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Abstract

Spinal ischemia is a frequent cause of paralysis. Here we explore the biological basis of ischemic
preconditioning (IPC), the phenomenon in which a brief period of ischemia can confer protection
against subsequent longer and normally injurious ischemia, to identify mediators of endogenous
neuroprotection. Using microarrays, we examined gene expression changes induced by brief
spinal ischemia using a rat balloon occlusion model. Among the nearly 5,000 genes assayed,
relatively few showed two-fold changes, and three groups stood out prominently. The first group
codes for heat shock protein 70, which is induced selectively and robustly at 30 min after brief
ischemia, with inc;eases up to 100-fold. A second group encodes metallothioneins 1 and 2.

These mRNAs are increased at 6 and 12 hrs after ischemia, up to 12-fold. The third group codes
fora group of immediate-early genes not previously associated with spinal ischemia: B-cell
translocation gene 2 (BTG2), the transcription factors early growth response 1 (egr-1) and nerve
growth factor inducible B (NGFI-B), and a mitogen-activated protein kinase phosphatase,
ptpn16, an important cell signaling regulator. These mRNAs peak at 30 min and return to
baseline or are decreased by 6 hrs after ischemia. Several other potentially protective genes -
cluster with these induced mRNAs, including small heat shock proteins, and many have not been
previously associated with IPC. Th;ase results provide both putative mediators of I[PC and

molecular targets for testing preconditioning therapies.

Keywords: spinal cord; ischemia; preconditioning; Hsp70; metallothioneins; neuroprotection;

microarrays
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Introduction

A common cause of spinal cord ischemia is cross-clamping of the aorta during repair of
thoracoabdominal aneurisms. Clinical studies have demonstrated that the incidence of paraplegia
in patients who underwent such procedures ranges between 0% and 40% depending on the series
and patient risk factors (Cox et al., 1992; Verdant et al., 1995). In addition, several syndromes of
vascular insufficiency have been described, including anterior spinal artery syndrome (Castro-
Moure et al., 1997) and spinal cord compression (Ducker et al., 1984). Finally, spinal cord
ischemia may participate in secondary cell death after traumatic injury (Mautes et al., 2000;
Tator and Fehlings, 1991). Blood flow in the spinal cord falls dramatically after experimental
injury and the post-traumatic ischemia correlates st_rongly with neurological loss (Tator and
Fehlings, 1991). Taken together, these causes of spinal cord ischemia affect hundreds of
thousands of people each year. The large number of people affected and the severity of their
disability call for strategies to protect the spinal cord from ischemic damage.

Marsala and colleagues previously described a simple, reproducible, and clinically
relevant rat spinal ischemia model employing balloon occlusion of the descending aorta (Taira
and Marsala, 1996). Aortic occlusion causes a low blood flow state in the spinal cord. In this
model 10 min of spinal ischemia leads to development of spastic paraplegia and a selective loss
of interneurons in the intermediate zone of lumbosacral segments. Ischemic intervals shorter than
8 min have no long-term effect on motor function or histopathological appearance of the spinal
cord. Here we use this Tnodel to investigate an endogenous form of neuroprotection called
ischemic preconditioning (IPC). IPC describes the phenomenon that a short period of ischemia
confers tolerance of a tissue to a subsequent longer period of ischemia. Rats were exposed either

to brief ischemia or to sham surgery, various periods of normal perfusion (reflow), and then 10

Carmel et al. Microarray Analysis of Spinal Ischemia Page 4 of 46

min of ischemia. Locomotor scores were measured over the subsequent week. 3 min of ischemia
protects rats at an early time after ischemia (30 min reflow) and a late time (24 hrs reflow) but
not an intermediate time (2 hrs reflow). 6 min of ischemia provides protection only at 24 hrs of
reflow, and this protection is greater than that afforded by 3 min IPC at the same reflow period
(Cizkova et al.; accompanying manuscript).

The biphasic protection observed after 3 min ischemia has been observed in other
preconditioning models (Shohami et al., 1987). Although the early and late phases of ischemic
tolerance share common mechanisms, they also have significant differences. One important
distinction is that while early tolerance does not require production of new proteins, delayed
preconditioning does (Barone et al., 1998; Matsuyama et al., 2000). In keeping with this, cardiac
preconditioning was abolished by the addition of the transcription inhibitor Actinomycin D
(Strohm et al., 2002). By employing microarrays to show changes associated with brief ischemia,
we focused our investigation on the late phase of ischemic preconditioning, which likely depends
on mRNA changes.

Others have used genomic tools to provide insight into neuronal ischemia in general
(Soriano et al., 2000; Jin et al., 2001; Majda et al., 2001; Jin et al., 2001) and ischemic tolerance
in particular (Omata et al., 2002; Bernaudin et al., 2002). Previously we employed Affymetrix
microarrays to characterize traumatic spinal cord injury (Carmel et al., 2001; Nesic et al., 2002).
In order to better characterize the molecular mediators of spinal cord IPC, we used microarrays
to survey mRNA changes after brief ischemia. In this study we used spotted oligonucleotide-
based microarrays to survey gene expression differences between the spinal cords of rats with or

without ischemic preconditioning. Selected results were validated using Q-RT-PCR. Our goal
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was to identify possible mediators of the preconditioning effect that can be subjected to further

testing to determine their role in IPC and their protective potential.
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Material and Methods

All animal experiments were conducted according to protocols approved by the
Institutional Animal Care and Use Committee of the University of California, San Diego. -

Induction of spinal ischemia: Male Sprag.ue~DawIey rats (300-365 g; Harlan Industries,
Indianapolis IN) were used. A previously dcsc'n'bed technique was used to induce spinal cord
ischemia (Taira and Marsala, 1996). Animals were anesthetized with 3% halothane in an
Oy/room air mixture (1:1) in an induction box and were maintaiﬁed with 1-1.5% halothane
delivered by an inhalation mask. A probe was inserted 6 cm into the rectum for core temperature
measurements. Following anesthetic induction, a 2F Fogarty catheter was passed through the left
femoral artery to the descending thoracic aorta so that the tip reached the level of the left
subclavian artery. This level corresponds to a distance of 10.8-11.4 cm from the site of insertion.
To measure distal blood pressure (DBP; i.e. below the level of occlusion), the tail artery was
cannulated with a PE-50 catheter. The left carotid artery was cannulated with a 20-gauge
polytetrafluoroethylene catheter for blood withdrawal. To induce spinal cord ischemia, the intra-
aortic balloon catheter was inflated with 0.05 mL of saline. Proximal hypotension (40 mm Hg)
was maintained by withdrawing blood (10.5-11 cc) from the carotid artery. The efficacy of
occlusion was evidenced by an immediate and sustained drop in the DBP measured in the tail _
artery. After ischemia, the balloon was deflated, and the blood was reinfused over a period of
one min. After blood reinfusion, 4 mg of protamine sulfate was administered subcutaneously.
Stabilization of the arterial blood pressure was then monitored for additional 10 min after which
arterial lines were removed and wounds closed. In control animals the balloon catheter was
placed into descending thoracic aorta but was not inflated. At the end of the survival period

animals were terminally anesthetized with pentobarbital, cervical and lumbosacral spinal cord
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1
L

segments were removed by hydroextru;sion, and were i diately frozen in —70°C
pentane.
Microarrays

Design: The 4,967 probes on our custom microarrays contain a collection of 4,854

oligonucleotides specific for 4,803 rat cDNA clusters purchased from Compugen, Inc.

