

Chris Christie Governor Kim Guadagno Lt. Governor

State of New Jersey

THE PINELANDS COMMISSION PO Box 359 New Lisbon, NJ 08064 (609) 894-7300 www.nj.gov/pinelands

General Information: Info@njpines.state.nj.us Application Specific Information: AppInfo@njpines.state.nj.us

Mark S. Lohbauer Chairman Nancy Wittenberg Executive Director

September 9, 2014

Public Notice:

The New Jersey Pinelands Commission (Commission) is seeking public comment regarding a proposed Memorandum of Agreement (MOA) between the Richard Stockton College of New Jersey (College) and the Commission. The proposed MOA would authorize the College to engage in development activities, as discussed in its April 2010 Commission approved Master Plan, without securing individual development approvals from the Commission. The proposed MOA would also approve the College's 2010 Stormwater Management Master Plan. All development to be conducted under this proposed alternative permitting process MOA will be consistent with the provisions of the Pinelands Comprehensive Management Plan (CMP). No deviations from the land use or environmental standards of the Pinelands CMP are proposed.

A public hearing regarding the proposed MOA and the 2010 Stormwater Management Master Plan was previously held on October 2, 2012. Only minor changes have been made to the MOA, including the deletion of the forestry component, since that time. However, given the length of time between the 2012 public hearing and the Commission's consideration of the proposed MOA, the Commission is now providing an additional opportunity for submission of written public comment on the proposed MOA.

A draft of the proposed MOA and supporting materials are available for public inspection and copying at the principal offices of the Commission and on the Commission's website (http://www.state.nj.us/pinelands/). They are also attached to this file. Written comments may be submitted by mail to the Pinelands Commission, P.O. Box 359, New Lisbon, NJ, 08064 or via facsimile (609) 894-7330 or e-mail to info@nipines.state.nj.us no later than October 15, 2014.

MEMORANDUM OF AGREEMENT BETWEEN THE RICHARD STOCKTON COLLEGE OF NEW JERSEY AND THE NEW JERSEY PINELANDS COMMISSION

I. PURPOSE

This Memorandum of Agreement ("MOA") is entered into between the New Jersey Pinelands Commission ("Commission") and the Richard Stockton College of New Jersey ("College"), a state-owned undergraduate and graduate college located within Galloway Township ("Township"), Atlantic County. The Commission is an independent political subdivision of the State of New Jersey created pursuant to Section 4 of the Pinelands Protection Act, N.J.S.A. 13:18A-1, *et seq.*, and charged with the implementation thereof and of the Pinelands Comprehensive Management Plan ("CMP"), N.J.A.C. 7:50-1 *et seq.*

In April 2010, the College completed a Master Plan for its 1,560-acre campus, all of which is located within the Pinelands Area. In August 2010, the Commission certified the "April 2010 Master Plan of the Richard Stockton College of New Jersey" ("2010 Master Plan"). The 2010 Master Plan is intended to guide all on-campus development for, at a minimum, the next 20 years. This MOA is intended to facilitate, consistent with the requirements of the CMP, the implementation of the development areas delineated in the 2010 Master Plan.

II. BACKGROUND

The College's campus consists of over 1,500 acres located partially within the Township's Regional Growth Area and partially within the Township's Rural Development Area. Since September 1971, the College has served as one of the region's institutions of higher education. As a result of, among other things, regional population growth since the time of the College's last master plan, the College is now educating many more students than previously anticipated. While the College's current facilities were designed to support a Full Time Equivalent Enrollment of approximately 5,000 students, the College's Fall 2013 Full Time Equivalent Enrollment exceeds 7,500 students. Today, the College educates more than 50% more students than originally anticipated. Thus, the College's facilities are inadequate to accommodate its current enrollment. The projected growth of student enrollment at the College over the next 20 years will only exacerbate the current situation. This MOA will facilitate and expedite the development of appropriate areas of the College's campus consistent with the standards of the CMP, while, at the same time, the 2010 Master Plan protects other environmentally sensitive on-and off-campus buffer areas.

A. The 2010 Master Plan

The 2010 Master Plan identifies the College's anticipated on-campus development projects over the course of the next 20 years based on projected student enrollment. The College's possible development projects include nearly 2.4 million gross square feet of new development, nearly 11,000 new parking spaces, and more than 3,100 new dwelling units (mostly dormitory units). The approximate locations and configurations of these anticipated development projects are illustrated on page 39 of the 2010 Master Plan, entitled "Exhibit 15: 2010 Development Areas" ("Development Areas") (Exhibit 15 of the 2010 Master Plan is attached hereto as Attachment 1 and is incorporated herein by reference). The development projects anticipated to occur within these Development Areas are described on page 40 of the 2010 Master Plan, "entitled Exhibit 16: Description of Development Areas." (Exhibit 16 of the 2010 Master Plan is attached hereto as Attachment 2 and is incorporated herein by reference). Supplemental Background Details from the April 2010 Master Plan are attached hereto as Attachment 5 and incorporated herein by reference.

