.03; Microbleed - 2.21 ± 0.05 (Mean±SD))  with 

patients with microbleeds showing lower structural complexity compared to TBI patients 

without microbleeds. However, we failed to observe any significant difference in surface 

or general structure FD values between microbleed and nonmicrobleed group.    



DTI  

No significant differences in FA, MD or RD values were observed between TBI and 

controls either in the whole brain or on the right or left hemisphere WM tissue. The only 

significant difference was observed in AD values in left hemisphere (p=0.03) and right 

hemisphere (p<0.05). 

White matter intracranial volume changes 

Whole brain WM intracranial volume (in units of ml) was slightly reduced in TBI 

patients (mean =512.36 ml) when compared to controls (mean =514.43 ml) but did not 

reach statistical significance. On the other hand CSF volume was found to be 

significantly (p<0.001) increased in TBI (mean = 271.43 ml) when compared to controls 

(mean = 218.57 ml). 

Grey matter volume and cortical thickness changes   

No significant difference in either grey matter volume or cortical thickness or cortical 

area was observed in any of the brain regions between TBI and healthy controls. Among 

the deep grey matter structures, however, right thalamus (p=0.01) was significantly 

atrophied in the TBI group.  

Relationship between white matter shape change and neuropsychological function in 

TBI 

To examine the contribution of white matter shape change (skeleton FD values)  in 

neuropsychological outcome in TBI, hierarchical linear regressions were performed, 

separately for each of four cognitive domains: executive function, memory, attention and 



processing speed. The education was not included in the first step as it was highly 

correlated with FD-skeleton.  

For executive function domain, the model explained 63% of variance (F6,18 = 5.12, p = 

0.003).  The FD-skeleton accounted for additional 19.5% of variance beyond 

demographic and DTI variables (p = 0.02). 

For processing speed, the model explained 47% of variance (F5,19 = 3.32, p = 0.02).  The 

FD-skeleton accounted for additional 22% of variance beyond demographic and DTI 

variables (p = 0.03). 

For memory domain, the model explained 57% of variance (F6,18 = 3.99, p = 0.01).  The 

FD-skeleton accounted for additional 13.1% of variance beyond demographic and DTI 

variables (p <0.1), which was borderline significant. 

For attention, , the model explained 43% of variance (F6,18 = 2.33, p = 0.07).  The FD-

skeleton accounted for additional 12.1% of variance beyond demographic and DTI 

variables (p <0.1), which was not significant. For this domain the DTI contributed 

significantly (ΔR2=0.24, p=0.04) 

 

 

Discussion 
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Introduction 
 
Recent developments in network connectivity have broadened the scope of 

investigation in the neurosciences, providing unparalleled opportunity to examine whole-

brain communication.  One applied mathematical approach, graph theory, has received 

significant recent attention in literatures using functional brain imaging methods (e.g., 

functional MRI) to examine the flow of information in dynamical networks.   While graph 

theory has a much longer history in the areas of topology (refs) and social networks 

(refs), in its relatively brief application to the neurosciences, this approach has already 

influenced how we conceptualize network communication.  For example, in non-human 

primates (refs) and humans (refs), graph theory approaches have demonstrated that 

neural systems hold “small-world” properties characterized by high “clustering”, or 

extensive connectivity within groups of neural nodes while also retaining short net 

communication paths between nodes.  These network characteristics afford specialized 

processing of information locally (refs) while permitting large scale information transfer 

throughout the network (refs).  It is a goal in the current study to apply these methods in 

order to better understand the systems-level network changes occurring after severe 

traumatic brain injury (TBI), where significant neurological disruption is evident.  We 

anticipate that whole-brain connectivity patterns will provide previously unavailable 

information about how neural systems adapt to catastrophic disruption. 

