

Development of a Testing Method for Terpenes in Cannabis Utilizing Headspace Solid Phase Microextraction-Gas **Chromatography-Mass Spectrometry**

Isabel Bayas, Linbin Zhong, Shawn O'Leary, Zhihua (Tina) Fan, Daniel Wene

New Jersey Department of Health, Public Health and Environmental Laboratories

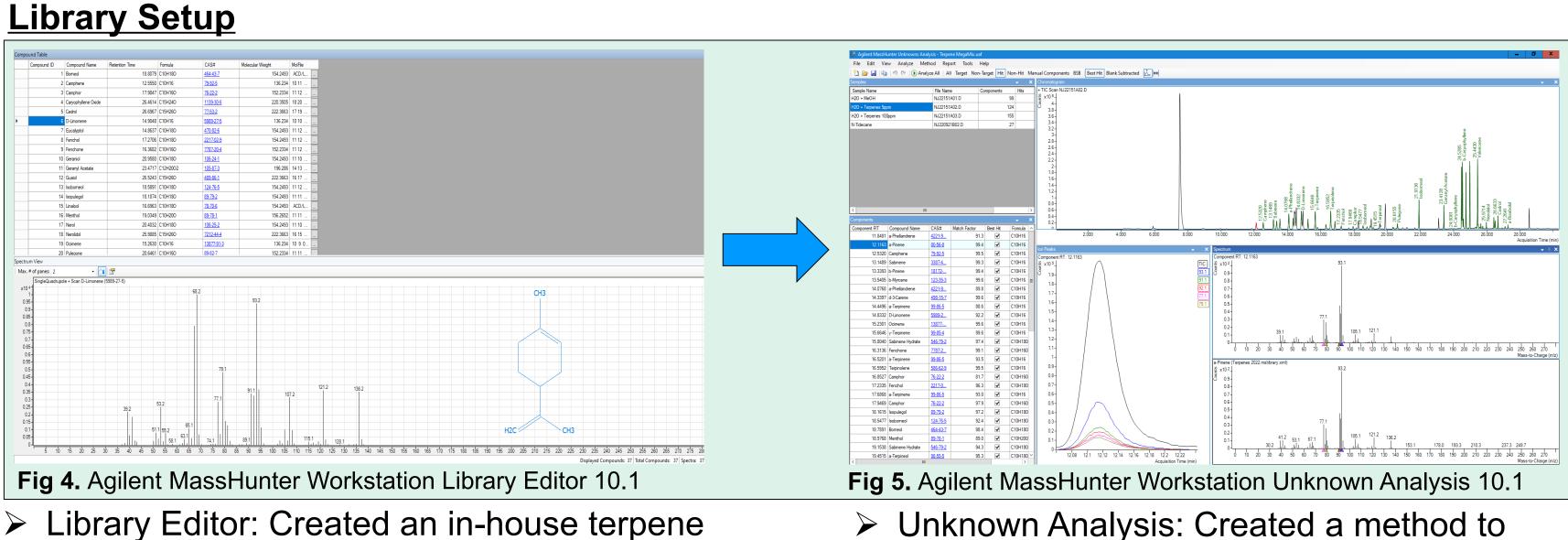
Environmental and Chemical Laboratory Services, Ewing, NJ 08628

Introduction

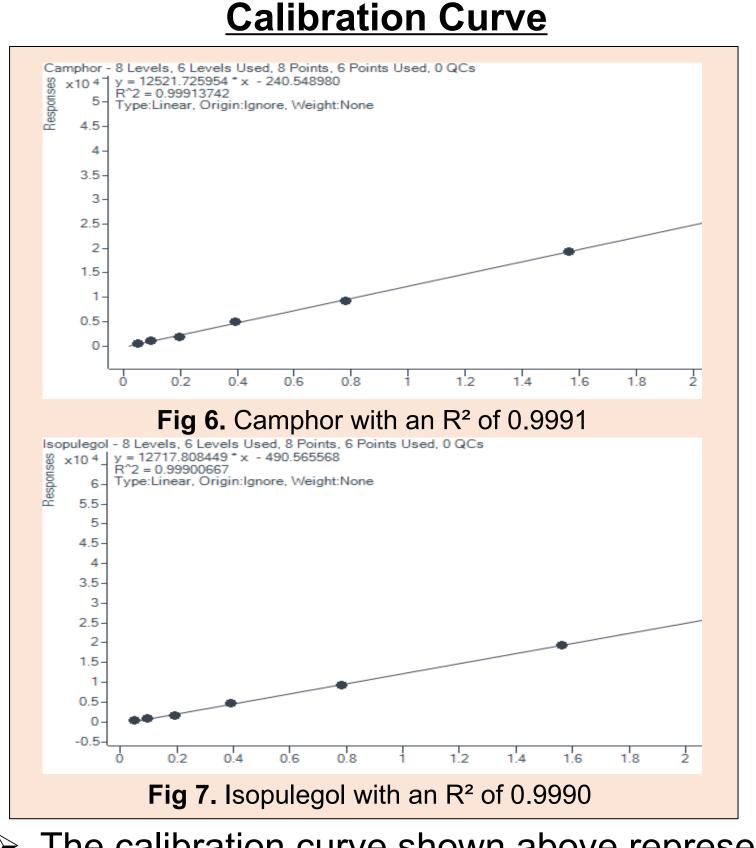
Terpenes are volatile compounds that provide the aromas and flavors that naturally exist within flora and fauna found globally. Research on terpenes has been on a rise as studies have indicated medical properties linked to these active chemical compounds. Primarily in cannabis products, certain states such as New Jersey have regulated terpenes to maximize the entourage effect while preventing adulteration. The New Jersey Department of Health (NJDOH) is developing a method to detect 32 terpenes in cannabis utilizing Headspace Solid Phase Microextraction Gas Chromatography Mass Spectrometer (HS-SPMEGC/MS) by using a published app note as reference¹. We modified the method conditions including the sample introduction into GC/MS, vial and injection penetration as well as run time, and the addition of 15 terpenes. The optimized method reduces matrix interferences and improves analyte recoveries. The analytical sensitivity for the targeted analytes in the method has an limit of detection (LOD) between 5.00-15.1 ng/mL and a limit of quantitation (LOQ) below 49.0 ng/mL. The linear calibration curve has a range between 49.0-3125 ng/mL with an R² value ≥ 0.980. The optimized method will be validated by evaluating the accuracy, precision, analytical specificity, and complex interferences in cannabis. The validated method will be applied to measure terpene concentrations and sample stability in cannabis plant material and then be expanded for other matrices in the future.