B. 2010 Stormwater Management Master Plan:

The 2010 Stormwater Management Master Plan ("Stormwater Plan") includes conceptual layouts for the development projects that are anticipated within these Development Areas. (The Stormwater Plan is attached hereto as Attachment 3 and incorporated herein by reference). This MOA, in addition to establishing an alternative permitting process for development to be constructed within the Development Areas, also approves the Stormwater Plan. The conceptual layouts in the Stormwater Plan are only intended to illustrate the types of development anticipated within each Development Area. More importantly, the Stormwater Plan delineates the proposed limits of disturbance and the maximum impervious coverage permitted within each Development Area. This MOA establishes an alternative permitting process for those development projects that may occur within the Development Areas listed below (the "Designated Development Areas") provided that such development is both contained within the total area of disturbance initially identified within the Master Plan, and further refined in the Stormwater Plan, and does not exceed the maximum impervious coverage limits established in the Stormwater Plan, as reiterated below:

- 1. Designated Development Area 1 (Core Campus Development): a 56.55-acre area wherein:
 - a. existing overall impervious coverage of 35.34 acres will be reduced to a maximum impervious coverage of 34.02 acres,
 - b. no more than 16.26 acres of additional land is cleared, and
 - c. a minimum of 6.27 acres shall remain wooded.
- 2. Designated Development Area 2 (Pomona Community of Learning) & Designated Development Area 3 (Athletic Complex/Barlow Site): a 106.30-acre area wherein:
 - a. a maximum impervious coverage of 11.95 acres is permitted,
 - b. no more than 84.07 acres of additional land is cleared, and
 - c. a minimum of 10.28 acres shall remain wooded.
- 3. Designated Development Area 4 (Stockton Towers): a developed area where no increase in impervious coverage is either required or permitted and no increase in clearing is either required or permitted. Re-development with new low-rise dormitory units will replace the existing dormitory units within the footprint of the existing buildings and the adjacent courtyard.

- 4. Designated Development Area 5 (Health & Science Complex, Jimmie Leeds Road Commercial) & Designated Development Area 8 (Administrative Buildings Jimmie Leeds Road): these areas total 79.36 acres wherein:
 - a. a maximum impervious coverage of 35.42 acres is permitted,
 - b. no more than 43.94 acres of additional land is cleared, and
 - c. there is no minimum area that shall remain wooded. The stormwater design was conservatively calculated as though the entire development area was to be disturbed.
- 5. Designated Development Area 6 (Research Park): a 48.20-acre area wherein:
 - a. a maximum impervious coverage of 21.92 acres is permitted,
 - b. no more than 14.21 acres of additional land is cleared, and
 - c. a minimum of 12.07 acres shall remain wooded.
- 6. Designated Development Area 7 (Administrative Buildings Pomona Road): a 36.49-acre area wherein:
 - a. a maximum impervious coverage of 11.97 acres is permitted,
 - b. no more than 10.00 acres of additional land is cleared, and
 - c. a minimum of 14.52 acres shall remain wooded.
- 7. Designated Development Area 9 (Plant Operations Storage Upgrade): a developed area where no increase in impervious coverage is either required or permitted and no increase in clearing is either required or permitted. Re-development with new storage buildings will replace the existing storage building within the footprint of the existing building and the surrounding compacted gravel surface.
- 8. Designated Development Area 10 (Research Park Administrative Annex): a 24.35-acre area wherein:
 - a. a maximum impervious coverage of 6.54 acres is permitted,
 - b. no more than 3.52 acres of additional cleared land is permitted, and
 - c. a minimum of 14.29 acres shall remain wooded.

As is indicated later in Paragraph III.A.1.d., details of the final stormwater plan for each structure will be submitted when the College moves forward with each individual development.

C. The Basis of the MOA

The CMP, at N.J.A.C. 7:50-4.52(c)1, authorizes the Commission to enter into an intergovernmental memorandum with any agency of the Federal, State or local government that authorizes such agency to carry out specified development activities without securing individual development approvals from the Commission, provided that the specified development activities are consistent with the provisions of N.J.A.C. 7:50-5 and 6.

Prior Master Plan Approval: As part of the 2010 Master Plan, the College has identified the uses, types, intensities, and locations of its anticipated development. Provided that sufficient sewer capacity and/or septic dilution is available, at the time of proposed development, to

accommodate the wastewater flows generated by such uses and development, the Commission has determined that such uses and development are consistent with the minimum requirements of the CMP.