 

 

 

 



Clinical network neuroscience 

In the clinical neurosciences it remains an important goal to understand the basic brain 

changes associated with neurological disruption and the implications these changes 

have for behavioral deficit and recovery trajectory. In the systems neurosciences, there 

has been widespread use of functional imaging methods to examine task-related brain 

changes (e.g., mean signal differences) in localized regions of the brain.  In several 

literatures examining brain injury and disease (e.g., TBI, multiple sclerosis), several 

consistent findings have emerged including increased involvement of neural resources 

near sites of injury (refs) and in regions that may share functional responsibilities (e.g., 

homologous regions in the contralateral hemisphere, refs).   

With the more recent emphasis of connectivity modeling in the systems 

neurosciences, the scope of investigations in neurological disorders has mirrored this 

change; there is an expanding literature documenting the network alterations associated 

with brain injury and disease (see xx for review).  Several studies to date have 

demonstrated that neurological disruption results in altered connectivity in large scale 

neural networks (refs) including evidence that even focal injury has widespread 

consequences for broader network functioning (ref-sharp? Or D’Esposito?) .  For 

example, both focal and diffuse injuries observed in TBI may disrupt distal connectivity 

which is a distinct and crucial feature to the small-world topology observed in efficient 

neural systems (Nakamura et al., 2009; Pandit et al., 2013).  As a paradoxical 

consequence to this network disruption, we have proposed that a primary response in 

dynamical systems is hyperconnectivity within parts of the network (see Hillary et al., 

2009; Hillary et al., in review).   



In TBI, much remains to be determined with respect to network dynamics early 

after the injury, including the timeline for connectivity alterations and the regions within 

the network most sensitive to disruption. We anticipate that hyperconnectivity 

observable within the typical regions serving as “hubs” (or “rich club”, the most highly 

connected brain regions in neural systems; see van den Heuvel et al., 2012) have 

important consequences for network functioning and recovery.  Work outside the 

neurosciences has demonstrated that small-world topology is particularly resilient to 

non-selective or “random” connectivity loss (see Albert & Barabasi, 200x), but that 

targeted “attack” on critical network hubs can lead to catastrophic consequences for 

network communication.  For example, the focused loss of anterior-posterior 

connectivity (e.g., frontal to PCC to hippocampal connections) in Alzheimer’s has 

devastating consequences for functioning in the areas of memory, spatial navigation, 

and maintaining semantic associations (see xxxx).  The network disruption occurring in 

TBI is, nearly by definition, idiosyncratic, but we anticipate that injury resulting in 

connectivity loss to network hubs should have more widespread consequences for 

functioning.  Thus, we anticipate that selective connectivity loss in the rich club and 

failure to bring specific hubs online from 3-6 months will show the greatest behavioral 

consequence after TBI. In order to examine the influence of TBI on network hubs, we 

will make use of functional MRI and graph theory to examine whole-brain connectivity in 

severe TBI during a critical window of recovery. 

 

Study Hypotheses: 

 



Hypothesis 1: We propose that the most common response to moderate and severe TBI 

is hyperconnectivity. We anticipate this results in increased number and strength of 

connections during this window of recovery when compared to a healthy control sample.  

 

Hypothesis 2:  There is evidence that disruption of network hubs can have catastrophic 

results for network functioning (see Albert & Barabasi, 2000).  For this reason, we 

anticipate that individuals showing the least connectivity in the “rich club” or regions 

commonly considered to be indispensable network hubs (i.e., PCC, insula, and DLPFC) 

will show the greatest impairment of functioning. 

 

Method 
 
Materials and Methods 

Subjects 

The participants included 20 participants with 

moderate and severe TBI between the ages 

of 19 and 56 years and 15 healthy adults of 

comparable age and education.  All study 

participants underwent two MRI scanning 

sessions separated by three months.  For the 

TBI sample, data were acquired at 3 and 6 months after emerging from posttraumatic 

amnesia (PTA).  TBI severity was defined using the Glasgow Coma Scale (GCS) in the 

first 24 hours after injury (Teasdale and Jennett 1974) and GCS scores from 3-8 were 

considered “severe” and scores from 9-12 were considered moderate.  One individual 



with a GCS score of 13 was included because acute neuroimaging findings were 

positive.  Participants were excluded if they remain in treatment for concomitant spinal 

cord injuries, orthopedic injury, or other injury making it difficult to remain still in the MRI 

environment. Patients with focal contusions and hemorrhagic injuries were included 

unless injuries required neurosurgical intervention and removal of tissue resulting in 

gross derangement of neuroanatomy. The HC sample of comparable age was enrolled 

in the study and underwent two MRI scans separated by approximately three months 

(mean = 90.2 days, SD =23.8 ).   