Method

Fig 1. HS-SPME GC/MS Instrument


Sample Preparation

- Calibrators: Pipette 10 μL of a 5-ppm terpene mixture and 2000 μL of deionized water into a 10 mL headspace vial.
- Samples: Place 0.1 g of homogenized cannabis and 2000 μL of de-ionized water into a 10 mL headspace vial.


LIC COME COME D

Headspace SPME	Value	Agilent GC	Value	Agilent MS	Value	
SPME Fiber Phase	80/10 µm DVB/CAR-	Inlet Liner	Inert, splitless, straight 0.75 mm	Transfer Line	280 °C SCAN	
	WR/PDMS	Injection Mode/	Splitless/ 270 °C			
Incubation Temperature	40 °C	Temp.	1) 60 °C	Acquisition Mode		
Incubation Time	5 min	Oven Program	(2-min hold) 2) 5 °C min to 140	Solvent Delay	0 min	
Agitator Speed	300 rpm	o von i rogium	°C (1-min hold) 3) 15 °C/min to 250	App. Note	(8 min)	
Agitator ON/ OFF time	5s/ 2s		°C (4-min hold)	Onin Frantsu	4	
Vial Penetration	22 mm	Equilibration Time	0.5 min	Gain Factor	1	
App. Note	(40 mm)	Control Mode	1 mL/min		280 °C	
Extraction Time	20 min		Agilent J&W DB-	MS Source		
Injection Penetration App. Note	54 mm (40 mm)	Column	1ms, 60 m, 0.25 mm, 0.25 µm GC column	Temperature		
Desorption Time	180s	Septum Purge Flow Mode	3 mL/min	MS Quad	150 °C	
Maestro Run Time App. Note	40.33 min (30 min)	Purge flow to Split Vent	15 mL/min at 0.35 min	Temperature	100	
Table 1. Parameters of HeadspaceSolid Phase Microextraction		Table 2. Parameters of Gas Chromatography		Table 3. Parameters of Single Quadrupole Mass Spectrometers		

Results

- Library Editor: Created an in-house terpene mass spectral library
- Cayman Chemicals & Millipore Sigma standards were used
- Included in software:
 - ✓ Molecular Formula and Weight
 - ✓ Chemical Structure
 - ✓ Retention Time (RT)
 - ✓ CAS # and more.

Blank and Analyte Chromatograms Fig 8. Terpinolene S/N ratio is 36.08 16.4 16.45 16.5 16.55 16.6 16.65 16.7 16.75 Fig 9. Linalool S/N ratio is 38.73

identify 32 terpenes at ng/mL levels

Molecular Formula & RT)

Included in software:

✓ Match Factor

✓ TIC Analysis

✓ Best Hit and more.

Restek Terpene Megamix 1 & 2 were used

✓ Components similar to Library Editor (e.g.,

- > The calibration curve shown above represents the linearity of all analytes exceeding the proposed coefficient of determination ≥ 0.980 within the ranges of 49.0 ng/mL to 3125 ng/mL.
- The chromatograms shown above have a baseline (left) and a peak symmetry (right) representative to all analytes for a confident signal detection