- First, the Commission has reviewed all of the College's Designated Development Areas and these Designated Development Areas do not involve any resources, structures, or areas found significant pursuant to N.J.A.C. 7:50-6.155.
- Second, the College has conducted, and the Commission has approved, campus-wide studies to identify threatened and endangered plant species as well as critical habitat for threatened and endangered animal species. The College has taken protective measures by delineating those areas where threatened or endangered plant species are known to exist; by delineating those areas determined to be critical habitat for threatened or endangered animal species; and by establishing appropriate buffers for both of the above-described areas. Specifically:
 - a) The College has agreed to cluster its proposed development to the greatest extent practicable so as to avoid and minimize disturbance adjacent to wetlands, wetland buffers, threatened and endangered plant species, critical habitat for threatened and endangered animal species, and other deed-restricted lands found to be necessary for the protection of either threatened and endangered plant species or critical habitat of threatened and endangered animal species.
 - b) More specifically, the College has also agreed to especially ensure that all development pursuant to this MOA will be clustered to minimize disturbance of these above-described environmentally sensitive areas along Delaware and Louisville Avenues, the Core Academic Area, and behind the Plant Management Building at the northern end of the campus.
 - c) The College has also deed-restricted over 1,200 acres of high-integrity habitat, including an extensive wetlands ecosystem and areas known to be critical habitat for threatened and endangered species. These deed-restricted lands are depicted in green and blue on Exhibit C of the Executive Director's Report on the Richard Stockton College April 2010 Master Plan (which exhibit is attached hereto as Attachment 4 and incorporated herein). In accordance with the Deed of Conservation Restriction, dated October 7, 2010, other than forestry, the College's use of these deed-restricted lands is extremely limited.
- Third, the College has field-delineated wetlands throughout its campus and established appropriate buffers of either 175 or 300 feet (See Attachment 4).
- Fourth, as discussed above, the College has prepared a Stormwater Plan for those portions of the campus to be developed. The Stormwater Plan delineates Development Areas as well as total areas of disturbance for each of the Development Areas. It also specifies total impervious surface coverage limits for each of the Development Areas on the College's campus.

Attached Stormwater Plan: the attached plan has been found to be adequate to handle the maximum impervious surfaces listed above for each development area. However, because this plan does not contain all information necessary for a complete stormwater review, final review of stormwater will be conducted at the time each proposed development is submitted to the Commission staff in accordance with Paragraph III.A.1.d.

III. AGREEMENTS

A. The College agrees that:

- 1. At least thirty (30) days prior to commencing any development within any Designated Development Area, the College shall provide the following information, to the Commission's staff:
 - a. A narrative description of each proposed development project;
 - b. A detailed site plan for each proposed development project, depicting all proposed buildings, structures, improvements of any kind, all land disturbances of any kind and denoting the following:
 - i. The extent of any wooded area to be cleared within the Designated Development Area demonstrating to the staff's satisfaction that the extent of the clearing has been minimized to that which is necessary to accommodate the College's proposed development project;
 - ii. That all development within a Designated Development Area has been clustered away from wetlands and deed-restricted areas in accordance with the requirements of the 2010 Master Plan;
 - iii. That the use of lawn or turf will be minimized, in accordance with the 2010 Master Plan and with N.J.A.C. 7:50-6.24:
 - iv. That any temporary clearing will be revegetated in accordance with N.J.A.C. 7:50-6.23, after construction is complete; and
 - v. An accounting of the total area of disturbance for each proposed development project undertaken within a given Designated Development Area that includes the cumulative disturbance from the proposed and previous projects relative to the maximum disturbance permitted within the given Designated Development Area.
 - c. An AutoCAD file, shapefile, or personal geodatabase file depicting the proposed development project, including, all proposed buildings, structures, improvements of any kind, and all land disturbances of any kind;

- d. Such information as is necessary to demonstrate that each proposed development project is consistent with the Stormwater Plan. Such information shall include an accounting of the total impervious surface coverage proposed for each proposed development project within each Designated Development Area. It shall also show the cumulative impervious coverage from the proposed and previous projects relative to the maximum impervious surface coverage that the Stormwater Plan permits within the given Designated Development Area. Such information shall also include stormwater conveyance and other construction details, as appropriate;
- e. A signed certification of a licensed New Jersey Professional Engineer certifying that the proposed development is consistent with the 2010 Master Plan, the Stormwater Plan, the terms of this MOA, or the requirements of N.J.A.C. 7:50-5 and 6.
- f. As applicable, a detailed analysis demonstrating compliance with the standards set forth in N.J.A.C. 7:50-6.94 (air quality standards);
- g. As applicable, information sufficient to demonstrate compliance with the standards set forth in N.J.A.C. 7:50-6.107 (sign standards); and,
- h. As applicable, information sufficient to demonstrate compliance with the standards set forth in N.J.A.C. 7:50-6.124 (fire hazard mitigation standards).
- i. Notwithstanding the provisions of N.J.A.C. 7:50-1.6(a).2, a fee for Commission staff's review of development projects calculated in accordance with N.J.A.C. 7:50-1.6. For the purpose of the fee calculation, projects shall be considered public development by a public agency and based on estimated construction costs. The maximum fee for any single development project shall not exceed \$25,000.
- 2. If the Executive Director determines that any proposed development project submitted in accordance with Paragraph III.A.1. above is inconsistent with the requirements of this MOA, the 2010 Master Plan, the Stormwater Plan or the provisions of N.J.A.C. 7:50-5 and 6 not addressed by this MOA, the College agrees that it will modify the proposed development project until the Commission's staff determines that the proposed development project is consistent with such requirements. If the College disagrees with the staff's determination, it may file a complete application and seek formal Commission approval of a Public Development Application for the proposed development project.
- 3. The College shall not commence any development project within any Designated Development Area until it has submitted the information required by Paragraph III.A.1 above and has received written authorization from the Commission's staff indicating that the proposed development project is consistent with the requirements