 

Focal lesions: There are often whole-brain structural and functional brain changes evne 

in cases of TBI where the primary injury is isolated (e.g., subdural hematoma),  (Büki 

and Povlishock 2006; Fujiwara et al. 2008) and diffuse axonal injury (DAI) is a nearly 

universal finding (Wu et al. 2004).  Moreover, focal injuries can have widespread 

consequences for brain function (…desposito, 2012).  For these reasons, focal injury 

was not an exclusionary criteria in the current study, unless the injury was so severe so 

as to require neurosurgical intervention (i.e., (i.e., craniotomy) and/or gross 

derangement of neuroanatomy.  Inclusion of cases where identifiable injruy was evident 

permitted direct examination of TBI as it naturally occurs even in brain regions directly 

influenced by injury. 

 

MRI procedure and Data acquisition 

Data were acquired using a Philips Achieva 3.0 T system (Philips Medical Systems,  

The Netherlands) with a 6-channel head coil or a Siemens Magnetom Trio 3.0 T system 



(Siemens Medical Solutions, Germany) with a 8-channel head coil both housed in the 

Department of Radiology, Hershey Medical Center, Hershey, PA.  Between time point 

subject data were always collected on the same scanner to maximize reliability.  

Subjects were made aware of the importance of minimizing head movement during MRI 

scanning and trials containing significant motion were discontinued or repeated.  High 

resolution brain anatomical images with isotropic spatial resolution of 1.2 mm × 1.2 mm 

× 1.2 mm were acquired using an MPRAGE sequence: 468.45 ms/ 16.1 ms / 18º, 

repetition time (TR)/echo time (TE)/flip angle (FA), 250 × 200 mm2 field of view (FOV), 

and a 256 × 180 acquisition matrix.  Echo planar imaging (EPI) was used for functional 

imaging. Imaging parameters for EPI were 2000 ms/30 ms/89º, TR/TE/FA and a 230 × 

230 mm2 FOV, 128 × 128 acquisition matrix.   

 

Data processing and region parcellation: 

Figure 1 presents the processing stream for fMRI time series analysis. Initial steps of 

the processing stream involve pre-processing including realignment of the functional 

time series to gather movement parameters for correction, coregistration of the EPI data 

with a high resolution T1 image, and spatial normalization and smoothing (see Figure 1; 

consistent with Hillary et al., 2011; Medaglia et al., 2012).   

 

Nuisance signal removal and connectivity:  To obtain the “rest” fMRI data, we used a single 

142 volume run of a simple working memory task (1-back; refence). In preparation for graph 

theory analyses, “nuisance signal” was removed from each time series using the Conn 

toolbox (Whitfield-Gabrieli &Nieto-Castonon , 2012).  To address signal from the CSF 



and white matter, masks in these regions were created and statistically removed from 

the time series using univariate regression.  There were three distinct task-onset timing 

parameters for the n-back, so as a first step, subject-specific task-onset vectors were 

entered into the regression using the Conn Toolbox (see Gabrielie-Whitfield & ) and 

task related signal was removed at the individual level first.  In addition, six subject 

movement parameters were input as a temporal confound and regressed at each voxel 

across the time series (see Behzadi et al., 2007) and a band-pass filter was applied to 

the resulting time series.  After all regressors of no interest were removed, the residuals from 

the deconvolution were saved and used as the “resting-state” data. 