(Jamesburg NJ) and a set of 113 oligos designed and synthesized by MWG-Biotech AG

(Ebersberg, Germany) based on a set of GenBank ion bers selected by us. The probes,

65-70 nt in length, are standardized for melting temperature and minimal homology. All
bioinformatics for the oligonucleotides are provided on our web site, http://www.ngelab.org.

Printing and Processing: Microarrays were printed on poly-L-lysine-coated glass slides
using an OmniGrid microarrayer (GeneMachines, San Carlos CA) and quill-type printing pins
(Telechem, Sunnyvale CA). Oligonucleotides were resuspended to 40 uM in 3X SSC and printed
at 24°C with a relative humidity of approximately 50%. After printing, arrays were stored
overnight and post-processed by standard procedures. Slides were stored at room temperature in
a desiccator flushed with nitrogen and were used between three weeks and three months after
printing.

RNA Preparation: Frozen lumbar spinal cords were suspended in ice-cold Trizol
(Invitrogen, Carlsbad CA) and homogenized with a tissue grinder. Chloroform was added to the
Trizol homogenate and a phase extraction performed. A small volume (0.5 ml) of the resulting
aqueous phase was adjusted to 35% ethanol and loaded onto an RNeasy column (Qiagen,
Valencia CA). The column was washed and RNA eluted following the manufacturer’s
recommendations. RNA was quantified by spectroscopy, with Azso/Azg0 ratios at pH 8.0 between

1.9 and 2.1 for all samples. Samples of 6-min ischemia cord RNA and sham controls were

Y
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subjected to capillary electrophoresis on an Agilent (Palo Alto CA) 2100 Bioanalyzer; all
samples demonstrated sharp ribosomal RNA bands (not shown).

The same RNA preparations were used for both microarray and Q-RT-PCR assays,
except that each control channel in the microarray assays represent a “reference” pool of the
control RNAs (Yang and Speed, 2002). Initial studies used 6 sham control rats—half received
sham surgery 30 min before sacrifice, the others 24 hrs before. Real-time PCR experiments
showed no differences in gene expression between these two control groups for HSP70,
metallothionein, GAPDH, and all other genes measured (not shown). Under the presumption that
time-matching sham and control animals was unnecessary, equivalent amounts of RNA were
pooled from all sham animals, and the same pooled reference RNA was used for all microarray
experiments.

Hybridization target was prepared using the Genisphere 3DNA dendrimer system (Stears
et al., 2000; Genisphere, Inc., Hatfield PA). Two micrograms of total cellular RNA were reverse-
transcribed from a “capture-sequence”-containing oligo-d(T),s primer using Superscript II
(Invitrogen) and then alkaline hydrolyzed to destroy RNA. Automated hybridizations were
performed using a Ventana Discovery System (Ventana Medical Systems, Tuscon AZ) following
protocols designed by us. The sequence-tagged target was hybridized for 12 hrs at 58°C, and
microarrays were washed twice in 2X SSC for 10 min at 55°C and 2 min at 42°C. Fluorescent
dendrimer was then applied and incubated at 55°C for 2 hrs. The microarrays were washed with
2X SSC for 10 min at 55°C and then removed from the instrument and washed vigorously three
times for one min each in Reaction Buffer (Ventana Medical Systems) and then once in 2X SSC
for one min. Arrays were spin-dried in a centrifuge and scanned on an Axon GenePix 4000B

(Axon Instruments, Union City CA).
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Dye flip controls were performed in a separate experiment. A group of 7 microarrays
were hybridized with Ambion rat brain and liver control RNAs, with 3 arrays labeling liver RNA
with Cy3 and 4 arrays labeling liver RNA with CyS. We examined the pairwise Pearson
correlation coefficients for the valid observations on each slide (~4,950) to determine data
reproducibility. No difference was found between correlations within each dye group [0.931 &
0.013 (3) and 0.963 % 0.003 (4)] and correlations from one dye group to the other [0.925 + 0.011
(12); each listed as mean + s.e.m. (n)]. Therefore, we concluded that the inclusion of dye flips
within our experimental design was not necessary under these conditions.

Data Analysis: Image files were processed using Axon GenePix 4.0 software, resulting in
text files containing median fluorescence intensities, median local backgrounds, and flags of the
few spots with overlaid background. Results were imported to the public microarray database
BASE (Saal et al., 2002). Normalization and data analysis were conducted in GeneSpring
(Silicon Genetics, Redwood City CA), using a custom ODBC interface to the BASE database
(DeLong and Hart, unpublished). We used the Lowess method of normalization (Yang et al.,
2002). The ratio of signal intensities was calculated only if the spot was not flagged, and
replicates were averaged.

Statistical analysis: To better elucidate groups of changed genes we employed k-means
clustering, beginning with a filtered group of genes (see text). We employed the GeneSpring
Standard Correlation as our similarity metric. The reproducible difference between mean ratios
and a ratio of unity (expressed as the t-test p value) was assessed using GeneSpring’s Global

Error Model of replicates, an implementation of the Rocke-Lorenzato model.
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Quantitative Real-time PCR

We confirmed selected microarray results by comparison with relative mRNA levels
obtained by quantitative reverse transcription PCR (Q-RT-PCR) using selected gene-specific
primer pairs (Table 1). RNA was reverse transcribed with SuperScript II (Invitrogen, Carlsbad

£,

turer. The PCR reactions were carried out

CA) and random primers as suggested by the
using 20 ng of cDNA, 67 nM of each primer, anidd SYBR Green master mix (Applied Biosystems,
Foster City CA) in 10 pl reactions. Levels of Q-RT-PCR product were measured using SYBR
Green fluorescence (Wittwer et al., 1997; Ririe et al., 1997) collected during real-time PCR on
an Applied Biosystéms 7900HT system. A control cDNA dilution series was created for each
gene to establish a standard curve. Each reaction was subjected to melting point analysis to
confirm single amplified products. Reactions were run in duplicate, and results were averaged.
Each value was normalized to GAPDH to control for variations in amount of input cDNA. Fold-
change values represent a mean of four ischemic samples divided by the mean of the six sham
controls described above. Change between ischemic and sham animals was determined
significant by Student’s t-test using a p value less than 0.05.
Northern Blot

A separate group of rats wa; used for Northern blot experiments. Animals were subjected
to 6 min of spinal cord ischemia as described above. At the end of the survival period (4, 18, or
24 hrs), rats were sacrificed and their spinal cords collected. Cervical segments of the spinal cord
(C2-C5; non-ischemic) were pooled (three segments/extraction) as were the lumbar segments
(L2-L5; ischemic). Total RNA was extracted using guanidine thiocyanate extraction buffer
(Puissant and Houdebine, 1990). RNA was separated by electrophoresis in 1% agarose-

formaldehyde gels, transferred onto nitrocellulose membranes, and hybridized with a 3’-end
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labeled hsp70 oligonucleotide probe (2-5 X 10® cpm/ml buffer) at 42°C overnight. The blot was
washed to high stringency and auforadiogxaphed with two intensifying screens (DuPont,
Wilmington DE) at -70°C for 1-14 days. Each blot was stripped and rehybridized with a control
18S oligonucleotide rRNA probe. Bands were quantified with an MCID analysis system
(Imaging Research Inc., St. Catharines, Ontario, Canada) and results were expressed in arbitrary
optical density units. Values were corrected for loading and expressed as fold change over sham-

operated controls.

Carmel et al.