of this MOA, the 2010 Master Plan, the Stormwater Plan, and the provisions of N.J.A.C. 7:50-5 and 6. If the Commission fails to respond within thirty (30) days of its receipt of information submitted pursuant to Paragraphs III.A.1, the provisions of Paragraph III.B.7. shall apply. However, should the College subsequently receive a letter stating that the certification submitted by the Professional Engineer is in error and that the proposed development is inconsistent with the 2010 Master Plan, the Stormwater Plan, the terms of this MOA or provisions of N.J.A.C. 7:50-5 and 6 not addressed by this MOA, the College shall immediately cease all development activities and shall work with Commissions staff in accordance with Paragraph III.A.2 above to modify the proposed development project to render it consistent with such requirements. The Commission shall use its best efforts to complete its review within thirty (30) calendar days of receipt of a complete submission of all of the information required by Paragraph III.A.1. above and shall keep the College apprised as to the status of its review.

- 4. The College shall perform all development projects within the Designated Development Areas and such work shall be performed in accordance with the following:
 - a. The terms of this MOA:
 - b. The 2010 Master Plan;
 - c. The Stormwater Plan;
 - d. The Commission's written authorization issued in accordance with Paragraph III.B.7. or III.B.10.; and
 - e. The provisions of N.J.A.C. 7:50-5 and -6 not addressed by this MOA.
- 5. The College shall submit a formal development application to the Pinelands Commission, in accordance with the requirements of N.J.A.C. 7:50-4.53(b), for any proposed development to be located outside of a Designated Development Area or that is not consistent with the terms of this MOA, the 2010 Master Plan or the Stormwater Plan and shall not commence such development activities until a complete Public Development Application has been submitted to and approved by the Commission.
- 6. If new information becomes available concerning, or changes are made to: 1) the number and/or type of residential units; 2) the extent of clearing, the amount of impervious coverage, or any other material aspect of any development project proposed within any Designated Development Area and for which the Commission staff has previously issued a written authorization in accordance with Paragraph III.B.7. or III.B.10., or 3) a Designate Development Area itself, the College shall:
 - a. submit such new information to the Commission's staff for review so that the Executive Director may determine whether the proposed development remains consistent with the terms of this MOA, the requirements of N.J.A.C. 7:50-5 or 6 not addressed by this MOA, the Master Plan, the Stormwater Plan and the

- October 7, 2010 Deed of Conservation Restriction and issue a consistency determination in accordance with Paragraph III.B.7. or III.B.10; or
- b. if such new information or changes involve substantive variances or waivers of CMP regulations or of the Master Plan, the College shall either seek an amendment of the Master Plan and of this MOA, or submit a formal public development application in accordance with N.J.A.C. 7:50-4.53(b) for such development.
- 7. No part of this MOA shall release the College from its responsibility to obtain all other required local, State, and/or Federal approvals.
- 8. The terms of this MOA shall immediately be suspended, in the event that the Commission determines that an outstanding, unresolved violation of the CMP or of a written authorization issued by the Executive Director in accordance with Paragraph III.B.7. or III.B.10. exists on-campus. The College shall have sixty (60) days to seek reinstatement of this MOA by providing the Commission with a written agreement itemizing the steps the College will take to remedy the violation and a timeline for completion of such steps. If the measures and timeline for completion proposed by the College are acceptable to the Executive Director, s/he shall issue a letter to the College reinstating the terms of this MOA. Failure of the College to complete the measures required to cure the violation or make noted changes to its submissions after Commission staff comments within the specified timeline may result in reinstatement of the suspension.
- 9. During a period of suspension in accordance with Paragraph III.A.8 above, the College shall be permitted to complete development projects for which a written authorization from the Executive Director in accordance with Paragraphs III.B.7 and III.B.10 has been received. All other development shall require submission of a formal Public Development Application to the Commission in accordance with N.J.A.C. 7:50-4.52(b), and said development shall not commence until such application has been approved by the Commission.
- 10. Upon execution of this MOA, the College shall reimburse the Commission for the Commission's staff time expended in the development of this MOA. Additionally, fees for Commission staff's review of each development project shall be paid as described in Paragraph III.A.1.i above.
- 11. The College shall attend a meeting of the Commission's Policy and Implementation Committee on a biennial basis, around the anniversary date of the execution of this MOA by the last signatory, to provide the Committee with an synopsis of the development that has occurred at The Richard Stockton College of New Jersey in accordance with the terms of this MOA and any proposed development anticipated to be conducted by the College in the upcoming two year period.
- B. The Pinelands Commission agrees that:

- 1. Any development project located within any Designated Development Area that is consistent with the terms of this MOA, the 2010 Master Plan, the Stormwater Plan, and the provisions of N.J.A.C. 7:50- 5 and 6 not already addressed by this MOA, shall not require the filing of a Public Development Application in accordance with N.J.A.C. 7:50-4.52(b).
- 2. Based on its review of the 2010 Master Plan, the Stormwater Plan, and the provisions of N.J.A.C. 7:50-5 and 6, the uses, types, intensities, and locations of development, as well as the number of non-student residential units and any commercial development and their associated Pinelands Development Credits, if any, proposed by the College within the Designated Development Areas, are consistent with the minimum requirements of the CMP, provided such development is served by public sanitary sewer, or septic dilution, as applicable, and, if served by sewer, that sufficient sewer capacity is available at the time of proposed development to accommodate the wastewater flows generated by such development.
- 3. No additional information concerning Parts VIII (Water Quality) or XV (Historic, Archaeological, and Cultural Preservation) of Subchapter 6 of the CMP, see N.J.A.C. 7:50-6.81 to -6.87; 7:50-6.151 to -6.158, other than that information which is required to be submitted pursuant to Paragraphs III.A.1, III.A.2, or III.A.7 above, shall be required for any proposed development projects for which a Public Development Application is not required to be submitted to the Commission in accordance with Paragraph III.B.1 above.
- 4. For the ten (10) year period running from September 10, 2010 (i.e., the date of the Commission's certification of the 2010 Master Plan) up to and including September 9, 2020, no additional information concerning Part I (Wetlands) of Subchapter 6 of the CMP, see N.J.A.C. 7:50-6.1 to -6.14, shall be required for development within the Designated Development Areas that is consistent with the terms of this MOA, the Master Plan, and the Stormwater Plan, other than that information which is required to be submitted pursuant to Paragraphs III.A.1, III.A.2, or III.A.7 above. At the conclusion of this ten-year period, the College may request that the Commission reevaluate the adequacy of the wetlands buffers established by the 2010 Master Plan. Nothing in this paragraph shall apply to any project that is not proposed to be constructed in a Designated Development Area, any project located within a Designated Development Area that is not consistent with the terms of this MOA, the Master Plan, or the Stormwater Plan.
- 5. As provided by the approved 2010 Master Plan:
 - (a) For the ten (10) year period running from September 10, 2010 (i.e., the date of the Commission's certification of the 2010 Master Plan) up to and including September 9, 2020, the College shall not be required to submit under Part II (Vegetation) or Part III (Fish and Wildlife) of Subchapter 6 of

- the CMP, <u>see</u> N.J.A.C. 7:50-6.21 to -6.27; N.J.A.C. 7:50-6.31 to 6.34, any additional information concerning threatened or endangered species that were investigated in the 2010 Master Plan, other than that information required by Paragraphs III.A.1., III.A.2., or III.A.7. above.
- (b) If, by the conclusion of this ten-year period, neither the College, the Commission, NJDEP, the United States Fish and Wildlife Service ("USFWS"), or any other source determined to be credible by the Commission has discovered any new information concerning the presence or absence of threatened or endangered species that were investigated in the 2010 Master Plan, the College will not be required for a second ten (10) year period running from September 10, 2020 up to and including September 9, 2030 to submit under Part II (Vegetation) or Part III (Fish and Wildlife) of Subchapter 6 of the CMP, see N.J.A.C. 7:50-6.21 to -6.27; N.J.A.C. 7:50-6.31 to -6.34, any additional information concerning these threatened or endangered species, other than that information required by Paragraphs III.A.1., III.A.2., or III.A.7. above.
- (c) If, at any time, the College, the Commission, the NJDEP, the USFWS, or any other source determined to be credible by the Commission discovers information concerning the presence of threatened or endangered species that were not investigated in the 2010 Master Plan, the College shall, with respect to these species, be subject to the requirements of Part II (Vegetation) and Part III (Fish and Wildlife) of Subchapter 6 of the CMP, see N.J.A.C. 7:50-6.21 et seq. and N.J.A.C. 7:50-6.31 et seq., until such time as the College obtains the Commission's approval of an appropriately amended Master Plan which addresses such threatened or endangered species.
- 6. Within thirty (30) days of receipt of information submitted pursuant to Paragraphs III.A.1., III.A.2., or III.A.7. above, the Commission's staff shall provide written authorization in accordance with Paragraph III.B.10. or a written explanation of all known inconsistencies in accordance with Paragraph III.B.9. below.
- 7. Failure of the Commission to respond, within thirty (30) day of its receipt of information submitted by the College pursuant to Paragraphs III.A.1., if such information is accompanied by a licensed Professional Engineer's signature certifying that the proposed development is consistent with the 2010 Master Plan, the Stormwater Plan, the terms of this MOA and the requirements of N.J.A.C. 7:50-5 and 6 not addressed by this MOA, shall constitute approval of such development. However, should the Commission subsequently determine that that the certification submitted by the Professional Engineer is in error and that the proposed development is inconsistent with the 2010 Master Plan, the Stormwater Plan, the terms of this MOA or provisions of N.J.A.C. 7:50-5 and 6 not addressed by this MOA, such approval shall be suspended pending the College fulfilling its obligations under Paragraph III.A.3 above to work with Commissions staff to