 

Region of interest determination:  In neural network modeling, possibly the most 

important early decision is determining the nodes, or brain regions, that will contribute to 

the model. In fact, recent efforts to examine “small-world” properties in TBI have used 

20-30 anatomically-determined ROIs [29, 30] within unweighted (i.e., binary) networks 

and in large-scale network analyses, the characterization of the network ndoes has a 

direct influence on the graph properties observed (see 32, 41)..  Separately, anatomical 

ROIs are often used to avoid biased data selection and circularity in data interpretation 

(see 42); yet these approaches aggregate a number of functionally distinct oscillatory 

signals within each ROI.  For example, Brodmann’s area 46 in PFC is one of the largest 

ROIs in anatomical atlases and maintains critical roles in a number of functions, yet in 

the absence of additional parcellation, the ~600 2mm isotropic voxels from this region 

are averaged and treated as a single homogenous signal. To address these concerns, 

we use a data-driven approach for ROI parcellation through the use of spatial 

independent component analysis (ICA; 43, 44). In this way, each ROI is represented as 



a functional signature as opposed to an anatomically bound average of many functional 

signals (see 45). Moreover, in studies using fMRI to examine neurotrauma there is 

concern regarding the influence of brain lesions on the BOLD signal (see 46) and this is 

particularly problematic in local areas of hemorrhage where blood products cause 

susceptibility artifact and local signal attenuation (see 47, 48). However, the ICA 

procedure implemented here can isolate the effects of local signal drop-out as a 

“component” and model these data or remove the signal during “denoising and 

nuisance” identification.  

This approach addresses basic differences in brain morphology and local signal drop-

out due to the effects of TBI early after injury.  Finally, we will use a spatially constrained 

ICA (scICA) which provides a hybrid approach enabling us to focus on specific 

subnetworks of interest in this paper (i.e., the rich club) by providing a set of masks or 

images to the algorithm while also allowing the data to refine the resulting component 

(see 49). Overall, we anticipate that the approaches used here provide safeguards for 

conservative data analysis and interpretation while retaining optimal sensitivity to 

dynamic network effects over time in TBI. 

 

Graph theory analysis: 

Procedure for Correlation Matrix 

A representative network graph was created using the data parcellation approach 

described above, such that each “node” in the graph represented a resultant component  

from whole-brain ICA (see 75, 94). The pair wise correlations amongst all component 

time series was determined and, after thresholding with false discovery rate, 



components with statistically significant correlations were joined by an edge in the 

graph, weighted by the value of the corresponding correlation (see 38 for similar 

method). Graph indices were calculated for the weighted network.  

Graph theory was applied to investigate two levels of analysis.  For the first level 

of analysis we test Hypothesis 1 using whole brain analyses documenting graph 

properties.  Basic graph metrics of interest include : 1) the degree distribution, i.e. the 

histogram of the number of connections per node, 2) total number and strength of 

network connections, 3) clustering coefficient (i.e. the density of triangles in the network 

graph) for a) frontal systems and b) whole brain, and 4) average global path length as 

well as local path length for specified regions of interest.  For the second level of 

analysis we test Hypothesis 2 by examining changes in regional connectivity in the most 

highly connected network nodes from 3 to 6 months post injury.  The ROIs included are 

based upon prior work establishing the most critical and highly connected regions in the 

brain (the Rich Club):  precuneus, superior frontal cortex, superior parietal cortex, 

anterior and posterior cingulate cortex, and the insula (van den Heuvel et la., 2012);  

(Fig. 1). 

 

Structural MRI analysis:  In order to examine the morphometric changes associated with 

the Early and Late TBI subgroups, voxel-based morphometry (VBM) analysis was 

conducted using the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm/).  VBM was used 

to quantify the white, gray and CSF compartments for all subjects.  Gray matter 

volumes where then used as covariates to determine if connectivity differences between 

groups were influenced by volume change. First, T1 images were segmented into gray 

http://dbm.neuro.uni-jena.de/vbm/�


matter, white matter, and CSF volumes.  These segmented images from each individual 

were then aligned to a template brain (Montreal Neurological Institute (MNI) space) 

during a normalization step.   