Results

To survey mRNA ch
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anges induced by brief ischemia, we applied ischemic and sham

control samples to oligonucleotide microarrays. Animals (n=4 at each time point) were exposed

to either 3 min or 6 min of spinal cord ischemia and were allowed to survive for various times:

30 min, 6 hrs, 12 hrs, or 24 hrs. RNA from individual ischemic cords was compared to reference

pooled RNA from sham con|

hybridization signal for isch

trols. Results were expressed as a fold change ratio of net

emic samples to sham controls.

The results of the 3-tnin ischemia and 6-min ischemia microarray experiments are

graphed in Figs. 1A and 1B,
axis against the time of reflg

result from a single oligonug

respectively. The relative ischemia/sham ratio is plotted on the y-
w after brief ischemia on the x-axis. Each plotted line represents the

leotide probe on the microarray. Of the probes assayed, few showed

large changes, and two groups stood out prominently. In the 3-min ischemia experiment three

mRNAs were found to be st
All three of the probes show|
protein, HSP70. Two probes

(hsp70.2) hybridizes with ar|

ongly increased over sham controls at 30 min of reflow (Fig. 1A).
ing strong differences at this time point are specific for the same
(hsp70 and hsp70.1) detect the same mRNA; another probe

HSP70-encoding mRNA having a different 3’ untranslated region

(Table 2). For animals that rgceived 3 min of ischemia, hsp70 mRNA was increased maximally

at 30 min of reflow, had smaller increases at 6 and 12 hrs, and returned to sham baseline levels

by 24 hrs. The three hsp70 p

robes also showed the largest ratios following 6 min of ischemia

(Fig. 1B). 6 min preconditioped spinal cords showed even greater ratios of hsp70 at 30 min than

the 3-min ischemia/30-min 1

declining at 24 hrs.

eflow group, and levels continued to rise at 6 and 12 hrs before
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We measured the same RNA preparations by Q-RT-PCR to confirm microarray results
(Tables 3 and 4 and Figs. 2B and 3B). Hsp70 mRNA changes were far greater by Q-RT-PCR
than by microarray, consistent with the superior dynamic range of Q-RT-PCR. In 3-min ischemia
animals, hsp70.1 and hsp70.2 mRNA levels rose to ~25 times the levels of sham-operated
controls at 30 min after preconditioning (Fig. 2B and Table 3). These levels fell over the course
of one day and were not significantly different from sham by 2-4 hrs. After 6-min of ischemia,
spinal cords showed robust induction of hsp70 at 30 min with-further rises at 6 and 12 hrs to a
peak of ~100-fold change from sham animals (Fig. 3B and Table 4). As with the microarray
results, 6 min of ischemia produced more intense and prolonged increases in hsp70 mRNA than
did 3 min of ischemia.

To test whether increased hsp70 mRNA was a local response to ischemia or whether it
might be elevated elsewhere in the spinal cord, a Northern blot was performed on spinal cord
samples of a separate group of animals after 6 min of ischemia or sham surgery. Lumbar (L2-5)
and cervical (C2-5) spinal cords were collected, RNA from 3 animals was extracted, pooled, and
analyzed by Northern blot (Fig. 4A). Lanes A-C contain RNA from spinal cords that received 6
min ischemia and lanes D-F were run with RNA from sham-operated rats. Animals were
sacrificed at 4 hrs (lanes A and D), 18 hrs (lanes B and E), and 24 hrs (lanes C and F) after
ischemia. Northern blot results are shown in Fig. 4B and quantifications are expressed as fold-
change from sham controls. A single band of hybridization was observed under all conditions,
suggesting that the Hsp70 mRNA was not alternatively spliced or otherwise changed in sequence
throughout the experiment (although Hsp70 mRNA is normally unspliced). Robust
accumulation (~25-fold) of hsp70 mRNA was seen 4 hrs after preconditioning in the lumbar

spinal cord, but no change was seen at 18 or 24 hrs. Cervical cord segments showed no induction
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of hsp70 mRNA at any of the reflow time points. These results confirm that hsp70 mRNA

induction after 6 min is robust and appears limited to the ischemic areas of spinal cord. Hsp72-

like immunoreactivity was dgtected in neurons of the superficial dorsal horn following 3 min of

ischemia (Cizkova et al., accompanying manuscript). A 6 min period of ischemia extended

staining to neurons of the int

9

rmediate zone, consi with a protective function in these cells.

Another group of micyoarray probes, increased at 6 and 12 hrs, stand out prominently in

Figs. 1A and 1B. In the 3-mi

whereas three showed robust

ischemia experiment, only one of these stood apart (Fig. 1A),

increases in the 6-min ischemia group (Fig. 1B). The three probes

detect metallothioneins- (MT}-) 1 and 2 mRNAs. In both 3-min and 6-min ischemia groups, MT-

1 and MT-2 mRNA levels w
sharply by 6 hrs of reflow an|
hrs. As with hsp70, MT-1 an

of ischemia than with 3 min.

re not increased above sham at 30 min of reflow. Levels rose
fl remained elevated at 12 hrs before falling towards baseline by 24

i MT-2 mRNA levels were more highly increased following 6 min

Like hsp70, MT mRNAs also showed greater fold-changes by Q-RT-PCR than by

microarrays (Tables 3 and 4)
ischemia; after 6 min of ischg

showed a similar time course

MT-1 mRNA levels rose more than 5-fold at 6 hrs after 3 min of
tmia MT-1 rose more than 13-fold over sham controls. MT-2

, increasing more than 3 times the levels of sham controls at 6 hrs

after 3 min ischemia, while § min of ischemia induced more than 10-fold change at the same

time point.

In order to select resy
filtered the results using thre:
ratios reproducibly different

background in at least 3 of 4

Its from the microarray experiments with reliably altered ratios, we
¢ criteria: minimum expression, minimal fold-change values, and
from unity. Probes had to have signal intensity twice array median

time points. The hybridization ratio had to be at least 2-fold higher
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or lower than sham controls at one or more time points. Finally,.the ratios had to be different
from unity at one or more time points as measured by Student’s t-test (p < 0.05; uncorrected for
multiple comparisons; GeneSpring’s Global Error Model). Of these filters, the 2-fold ratio filter
was by far the most restrictive (not shown). The probes (n=5) that passed the above criteria for
the 3-min experiment are the three probes for hsp70 and two for MT. These results are listed in
Table 3, and are graphed in Fig. 1C. The probes that passed the filtering criteria for the 6-min
ischemia (n=31) are listed in Table 4 and are graphed in Fig. 1D.

31 probes from the 6-min ischemia experiment passed our filtering criteria. In order to
partition groups of differentially affected mRNAs, we employed k-means clustering on this

éubset of genes. The goal was to find relationships between bers of this filtered list in hopes

P

grouping mRNAs by common biological function or regulatory response. Clustering was carried
out using 3, 5, 9, or 15 starting clusters and the Standard Correlation metric (see Methods).
Setting k=5 gave the highest explained variability and is pictured in Fig. 3A. Multiple iterations
of the clustering algorithm produced essentially the same clusters each time (not shown).

Of the five k-means clusters, three represent groups of probes with ratios increased after
brief ischemia. These three clusters include hsp70 (Cluster 1), MT (Cluster 2), and a group of

immediate early genes (IEGs; Cluster 3). Three other mRNAs clustered with the hsp70 group

(Cluster 1): heme oxyg -1, NSF h protein, and activating transcription factor 3

(ATF3). Clustered with MT (Cluster 2) are two heat shock proteins: crystallin aB (cryab), and
heat shock 27 (hsp27, two probes), as well as five other mRNAs: cyclin-dependent kinase
inhibitor 1A (Cdknla, a.k.a. p2lw'\F ), a UV radiation-activated gene (U96), TBP interacting
protein (Tip120B), omithine decarboxylase antizyme inhibitor (oazi), and synaptotagmin 7

(syt7). Four mRNAs showed a pattern peaking at 30 min after ischemia followed by decreasing
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ratios at later times, typical o!