- modify the proposed development project to render it consistent with such requirements.
- 8. If the Executive Director determines that any portion of any development project proposed within any Designated Development Area is inconsistent with this MOA, the 2010 Master Plan, the Stormwater Plan, or any provisions of N.J.A.C. 7:50-5 or 6 not already addressed by this MOA, the Commission's staff shall provide a written explanation of said deficiencies and identify specific actions that the College must take in order to remedy such deficiencies.
- 9. If the Commission's staff determines, after review of information submitted in accordance with Paragraphs III.A.1., III.A.2., or III.A.7. above and/or in response to any deficiency letter issued by the Commission pursuant to Paragraph III.B.9., that any development project proposed within any Designated Development Area is consistent with this MOA, the 2010 Master Plan, the Stormwater Plan, and the provisions of N.J.A.C. 7:50-5 and 6 not already addressed by this MOA, the Commission staff shall issue a written authorization to the College setting forth this determination. This written authorization shall constitute a public development approval and no further action by the Commission shall be required.
- 10. In the event of a suspension of the terms of the MOA in accordance with Paragraph III.A.8. above, the Executive Director shall issue a letter to the College reinstating the terms of this MOA following the College's submission of a written agreement in accordance with Paragraph III.A.9 and the acceptance of same by the Executive Director. The Executive Director retains the right to deem a violation unresolved until such time as the College has actually implemented all measures set forth within its written agreement.

IV. PRIOR MOAs

The 1990 Memorandum of Agreement between the Pinelands Commission and Stockton State College and the 1996 Memorandum of Agreement between the New Jersey Pinelands Commission and the Richard Stockton College of New Jersey are superseded by the terms of this MOA and are rescinded in their entirety and are null and void and without any further force or effect at law or equity.

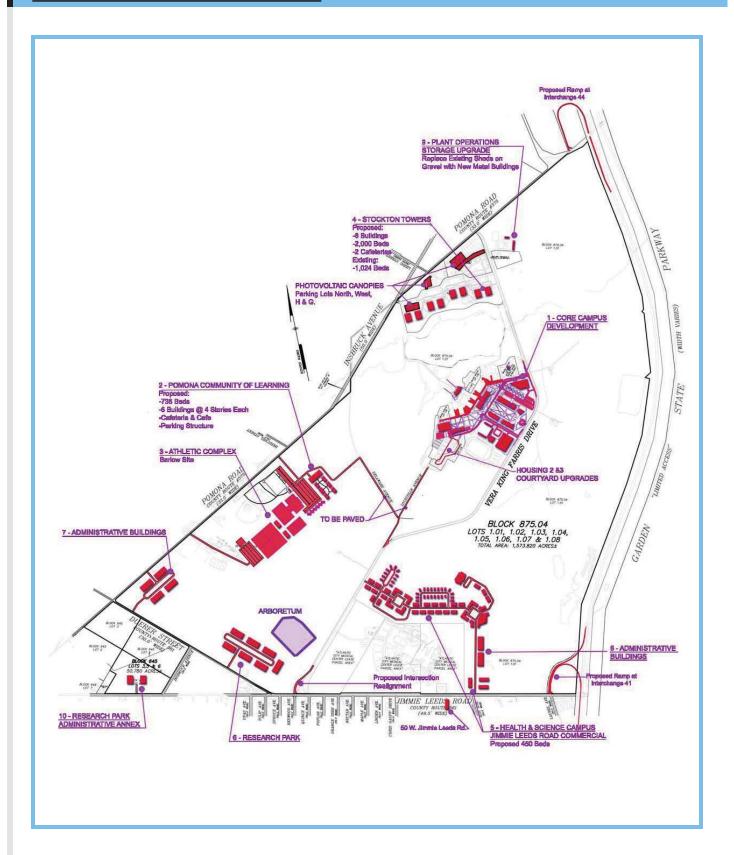
V. EFFECTIVE DATE, DURATION, AND SIGNATURES

1. In accordance with N.J.S.A. 13:18A-5(h), this MOA, and any subsequent amendments hereto, shall take effect following the conclusion of the Governor's review period and/or approval of the Pinelands Commission's meeting minutes authorizing entry of this MOA and then upon approval and signature by the authorized representative of both parties. The date of execution of the last signatory shall constitute the effective date.

- 2. This MOA shall remain in effect unless amended by written consent of both parties or otherwise terminated by either party upon sixty (60) days written notice or suspended by the Commission in accordance with Paragraph III.A.9.
- 3. This MOA, along with any exhibits, appendices, addendums, schedules, and amendments, constitutes the entire agreement of the parties, and supersedes all previous understandings and agreements between the parties, whether oral or written. The parties hereby acknowledge and represent that said parties have not relied on any representation, assertion, guarantee, warranty, collateral contract, or other assurance, except those set out in this MOA, made by or on behalf of any other party or any other person or entity whatsoever, prior to the execution of this MOA.
- 4. This MOA may be executed in counterparts. All such counterparts shall constitute an original and all of which together shall constitute one and the same agreement, binding upon the parties. Faxed and electronic signatures shall constitute original signatures.