Terpenes in Cannabis	Molecular Formula	RT min.	LOD ng/mL	LOQ ng/mL	R ²	Terpenes in Cannabis	Molecular Formula	RT min.	LOD ng/mL	LOQ ng/mL	R ²
-Pinene	C ₁₀ H ₁₆	12.1	11.6	34.7	0.981	Fenchol	C ₁₀ H ₁₈ O	17.2	15.1	45.2	0.999
amphene	C ₁₀ H ₁₆	12.5	11.0	33.1	0.983	Camphor	C ₁₀ H ₁₆ O	18.0	13.1	39.3	0.999
abinene	C ₁₀ H ₁₆	13.2	12.4	37.2	0.990	Isopulegol	C ₁₀ H ₁₈ O	18.2	14.0	41.9	0.999
-Pinene	C ₁₀ H ₁₆	13.4	6.40	19.3	0.984	Isoborneol	C ₁₀ H ₁₈ O	18.6	9.90	29.7	0.998
-Myrcene	C ₁₀ H ₁₆	13.5	11.9	35.7	0.997	Borneol	C ₁₀ H ₁₈ O	18.8	10.8	32.5	0.996
-Phellandrene	C ₁₀ H ₁₆	14.1	13.4	40.2	0.991	α-Terpineol	C ₁₀ H ₁₈ O	19.5	13.9	41.8	0.996
3-Carene	C ₁₀ H ₁₆	14.4	8.10	24.4	0.981	Pulegone	C ₁₀ H ₁₆ O	20.6	7.00	21.0	0.996
-Terpinene	C ₁₀ H ₁₆	14.5	14.1	42.3	0.995	Geranyl acetate	$C_{12}H_{20}O_2$	23.5	10.3	30.8	0.994
ucalyptol	C ₁₀ H ₁₈ O	14.8	13.7	41.0	0.999	α-Cedrene	C ₁₅ H ₂₄	24.5	5.00	15.0	0.981
-Limonene	C ₁₀ H ₁₆	14.9	8.70	26.2	0.984	β-Caryophyllene	C ₁₅ H ₂₄	24.6	13.8	41.5	0.998
cimene	C ₁₀ H ₁₆	15.2	12.4	37.1	0.994	α-Humulene	C ₁₅ H ₂₄	25.0	14.4	43.3	0.997
-Terpinene	C ₁₀ H ₁₆	15.7	11.1	33.4	0.991	Valencene	C ₁₅ H ₂₄	25.5	14.2	42.7	0.995
Sabinene hydrate	C ₁₀ H ₁₈ O	15.8	14.9	44.8	1.000	Nerolidol	C ₁₅ H ₂₆ O	26.0	14.2	42.5	0.996
enchone	C ₁₀ H ₁₆ O	16.3	13.8	41.4	0.999	Caryophyllene oxide	C ₁₅ H ₂₄ O	26.5	10.4	31.2	0.999
erpinolene	C ₁₀ H ₁₆	16.6	11.0	33.0	0.992	Guaiol	C ₁₅ H ₂₆ O	26.5	14.4	43.2	0.999
inalool	C ₁₀ H ₁₈ O	16.6	5.00	14.9	0.982	α-Bisabolol	C ₁₅ H ₂₆ O	27.3	9.60	28.9	0.985

Conclusions

- An HS-SPME GC/MS method was setup to detect 32 terpenes in cannabis based on Agilent's Application note (5994-1411EN).
- The quantitative method was modified by optimizing:
 - ✓ HS-SPME parameters used to efficiently adsorb analytes
 - ✓ GC conditions by using a splitless injection mode ✓ MS parameters by using a SCAN acquisition mode
- > An in-house spectral library was created shown in **figure 4** and **5**.
- \triangleright Reportable range was achieved with an R² \ge 0.980 for all analytes, examples shown in **figure 6** and **7**.
- Separation of the analytes were achieved as represented in figure 8 and 9.
- Excellent analytical sensitivities were achieved as represented in table 4. ✓ LOD/LOQ values all below the lowest calibrator of 0.49 ng/mL

Future Plans

- ➤ Incorporate five additional terpenes (Menthol, Nerol, Geraniol, Cedrol, and β-Eudesmol) into method and library.
- > Continue to improve the method sensitivity and selectivity by optimizing:
 - 1. HS-SPME GC/MS parameters
 - 2. Sample preparation procedures
- ➤ Validate the method by following ISO/IEC 17025
 - ✓ ISO/IEC 17025 accreditation: General requirements for the competence of testing and calibration laboratories (ISO®. 2017)².
- > Expand the method to other matrices under cannabis (e.g., concentrates and edibles).

References

- 1. Westland, Jessica. "SPME-GC/MS of Selected Terpenes Using Agilent DVB/CAR-WR/PDMS SPME Fiber." Agilent Technologies, Inc., 8 Oct. 2019, https://www.agilent.com/cs/library/applications/application- selected-terpenes-by-spme%20fiber-dvbcar-wrpdms 5994-1411enagilent.pdf.
- 2. "ISO International Organization for Standardization." ISO/IEC 17025, ISO, Oct. 2017,

https://www.iso.org/files/live/sites/isoorg/files/store/en/PUB100424.pdf

Acknowledgements

- > Thank you to each colleague in the NJDOH-Chemical Threat Laboratory for their endless support.
- > Thank you to the Cannabis Science Conference Spring 2023 for accepting and allowing me to present this poster.
- > Thank you to the Association of Public Health Laboratories (APHL) for allowing me to participate and provide the necessary funds for this research program.