[ [EGs (Cluster 3). This group is composed of B-cell translocation

gene 2 (BTG2), early growth|response-1 (egr-1), protein tyrosine phosphatase, non-receptor type

16 (Ptpn16), and immediate garly gene transcription factor NGFI-B (Nr4al). Two additional

clusters exhibited decreases in mRNA levels following ischemia (see Table 4).

Selected mRNAs in egch cluster of the 6-min ischemia experiment were measured by Q-

RT-PCR. The results of these i

‘ements are p d in Table 4 and are graphed in Fig. 3B.

The graphs are split into the ¢orresponding k-means clusters of microarray results. The Q-RT-

PCR results of the mRNAs with increased expression show strong similarity to microarray

measurements, with the exception of syt7. Of the decreased mRNAs only MPZ showed similar

results between microarray and Q-RT-PCR measurements. We, therefore, consider these results

less reliable than the results df induced genes (see Discussion).

We also measured fog

mRNA expression by Q-RT-PCR and include the results with the

other IEGs. The microarray grobe for fos has been found to interact with the Genisphere Cy5

dendrimer probe “capture sequence” (Hart and Getts, unpublished observations) and was

excluded from analysis as a false positive. However, we measured fos mRNA levels because it

was implicated in spinal cord

IPC previously (Yang et al., 2000). Fos mRNA elevation (13-fold)

was greater and more sustaingd than other IEGs measured in this study (Table 4 and Fig. 3B).

We asked whether thﬁ

three clusters with increased ratios in the 6-min ischemia

experiment might have homdlogous patterns in the 3-min ischemia experiment. The hsp70 group

(3 probes) and a MT group (

probes) are contained in the filtered set of probes from the 3-min

results (Fig. 2B). However, the IEGs and other genes identified in the 6-min clustering fell below

our arbitrary 2-fold ratio restriction. To test whether similar genes clustered in the 3-min

experiment, we first created a

set of less stringently filtered genes by setting the fold change
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cutoff at 1.5 (n=159). K-means clustering with this group identified an hsp70 cluster, a MT
cluster, and a cluster with several IEGs (data not shown). However, the explained variability of
this clustering was low compared to that of the stringently filtered 6-min k-means, and the
patterns were less easily distinguishable on visual inspection. The magnitude of effects
following 6 min of ischemia was more pronounced and the patterns of response were more easily
partitioned by the k-means algorithm into meaningful groups than the results of the 3 min
ischemia.

To better isolate the hsp70, MT, and IEG groups in the 3-min data, we employed an
“anchor gene” approach (Carmel et al., 2001). This clustering technique involves handpicking a
gene of interest and then using the time series of that gene to find close correlates in hopes that
retrieved genes might also be biologically meaningful or coordinately regulated. The Standard
Correlation metric was used with a correlation coefficient of 0.90. Representative anchor genes
from Clusters 1-3 (hsp70, MT, and egr-1 respectively) of the 6-min clustering were used to find
close correlates in the 3-min data. We anticipated that of the 159 genes in the filtered subset,
each anchor would more likely be paired with genes that clustered together in the 6-min results.
This held true without exception. The microarray results of these correlations are graphed in Fig.
2A, and the Q-RT-PCR results in Fig. 2B; both sets of results are included in Table 3. The
temporal pattern of each hsp70 probe was highly correlated with the other two, as was the case
for the three MT probes. In addition, the pattern for cryab was also associated with each MT
probe; these genes were clustered together in the same 6-min k-means. For egr-1, the gene whose
expression correlated significantly was ptpn16. This pairing was also found with the 6-min k-
means clustering. Thus, similar clusters were found in both the 3-min and 6-min ischemia

experiments.

Carmel et al.

Discussien
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Investigation of ischemic preconditioning in the rat spinal cord may reveal molecular

mechanisms that can be expl
spinal contusion injury. Alth
models, the basis for the tole
to survey gene expression as:
studies of gene expression aff
changed significantly. These
possible neuroprotéctive agey

Spotted oligonucleoti
for assessing large number o

microarray results were valid

pited to protect people from paralysis after aortic aneurism repair or
ough spinal cord IPC has been demonstrated in experimental

rant state has not been well elucidated. Here we employ microarrays
ociated with IPC-and to identify target genes for future study. Our
er short ischemia identify several genes and gene families that are
include hsp70, MT, small heat shock proteins, IEGs, and other

nts, including several not previously reported.

e microarrays have been demonstrated to be a reliable technique

f mRNAs (Hughes et al., 2001; Wang et al., 2003). Most

ated by Q-RT-PCR measurements, and expression profiles

generally have similar patterns by the two measures. Microarrays tended to underestimate

changes, an observation that has also been made by others (Rajeevan et al., 2001). All

microarray results showing 3

synaptotagmin 7, were validg

-fold or greater changes were validated. All increased genes, except

ted by Q-RT-PCR. Several probes showed divergent results, and

these were mostly the decreased genes, including Ttpa, IkB, GlyRA1, and MRG-3. Of the

decreased genes only MPZ showed similar (although not statistically significant) changes by Q-

RT-PCR. The reasons for this disparity are puzzling—results such as these would normally be

indicative of microarray dye-

specific false signals. However, our dye flip experiments showed

high correlation coefficients between dye flipped pairs (see Methods).

Heat shock protein Jlﬂ. The greatest increases were seen in hsp70 mRNA, up to 100-fold

higher after 6 min ischemia than sham controls. The inducible heat shock protein 70 (HSP70) is
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a molecular chaperone that aids in the folding of nascent proteins and binds proteins during times
of cell stress, including hypenherm.ia and ischemia (Mestril and Dillmann, 1995). HSP70 was
first identified in Drosophila exposed to hyperthermic preconditioning that protected against a
lethally hot environment (Arrigo and Welch, 1987; Tomasovic et al., 1985). Increases in HSP70
have been associated with models of IPC, including spinal cord IPC (Matsuyama et al., 1997,
Matsumoto et al., 2001). Other interventions that protect the spinal cord, including whole body
: hyperthermia (Zhang et al., 2000), local cooling (Motoyoshi et al., 2001), and pharmacological
stress (Perdrizet et al., 2002) all increase HSP70 levels. Finally, in models of cerebral ischemia,
overexpression of HSP70 protects neur})ns from ischemic insult (e.g., Kelly et al., 2001; Hoehn
etal.,, 2001), while loss of HSP70 abrogates the conditioning effect (Nakata et al., 1993). In a
companion acticle, Marsala and colleagues report an analys-is of HSP70 expression and
localization after brief spinal ischemia (Cizcova et al., accompanying manuscript).
Metallothioneins. Two other mRNAs that show robust increases following brief
ischemia are MT-1 and MT-2. Metallothioneins are a family of cysteine-rich, low molecular
weight proteins that bind transition metals, such as zinc and copper (Hamer, 1986). MT-1 and
MT-2 are induced by heavy metals, oxygen free radicals, glucocorticoids, cytokines, and
immediate early genes (Palmiter, 1998). MTs have been proposed as detoxifying agents of
reactive metals and free radicals (Liu et al., 1991), both of which contribute to ischemia-induced
cell damage (Chan, 1996). MT-1 and MT-2 are induced robustly by ischemia, including cerebral
ischemia (Sharp et al.,_l993; Gerlai et al., 2000; Ebadi et al., 1995), and MT has been identified
as an ischemia-induced gene by other genomic screens, including serial analysis of gene

expression (Trendelenburg et al., 2002) and microarrays (Onody et al., 2003). MT-1 and MT-2