TT704

IN WITNESS WHEREOF, the parties have caused their duly authorized representatives to execute this MOA on and as of the day and year written below. This MOA shall be executed in at least three original copies of which one is to be delivered to the Richard Stockton College of New Jersey, and two of which are to be delivered to the New Jersey Pinelands Commission.


The Richard Stockton College of New Jersey	witnessea:
By:	By:
Herman J. Saatkamp, Jr., Ph.D., President	Name:
Date:	Title:
New Jersey Pinelands Commission	Witnessed:
By: Nancy Wittenberg, Executive Director	By:
Nancy wittenberg, Executive Director	Name:
Date:	Title:
Approved as to form by:	
By: Kristen Heinzerling, Deputy Attorney General	
Date:	

List of Attachments

- 1. Exhibit 15 of the 2010 Master Plan: Development Areas (Master Plan, Page 39)
- 2. Exhibit 16 of the 2010 Master Plan: Description of the Development Areas (Master Plan, Page 40)
- 3. 2010 Stormwater Management Master Plan
- 4. Exhibit C of the Executive Director's Report on the Richard Stockton College April 2010 Master Plan: Deed Restricted Lands
- 5. Supplemental Background Details from the April 2010 Master Plan

<u>ki. development are</u>

EXHIBIT 15: 2010 DEVELOPMENT AREAS

EXHIBIT 16: DESCRIPTION OF DEVELOPMENT AREAS

<u>1 – Core</u>	Campus	<u>Development</u>

Campus Center and Academic Space-	150,000 GSF
Academic Space- West Quad	75,000 GSF
Academic and Support- Lakeside Building	75,000 GSF
Recreation and Athletics	10,000 GSF
College Walk Renovation	2,500 LF
Parking Garage I	700 Cars
Science Center	67,000 GSF
Academic Buildings	165,000 GSF
Athletic Facility Expansion with Pool	40,000 GSF
Parking Garage III	1,350 Cars
Housing 2 & 3 Courtyard Renovations	1,600 LF

2 - Pomona Community of Learning

Apartments	768 Units
Parking Structure	768 Cars

3 - Athletic Complex - Barlow Site

Field House	12,000 GSF
Synthetic Fields	165,000 GSF
Natural Turf Fields	345,000 GSF
Skate Park	22,500 GSF
Tennis Courts	6 Courts
Parking	826 Cars

4 - Stockton Towers-Existing Housing I

Apartments	2,000 Units
Parking	2,000 Cars

5 - Heath Science Campus and Jimmie Leeds Road Commercial

Performing Arts Center	35,000 GSF
Conference Center	
Hotel 150 Rooms	78,000 GSF
Meeting Room	20,000 GSF
Parking	150 Cars
Retail/Commercial	
Building Type 1 (Rectangle)	90,000 GSF
Building Type 2 (EII)	36,000 GSF

Building Type 3 (Angle) 18,000 GSF Jimmie Leeds Road Commercial 36,000 GSF

xi. development areas

EXHIBIT 16: DESCRIPTION OF DEVELOPMENT AREAS (continued)

Residential

Apartments Type 1 (Rectangle)

Apartments Type 2 (Ell)

Apartments 3 (Angle)

Town Houses Type 1 (Rectangle)

Twin Houses

Presidents House

1 Unit

Parking

160 Units

64 Units

65 Units

66 Units

17 Unit

18 Parking

18 Cars

6 - Research Park

Head Building 105,000 GSF Side Buildings 420,000 GSF Parking 2,625 Cars

7 - Administrative Buildings

Buildings 70,000 GSF Parking 350 Cars

8 - Administrative Buildings

Buildings 210,000 GSF Parking 1,050 Cars

9 - Plant Operations Storage Upgrade

Storage Buildings 9,600 GSF

10 - Research Park Administrative Annex

Buildings 105,000 GSF Parking 525 Cars

On Site Improvements

Garden State Parkway Interchange 41 Garden State Parkway Interchange 44

Main Entrance Intersection

Realignment of Jimmie Leeds Road and Vera King Farris Drive

Louisville Avenue Paving Delaware Avenue Paving Solar Array Construction North Parking Lot

West Parking Lot
Housing I Parking Lot

Off Site Improvements

50 West Jimmie Leeds Road Office Building 50,000 GSF Parking 250 Cars

STORMWATER COMPLIANCE REPORT

for

2010 Master Plan
The Richard Stockton College of New Jersey
Block 875.04, Lot 1.01 through 1.08
Galloway Township, Atlantic County, New Jersey

August 2010

NEW JERSEY'S
GREEN COLLEGE

Prepared for:

The Richard Stockton College of New Jersey
Office of Facilities Planning and Construction
P.O. Box 483
10 West Jimmie Leeds Road
Pomona, New Jersey 08240-0483