 

Cognitive Assessment:  

The most common cognitive deficits following TBI are in the areas of working memory 

and processing speed (see Demaree et al., 2000; Hillary et al., 2009) and common 

deficits in abnormal aging are episodic memory deficits (see xxx).  All participants 

completed a brief battery of tests examining these areas of functioning to examine: 1) 

areas of cognitive deficit compared to a HC sample, 2) change from Time 1 to Time 2 in 

TBI, and 3) relationship between connectivity changes and cognitive deficit. To assess 

working memory and processing speed we used the Digit Symbol Modalities Test[78] 

and the visual search and attention task, the Stroop task[79, 80], and select tests from the 

Wechsler Adult Intelligence Scale –Fourth Edition (Digit Span and Letter Number 

Sequencing for WM; Coding and Cancellation for speed)[81]. In addition, verbal episodic 

memory is the most common deficit observed in DAT (see Summers&Saunders) and 

this was assessed using the Hopkins Verbal Learning Test (HVLT).  Consistent with  

Steffener & Stern (2012)[85], cognitive reserve will be determined using the Vocabulary 

subtest from the WAIS-IV, education, socioeconomic status, employment.   

 

 

 

 



 

 

 

 

 

 

 

Results 

 

Demographic and Neuropsychological Data 

Tables 1 and 2 provide the demographic information and neuropsychological 

information for the two samples. 

 

Graph Theory Results: global graph metrics 

The data in Table 3 support a hyperconnectivity hypothesis during this critical recovery window 

characterized by increased number and strength of connections globally (all significantly greater 

in TBI compared to HCs, p<.05).   

 

Graph theory Results: connectivity within the “Rich Club” 

Discussion 

We used functional MRI and graph theory methods to examine whole brain connectivity 

changes during a critical recovery window after moderate and severe TBI.  There was support 

for Hypothesis 1 that the brain hyperconnects during early recovery. 

 



There were also significant changes in clustering coefficient between 3 and 6 months post injury 

and we anticipate that data collection at 1-year post injury will permit observation of these 

networks after greater recovery and network stabilization. 

 

 

 



Tables 
 
 

Table 1: Demographic information for both samples 

 

TBI 
Mean (sd) Healthy Controls 

Mean (sd)  
Age (years) 29.1 (10.4) 28.8 (11.9)  
Education (years) 12.5 (1.5) 13.4 (1.7)  
Gender 19 M, 3 F 9 F, 6 M  
Time-post injury 100.4 (26.6) -  
GCS 5.7 (4.3) -  
    

 
 

Table 2: Neuropsychological performance 

 

TBI mean (sd) 
3 months  
 

TBI mean (sd) 
6 months  
 

Healthy 
Controls 
Mean (sd) 

Digit span    
Stroop    
VSAT    
HVLT    

 
 

Table 2: Graph properties in TBI and HC groups 

 
Table 2: Hyperconnectivity after TBI 
indexed as increased number and strength 
of connections.  
*= statistically significant difference 

3 months after TBI 
Mean (sd) 

6 months after 
TBI 
Mean (sd) 

Healthy 
Controls 
Mean (sd) 

Total Number of Connections 
341.93 (70.38)* 

333.93 (47.96) 
282.19 (55.89) 
* 

Total Strength of Connections 104.69 (23.97)* 101.54 (15.79) 84.72 (18.13)* 
Average (Weighted) Node Degree 2.72 (0.62) * 2.64 (0.41) 2.20 (0.47) * 
Average (Unweighted) Node Degree 9.88 (1.83)* 9.67 (1.35) 8.33 (1.45)* 
Average (Weighted) Clustering 
Coefficient 

0.082 (0.032)* 
0.069 (0.008)* 0.065 (0.011) 

Average (Unweighted) Clustering 
Coefficient 

0.24 (0.04) 
0.22 (0.03) 0.21 (0.03) 
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