Carmel et al. Microarray Analysis of Spinal Ischemia Page 20 of 46

have also been implicated in

al., 1997) and brain (Emerso;

the delayed phase of ischemic preconditioning of the heart (Chen et

n et al., 2000)

Several groups have ¢xamined the effects of MT gain- and loss-of-function to elucidate

its role in cellular protection, Induction of MT by application of transitional metals protects the

heart against oxidative dama|
irradiation damage (Cai et al
from ischemia by inhibition
2001). van Lookeren Campa
cerebral artery occlusion (M|
and wild-type mice. Lesion
MT-1 overexpressing mice ¢
exacerbates cell damage. In
superoxide dismutase, furthg

onset of clinical signs and d¢

ge (Satoh et al., 1988) and human primary CNS cultures against

, 2000). Cardiac myocytes overexpressing MT-1 were protected

bf the cytochrome c-mediated apoptotic pathway (Wang et al.,

gne and colleagues (1999) compared the effects of transient middle
CAO) in transgenic mice that overexpress MT-1 (Isza:;i etal., 1995)
olume and sensorimotor deficits were significantly decreased in
lompared to controls. In loss-of-function studies, repression of MT
he mouse model of familial amyotrophic lateral sclerosis that lacks
r deletion of MT-1 and MT-2 by crossbreeding resulted in earlier

ath. Using the MT-1 and MT-2 double knockout (KO) mice,

Trendelenberg and colleagu¢s (2002) found KO mice had approximately three-fold larger

cerebral infarcts and signifigantly worse neurological outcome than wild-type controls in

response to transient ischemja. These studies substantiate a cell protective role for MT.

Although hsp70 and MT induction constituted the most prominent mRNA changes that

we observed in these experiments, brief ischemia affected other genes as well. We found the use

of k-means clustering instruttive in trying to group these genes. Several clusters included genes

known to have similar functjon, suggesting that the groupings may follow biological likeness.

Genes Clustering With MT. Grouped in the same cluster as MT were the small heat

shock proteins hsp27 and oB crystallin (cryab). These two genes encode proteins that assemble
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into chaperone complexes, which bind and protect proteins at times of cell stress (Dillmann,
1999). Cryab, first characterized as a major component of the vertebrate lens, is involved in
many cellular processes, including oxidative stress responses in the heart and lung, cellular
differentiation in the eye, and a variety of neurodegenerative disorders (Dillmann, 1999). Striated
muscles, including the heart, express high levels of cryab (Iwaki et al., 1990). Overexpression of
cryab protects myocytes from ischemia and also provides cardioprotection (Martin et al., 1997).
Mice expressing a mutated form of the protein show increased damage to myocytes made
ischemic (Martin et al., 2002).

Brief ischemia also induced the small HSP, hsp27, in the spinal cord. Hsp27 is induced
by multiple cell stresses, including heat shock, ischemia, and seizures (Dillmann, 1999). As with
oB crystallin, hsp27 expression in the stressed brain is primarily localized in astrocytes and rises
more slowly and for longer periods of time than hsp70 (Akbar et al., 2001). Gain- and loss-of-
function studies point to a protective role of hsp27. In a neuronal cell line and primary neuronal
cultures, overexpression of hsp27 protected against exposure to heat shock and withdrawal of
nerve growth factor (Wagstaff et al., 1999). Overexpression of hsp27 also protects cardiac
myocytes against simulated ischemia (Martin et al., 1999). The same adenoviral vector encoding
an hsp27 antisense oligonucleotide significantly decreased HSP27 levels and increased injury in
cultured myocytes (Martin et al., 1999). Hsp27 also appears to play a key role in sensory neuron
survival after axotomy or neurotrophin withdrawal (Lewis et al., 1999). Finally, Akbar and
colleagues recently showed that mice overexpressing human hsp27 were protected from damage
to hippocampal neurons due to kainate-induced seizures (Akbar et al., 2003). Identification of
hsp27 mRNA increases following IPC is suggestive of a protective role in the spinal cord as

well.
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The Immediate-Early Gene Cluster. Another group of genes revealed by k-means

clustering, Cluster 3, include
the transcription factors early
(NGFI-B), and a mitogen-act

signaling regulator. Egr-1 an

5 four immediate-early genes: B-cell translocation gene 2 (BTG2),
growth response 1 (egr-1) and nerve growth factor inducible B
iivated protein kinase phosphatase, ptpn16, an important cell

{l ptpn16 also cluster together in the 3 min ischemia cluster. This

cluster of genes shows an expression pattern of early induction followed by either return to

baseline or repression at 6 hrp and later time points. The expression profile of these genes and

their known function identifies them as possible regulatory genes that may affect downstream

changes.

BTG2 was originally

identified as a transcript induced by p53 in response to genotoxic

stress (Rouault et al., 1996). Beveral studies also point to a role for BTG2 in neuronal

differentiation. Similar to egf

1 and NGFI-B, BTG2 levels are increased in PC12 cells after

induction of differentiation by NGF (Bradbury et al., 1991). BTG2 is expressed during the

production of postmitotic neyrons and is considered a marker of neuronal birth (Iacopetti et al.,

1999). Importantly, expression of BTG2 appears to protect differentiated neural cells from

apoptosis, as antisense oligonucleotides to BTG2 trigger programmed cell death (el-Ghissassi et

al., 2002). The increased expression of several NGF-induced genes in this assay points to

common mechanisms, and the protective role of BTG2 make it a promising target for future

study.
Egr-1 (also known as

immediate early gene (for rej

NGFI-A, krox-24, or zif268) is a transcription factor and an

siew see Beckmann and Wilce, 1997). Egr-1 is induced in the rat

brain by a large number of sfresses, including glutamate/NMDA stimulation (Beckmann et al.,

1997), long-term potentiation (Worley et al., 1991), focal traumatic brain injury (Honkaniemi et
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al., 1995), and a variety of cerebral ischemia models (Abe et al., 1991; Collaco-Moﬁes etal.,
1994). Egr-1 was also shown to be elevated in the spinal cord in response to noxious peripheral
stimulus (Lanteri-Minet et al., 1993; Wisden et al., 1990) and sciatic nerve lesion (Herdegen et
al., 1993). Recently, Rybnikova and colleagues (2002) showed that mild hypoxic
preconditioning increased the level and duration of egr-1 expression in the rat brain following
severe cerebral hypoxia. Other authors suggest that prolonged egr-1 eg(pression after ischemic
insult is associated with delayed neuronal degeneration (Honkaniemi and Sharp, 1996;
- Honkaniemi et al., 1997). The egr-1 gene codes for a zinc finger nuclear phosphoprotein that
binds to GC-rich sequences in the pron;oter region to affect transcription of a diverse set of genes
(Beckmann and Wilce, 1997). These include genes with potential protective roles, such as -
platelet-derived growth factor (Khachigian et al., 1996), tra;xsforming growth factor B
(Khachigian et al., 1996), and NGFI-B (Williams and Lau, 1993). Some genes modulated by egr-
1 may have deleterious effects on neuronal survival. These include NMDAR1 (Bai and Kusiak,
1995), tumor necrosis factor (Kramer et al., 1994), and two prothrombotic genes: tissue factor
(Cui et al., 1996) and thrombospondin 1 (Shingu and Bornstein, 1994). Thus, whether egr-1
plays a protective or deleterious role may depend on the timing of its expression and its
relationship to other transcriptional events, particularly those regulated by other IEGs.

NGFI-B was found in the same genomic screen as egr-1 (NGFI-A) of PC12 ceils exposed
to NGF (Milbrandt, 1988), and k-means clustering paired the two genes in this study as well.
NGFI-B has a zinc finger domain and belongs-to the thyroid/steroid receptor family. It is an
immediate early gene that is stimulated by growth factors (Hazel et al., 1588), depolarization
(-Yoon and Lau, 1993), and seizures (Watson and Milbrandt, 1989). The pattern of induction by

hypoxia (Gubits et al., 1993), global ischemia (Neumann-Haefelin et al., 1994), and focal
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ischemia (Lin et al., 1996) parallels those of other immediate early genes (Johansson et al.,

. 2000). NGFI-B is known to fegulate expression of corticotropin-releasing factor (CRF),

vasopressin, oxytocin, and steroid 21-hydroxylase in vitro (Chan et al., 1993; Wilson et al., 1993;
Wilson et al., 1991) all of which may be increased by stress. Although this gene is increased at
times of stress and likely induces other stress-related genes, how NGFI-B might participate in
neuroprotection remains to be elucidated.

In addition to egr-1, ptpn16 (a.k.a. mitogen-activated protein kinase phosphatase-1) also
shows induction with both 3|and 6 min of ischemia. This gene encodes a dual speciﬁcity protein
phosphatase that acts on tyrgsine and threonine residues of mitogen-activated protein (MAP)
kinases, inactivating the kingses (Alessi et al., 1993; Sun et al., 1993). Phosphorylation of MAP
kinases is a key regulatory step in cell signaling, particularly during times of stress (for review
see Irving and Bamford, 2002). Multiple stressors induce ptpn16, including oxidative stress, heat
shock, seizures, and brain is¢hemia (Keyse and Emslie, 1992; Boschert et al., 1998; Wiessner et
al., 1995). Two genomic screens identified this gene as induced by focal cerebral ischemia
(Soriano et al., 2000) and hypoxic preconditioning (Bernaudin et al., 2002). Of the MAP kinase
families, ptpn16 has stronger affinity for p38 and JNK than ERK (Camps et al., 2000). JNK and
p38 signaling has several effects on cell survival, but most reports suggest deleterious effects of
these pathways on neuronal survival (Maroney et al., 1999; Chihab et al., 1998). Thus, by
inhibiting these pathways in¢reased ptpn16 expression would likely enhance neuronal survival.

Although the fos prope was excluded from microarray results because of cross reactivity
with the labeling molecule ($ee Results), fos mRNA levels were assayed by Q-RT-PCR and
found to be the most highly {nduced of the IEGs. In brain ischemia paradigms, fos protein

appears to be induced in neyrons more resistant to ischemia (e.g. hippocampal CA3 neurons)
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than in the more susceptible CA 1 neurons (Johansson et al., 2000; Nowak, Jr. et al., 1990). Fos
mRNA is also induced by short ischemic periods that are protective in brain IPC models
(Truettner et al., 2002). Marsala and colleagues have shown that Fos protein was elevated by 6
min of spinal cord ischemia (Yang et al., 2000). The protein expression peaked at 2 hrs, and the
expression at 4 hrs was limited to the susceptible intemeuronsAin laminae V-VII. The spatial
correlation of protein expression with protection and the robust, early, and sustained mRNA
expression make fos an IEG worthy of further study.

Another transcription factor, activating transcription factor 3 (ATF3), is robustly induced
(8-fold by Q-RT-PCR) at 30 min after 6 min of ischemia and remains elevated until returning to
baseline by 24 hrs (Figs. 3A and 3B, Table 4). ATF3 is a member of the CREB family of
transcription factors, which recognizes the cyclic AMP response element (CRE) site and forms
dimers by binding at the leucine zipper region. ATF3 represses transcription as a homodimer
(Chen et al., 1994) and activates transcription as a heterodimer with jun (Hai and Curran, 1991;
Chu et al., 1994). ATF3 is induced in a variety of stressed tissues (reviewed in Hai et al., 1999),
including the ischemic heart (Yin et al., 1997) and post-seizure brain (Che;'l etal, 1996). ATF3
is strongly induced by sciatic nerve lesion in dorsal root ganglia and spinal motor neurons
(Tsujino et al., 2000). Overexpression in heart (Okamoto et al., 2001), pancreas (Allen-Jennings
et al., 2001) and liver (Allen-Jennings et al., 2001) shows detrimental effects in these organs.
Whether ATF3 may be acting as a functional activator or repressor of transcription in [PC
remains to be investigated, but its marked induction and association with cell stress make it an
enticing target for further study.

Comparison of 3 vs. 6 min of IPC. While 3 and 6 min IPC treatments have somewhat

differing protective outcomes (see accompanying manuscript), most mRNA effects were similar
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in the two models, with differences in magnitudes. The clustering of MT and aB crystallin was

conserved between the 3-min) and 6-min IPC experiments, and pairing of the IEGs egr-1 and

ptpn16 was similarly conseryed. In addition, the similarity of the clusters resulting from the 3-

min ischemia and the 6-min

experiments implies that increasing the length of conditioning

ischemia may modulate the gmplitude, rather than the mechanisms, of the neuroprotective effect.

6 min of spinal ischemia indy

are more robust.

ices similar changes in gene expression as 3 min, but the changes

Summary. Most of the mRNA changes caused by brief ischemia of spinal cord appear to

have potentially beneficial ef

fects. The genes that are activated by brief ischemia may affect all

stages of IPC, including signal transduction (e.g. ptpn16), transcription (e.g. ATF3, fos, egr-1),

and effectors of neuroprotec}

tion (e.g. HSPs and MT). This study increases the number of

candidate neuroprotective genes. It also places changes in suspected mediators (e.g. hsp70) in the

context of overall mRNA changes. It is likely that some of these changes will participate directly

in the neuroprotective state
potential protective genes fo

of the gene, and the novelty

vhile others will not. Among the criteria important for selecting
I study are the magnitude of change, the known biological function

bf the association. Hsp70 mRNA shows enormous induction by

preconditioning (up to 100-fpld) and the product has proven beneficial effects in CNS ischemia,

So hsp70 is an attractive target, although it is the most widely studied gene in spinal ischemia

and preconditioning. MT-1 and MT-2, on the other hand, have not been studied in spinal cord

IPC, although their protectiy
the mRNA induction of thes|
scavenging make them very

genes whose expression is if

e effects in brain ischemia are well documented. The magnitude of
e genes and their dual roles in heavy metal binding and free radical
appealing targets for study in this system. Among the more novel

rduced by brief ischemia are the IEG transcription factors, including
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fos, egr-1, and ATF3. Although inducéd more moderately than hsp70 and MT, these genes may

serve as gatekeepers to transcriptional events that confer neuroprotection. Identification of these
responses to brief ischemia provides good justification for detailed, mechanistic studies with this
limited set of genes.

The molecular mediators found by study of IPC may appear to have the greatest clinical
applicability in the prevention of paralysis that occurs due to cross-clamping during aorta
surgery. Our study provides a practical, functional genomics endpoint aga'inst which one may
assay putative phamacologic preconditioning agents. Patients undergoing such surgery could
receive pharmacological preconditioning to modulate spinal cord ischemic tolerance before the
blood supply is cut off, a practical impossibility for people who suffer spinal cord injury.
However, evidence from one HSP70 study (Hoehn et al., 2001) suggests that this mediator of
preconditioning may also be effective as a treatment after the onset of ischemia. This raises the
hope that mediators of ischemic tolerance may also have wider clinical importance for people

who suffer spinal ischemia.
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Figure Legends

Figure 1. Graph of microarray results comparing brief ischemic and sham controls.
Animals received either brief ischemia (3 or 6 min) or sham operation. The animals were
allowed to survive for various times and were sacrificed. RNA was prepared from lumbar spinal
cords, reverse transcribed, hybridized to oligonucleotide microarrays, and detected using
fluorescent probes. Arrays were scanned, and replicate results (n=4) averaged. Lowess
normalized ratios (Normalized Intensity; y-axis) of ischemia-treated fluorescence hybridization
signal to sham control signal are depicted at various times after ischemia (Time; x-axis). Each
line represents the ratio of ischemic/sham hybridization for a single probe over time. A/l
microarray results will be posted to a public web site at the time of publication. A: 3-min
ischemia results. B: 6-min ischemia results. Results were filtered using three criteria: fold-
change greater than two, signal intensity approximately two-fold above background, and t-test
with a p value less than 0.05. C: Filtered genes from 3-min ischemia experiment (n=5). D:

Filtered genes from 6-min ischemia experiment (n=31).

Figure 2. Clustering and valid of 3-min ischemia results. A: Anchor gene clustering.
To find genes with similar expression patterns to three genes of interest—hsp70, MT, and egr-
1—an “anchor gene” clustering (Carmel et al., 2001) was performed. The 3-min results were
filtered at 1.5 fold change to create a subset of 159 genes. The expression patterns for hsp70,
MT, and egr-1 were used to find genes with similar patterns using the Standard Correlation
metric with values of 0.90 or greater. Each hsp70 probe identified the two other hsp70 probes as

close correlates. Likewise, each MT probe was closely correlated to the other two as well as to

the small heat shock protein cryab. The expression pattern for egr-1 was correlated with ptpn16,
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anotherJEG. B: Validation pf anchor genes by Q-RT-PCR. Samples of the same RNA
preparation used for microarfays were assayed by Q-RT-PCR. Results (mean + SEM; n=4) were

calculated as fold-change fram mean sham to match microarray results.

Figure 3. Clustering and validation of 6-min ischemia results. A: K-means clustering. To
partition the 31 genes that passed our filters (See text), we used k-means clustering with k=5.
Similarity was measured with the Standard Correlation metric, and clustering was performed
iteratively until stable clusters were found. The identity of the genes in each cluster is listed in
Table 4. Cluster l contains the three probes for hsp70 as well as for heme oxygenase and
activating transcription factor 3 (ATF3). Grouped with MT-1 and MT-2 in cluster 3 are the small
heat shock proteins cryab and hsp27 among others. Cluster 3 contains BTG2, egr-1, ptpn16, and
NGFI-B, all IEGs. Clusters 4 and 5 contain genes that are decreased with ischemia and show
inverse patterns. B: Q-RT-PCR validation of selected genes. Results are graphed in groups
according to k-means clusters. Most induced mRNAs show validation of microarray findings
with a greater dynamic rangg by Q-RT-PCR than microarrays. With the exception of MPZ; none

of the decreased genes was validated. Results are mean + SEM (n=4).

Figure 4. Northern blot results. For Northern blot, spinal cord segments from three animals
were pooled in each the 6 min ischemia and sham-operated group. RNA was extracted,
electrophoresed, transferred to nitrocellulose membranes, and hybridized with 32p labeled hsp70
probe (Fig 4A). Lanes A-C represent animals exposed to 6 min ischemia, and lanes D-F are from
sham animals. Animals were| allowed to survive for various times after ischemia: 4hrs (lanes A

and D), 18hrs (lanes B and H), or 24hrs (lanes C and F). Fig. 4B shows quantification of
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Northem blot results expressed as a fold change from sham controls. Results are means + SEM.

*Significant by Student’s t-test at p<- 0.05.
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Table 1. Oligonucleotide primers for Q-RT-PCR. Primers were designed using PrimerExpress

software (Applied Biosystens, Inc.) from the same GenBank accession records as the microarray

probes except for genes that had a NCBI reference sequence for the same UniGene cluster

(Cryab, Oazi, and Syt7). Gene descriptions are from NCBI.

Table 2. Relationship of hsp70 microarray probes, Q-RT-PCR primers, and sequence

identity. Microarrays contaif

3 probes for the same protein, HSP70. Q-RT-PCR primers were

designed for one member of pach Unigene cluster.

Table 3. Results after 3 min of spinal cord ischemia by microarray and Q-RT-PCR. Listed

is the ratio of ischemic/sham(animals at various times after ischemia. mRNAs altered by 2-fold

or greater are marked with an asterisk. For Q-RT-PCR results, genes that are significantly

different by Student’s t-test gt

p < 0.05 are also marked with an asterisk.

Table 4. Results after 6 min of spinal cord ischemia by microarray and Q-RT-PCR. 31

genes passed the filtering criferia described in the text and are graphed in Fig. 1D. Results are

presented as a ratio of ischemia/sham. Genes are grouped according to their k-means clusters as

depicted in Fig. 3A. For micfoarray resuits, ail genes show significant change from sham

controls (p < 0.05 by t-test) gt

one time point or more. mRNAs altered by 2-fold or greater are

marked with an asterisk. For|Q-RT-PCR results, genes that are significantly different by

Student’s t-test at p < 0.05 afe marked with an asterisk.
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Table 1.

bene }Ducrlnﬂon \GenBank [Forward |Rev¢rse
IATF3 lactivation transcription factor 3 INM 012912 |[CGCCATCCAGAACAAGCAC IGACTCCAGCGCAGAGGACAT
Cryab _lalpha B crystallin INM 012935 |CGAACATGGCTTCATCTCCA IGCTGGGATCCGGTACTTCCT
[Egr-1 arly growth response | INM 012551 [CAGCAGCGCTTTCAATCCTC [TGCTCGTAGGGTGM2TTCGC
[Fos ﬁs 1X06769 ICTTCTCAATGACCCTGAGCCC JAATGTTCTGM2ACCGGCTCCA
GIyRA1L E:ine receptor Al 013133 |GATGCCAGGATCAGACCCAA IGCAACTCACGTTCACAGGAGG
emeOX oxygenase 012580 |AGAGCGAAACAAGCAGAACCC [TCCTCAGGGAAGTAGAGCGG
Hsp27 shock protein 27 INM 031970 [TGCCCAAAGCAGTCACACAA ICGAAAGTGACCGGAATGGTG
70.1 shock protein 70.1 INM_031971 [TTCAATATGAAGAGCGCCGTG IGCTGATCTGM2CCCTGM2AGACC
[Hsp70.2 _|heat shock protein 70.2 275029 JAGAGGCTCTTTCTGGCGCTC IGGCCACCCATCTGTCTCCTAG
INfkbia kappa B i alpha 1X63594 IJAGGCACTTCTGAAAGCTGGC [TTCCTCGAAAGTCTCGGAGC
IMPZ [myelin protein zero INM 017027 |CCCCAGTAGAACCAGCCTCA [TCCAGGCCCATCATGTTCTT
IMRG-3 _jmemory-related gene U95149 IACATGACAGGACAGCATGGC ICATGM2GTCTGCACACCTCTTTTT
IMT-1 llothionein 1 Eoo-/so ICTGCTCCAAATGTGCCCAG ICACTGM2TCCGAGGCACCTTT
IMT-2 Metallothionein 2 IMum [TGCAAGAAAAGCTGCTGTTCC IGGAGCACTTCGCACAGCC
IMT-3 Metallothionein 3 INM 053968 |[TGAGACCTGCCCCTGTCCTA ICATTGM2TCCGAGCAGGTGC
Oazi lornithine decarboxylase antizyme inhibitorilNM 022585 |AATTCCGCCGAAAAAGAGAAG IGATAACGGCCCAAAGAGTCG
ISyn7 ynaptotagmin 7 INM 021659 [TCTGTCTCGGACCTCGTCAAC IGGAGAGCATGAGCATCTCGC
Ttpa herol transfer protein alj 013048 (GCGTTATTCCCATGACCCG ICCAAAGACTTGM2GTTTCCCG
[UVB [ultraviolet B radiation-activated gene U12526 IGGACAACTGAGTAGGACTTCGGG [TAGCGGGCCTTAGAGGTGAC




Table 2.

|GenBank [Unigene
IProbe |Accession ICluster Q-RT-PCR Forward Primer IQ-RT-PCR Reverse Primer
Heat shock protein 70 16764 Rn.1950  |S-TTCAATATGAAGAGCGCCGTG-3  [S-GCTGATCTGM2CCCTGM2AGACC-3'
Heat shock 70kD protein 1A INM 031971
5p70.2 mRNA for heat shock protein 70 [Z75029 Rn.81083  |5s-AGAGGCTCTTTCTGGCGCTC-3 __|5-GGCCACCCATCTGTCTCCTAG-3'

Table 3.
GenBank _|Description [ Abbrev Microarray Q-RT-PCR
Cluster 1 05 | 6 12 | 24 05 | 6 12 | 24
L16764 _[Heat shock protein 70-1 Hspala | 5.46* | 1.88 | 133 | 0.89 | [26.68*[10.99*] 11.08 | 0.84
775029 [Hsp70.2 mRNA for heat shock protein 70 Hsp70.2 | 4.87* | 3.05* | 2.50* [ 1.01 | [2634*[11.75*] 13.60 | 0.91
NM 031971 [Heat shock protein 70-1 Hspala | 3.43* | 1.49 [ 123 [ 084
Cluster 2
M11794 _ [Metallothionein-2 and metallothi 1 genes Mtla | 0.81 | 2.08* [ 1.88 | 076 | [ 039* | 3.42* [ 2.47¢ [ 1.1
300756 felintioncin- Mtl 093 | 444* | 367* | 071 079 | 572* | 401* | 1.2
M55534  [Crystallin, alpha B Cryasb | 085 | 1.64 [ 1.79 | 1.04 | [ 079 [ 2.15* [ 225* | 112
M11794  [Metallothionein-2 and metalloth 1 genes Mtla | 098 | 192 | 1.57 | 1.08
Cluster 3

Egr-1 | 191 | 077 | 079 | 076

2.31* [ 0.39* [ 0.29* [ 0.32* |

| Ppnt6 | 1.60 [ 0.63 [ 0.59 | 0.65




Table 4

Genbank Abbrev Microarray Q-RT-PCR
Cluster 1__Description 0.5 6 12 24 0.5 6 12 24
L16764 |Heat shock protein 70-1 Hspala | 13.98* | 10.83* [ 16.25¢ | 1.98 | [ 24.80* | 83.48* | 96.93* [ 6.70*
Z75029  [Hsp70.2 mRNA for heat shock protein 70 Hsp70.2 | 10.79* [ 10.81* | 17.96* | 2.76* | [ 27.52* [ 80.88* [101.01%] 10.92¢
NM 031971 [Heat shock protein 70-1 Hspala | 7.20* | 6.42° | 11.69* | 1.55
NM 012912 |Activating transcription factor 3 A3 | 2.18* | 147 | 137 | 101 | [ 807* [ 520 [ 426* [ 078 |
X89968 _[NSF protein attachment protein alpha Napa | 2.03* | 1.08 | 120 | 190
NM_012580 [Heme oxygenase Hmoxl | 148 | 198 | 240* | 111 | [ 178 | 1.58 | 1.61* | 115 |
Cluster 2
M11794 _[Rat metallothionein-2 and metallothionein-1 genes Mtla | 1.02 [ 541* [ s02¢ [ 171 | [ 071 [ 10.16 [ 5.07* | 3.90¢ |
M11794 _[Rat metallothionein-2 and metallothionein-1 genes Mtla | 099 | 438 | 3.69* | 141
J00750 _[Metallothionein 1 Mtl_ | 1.06 | 6.05* | 489* | 1.6l 079 [13.54* ] 678 | 283
MS55534 _ [Crystallin, alpha B Cryab | 083 | 148 | 231° | 121 || 1.64* | 3.10 [ 1.98* [ 3.38¢
M86389 _[Heat shock protein 27 Hsp27 | 1.01 | 1.54 | 227* | 1.14 130 | 335 | 230% | 2.40*
NM 031970 [Heat shock 27 kDa protein Hsp27 | 118 | 151 | 2.12* | 1.26
024174 [Cyclin-dependent kinase inhibitor 1A Cdknla | 1.04 | 2.17* | 144 | 137
U12526 _[Ultraviolet B radiation-activated UV96 UV96 | 094 | 2.12* | 185 | 101 | [ 088 | 5.00* [ 2.58* [ 1.03 |
AB029342 [TBP-i ing protein Tip] 20B Tip120B | 1.13 | 2.06* | 162 | 1.33
D89983 _ |Omnithine decarboxylase antizyme inhibitor Oazi_ | 1.18 | 2.01* | 150 | 099 | [ 1.63* [ 391* | 147 [ 133 |
U20106 _[Synaptotagmin 7 syt7 | 097 | 2.00* | 144 | 091 |[ 080 | 1.09 | 111 [ 093 |
Cluster 3
os fos NA | NA | NA [ NA |[13.16*] s61* [ 451 [ 3.16* |
NM 017259 [Bcell translocation gene 2 BTG2 | 244* | 1.03 | 1.05 | 080 '
NM 012551 [Early growth response Egrl | 242* | 1.16 | 078 | 039* | [ 3.46* [ 249 [ 142 [ 073 |
02553 [Protein tyrosine phosphatase, ptor type 16 Pipnl6 | 2.12* | 127 | L1l | 051
NM 024388 |1 diate early gene transcription factor NGFI-B Nrdal 2.02* 1.02 0.89 0.71
Cluster 4
NM 017027 [Myelin protein zero MPZ | 020* | 086 | 056 | 0.09* |[ 024 | 1.85 | 068 [ 0.12 |
X63594 _NF kappa B inhibitor, alpha Nfkbia | 115 | 1.10 | 099 | 038 |[223* | 361 | 1.80 | 085 |
| NM 017037 [Peripheral myelin protein 22 PMP22 | 052 | 091 | 069 | 0.43*
778279 [Collagen, alphal, type I Collal | 0.59 | 088 | 077 | 0.45*
NM_019386 [Tissue-type transglutami Tgm2 | 049* | 097 [ 117 | o066 | [ 151 [ 145 [ 1.03 [ 1.93+ |
Cluster 5
NM 013048 [Tocopherol transfer protein alpha Ttpa 1.03 | 0.33* | 040 1.09
{emoglobin, beta Hbb | 042* | 052 | 080 | 072
Hemoglobin, beta Hbb | 048* | 056 | 075 | 0.80
AF306546_[Solute carrier family 21, member 14 Sic21al4| 0.69 | 0.47* | 0.67 | 0.62
NM 013133 [Glycine receptor, alpha 1 subunit Glral | 073 [ 050* | 057 | o085 | [ 278 [ 210* [ 127 [ 072 ]
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