Prepared by:

Marathon Engineering & Environmental Services, Inc. 2922 Atlantic Avenue, Suite 3A Atlantic City, New Jersey 08401

Jason T. Sciullo Professional Engineer New Jersey License No. 24GE04586000

RSC 011.01

PREPARED BY ALL DOCUMENTS MARATHON ENGINEERING ENVIRONMENTAL SERVICES, INC. ARE INSTRUMENTS OF SERVICE WITH RESPECT TO THE PROJECT. THEY ARE NOT INTENDED OR REPRESENTED TO BE SUITABLE FOR REUSE BY THE OWNER OR OTHERS ON EXTENSIONS OF THE PROJECT OR ON ANY OTHER PROJECT. ANY REUSE WITHOUT WRITTEN VERIFICATION OR ADAPTATION BY MARATHON **ENGINEERING** ENVIRONMENTAL SERVICES. INC. FOR THE SPECIFIC PURPOSE INTENDED WILL BE AT OWNER'S SOLE RISK AND WITHOUT LIABILITY OR LEGAL EXPOSURE TO MARATHON ENGINEERING & ENVIRONMENTAL SERVICES, INC.: AND OWNER SHALL INDEMNIFY AND HOLD HARMLESS MARATHON ENGINEERING & ENVIRONMENTAL SERVICES, INC. FROM ALL CLAIMS, DAMAGES, LOSSES AND EXPENSES ARISING OUT OF OR RESULTING THEREFROM.

STORMWATER COMPLIANCE STATEMENT 2010 Master Plan

The Richard Stockton College of New Jersey Pomona, Galloway Township, Atlantic County, New Jersey

TABLE OF CONTENTS

1.0	Introduction	Page 1
2.0	Scope of Work	Page 4
3.0	Design Criteria	Page 5
4.0	Techniques & Procedures of Analysis	Page 8
5.0	Key Hydrologic Principals	Page 9
6.0	Soil Survey Information	Page 9
7.0	Typical Basin Construction Techniques	Page 10
8.0	Areas of Improvements	
	Development Area 1 Development Areas 2 & 3 Development Area 4 Development Areas 5 East, 5 West & 8 Development Area 6 Development Area 7 Development Area 9 Development Area 10	Page 17 Page 19 Page 19 Page 19 Page 21 Page 22 Page 22
9.0	Compliance with Groundwater Recharge Standard at N.J.A.C. 7:50-6.84(a)6iii	Page 25
10.0	Compliance with Runoff Quantity Standard at N.J.A.C. 7:50-6.84(a)6ii	Page 25
11.0	Compliance with Runoff Quality Standard at N.J.A.C. 7:8-5.5	Page 25
12.0	Compliance with Infiltration Basin Design, Siting and Construction Standard at N.J.A.C. 7:50-6.84(a)6iv	Page 26
13.0	Compliance with As-Built Requirement at N.J.A.C. 7:50-6.84(a)6v	Page 27

14.0	Conformance with Nonstructural Management Strategies at N.J.A.C. 7:8-5.3	.Page 28
15.0	Conformance with Low Impact Development Standard in Chapter 2 of the New Jersey Stormwater Best Management Practices Manual	.Page 29
16.0	Conformance with Soil Erosion Control Standard at N.J.A.C. 7:8-5.4(a)1	.Page 32
17.0	Conclusion	.Page 32
Appen	ndix A – Existing and Proposed Conditions	
Appen	ndix B – Stormwater Management Basin Volumes	
Appen	ndix C – Pre and Post-Developed 2, 10, 50, and 100-Year Storm Runoff Calculations	
Appen	ndix D – Soil Investigation and Groundwater Mounding Analysis	
Appen	ndix E – Pinelands Stormwater Checklist	
Appen	ndix F – Stormwater Management Facility Maintenance Manual	

ENGINEERING & ENVIRONMENTAL SERVICES, INC.

STORMWATER COMPLIANCE STATEMENT 2010 Master Plan The Richard Stockton College of New Jersey

The Richard Stockton College of New Jersey Pomona, Galloway Township, Atlantic County, New Jersey

1.0 INTRODUCTION

On behalf of The Richard Stockton College of New Jersey (Stockton), Marathon Engineering & Environmental Services, Inc. (Marathon) interfaced with the New Jersey Pinelands Commission (Pinelands) to establish an approach that will streamline the approval process with the Pinelands for development of future construction projects at Stockton. Previously, each project was submitted to the Pinelands as a stand-alone development; and each one underwent a detailed review by the Pinelands review staff for compliance with the Pinelands Comprehensive Management Plan (CMP). This procedure resulted in increased cost for preparation of applications and design documents, as well as delay due to the lengthy review time.

The goal of the 2010 Master Plan is to establish an agreement with the Pinelands that will remove the need to separately review and approve each project proposed by Stockton. Up to this point, there was no comprehensive "master plan" approach established with the Pinelands for development at Stockton. Each major construction project on campus has been developed with its own independent stormwater management system to address the Pinelands regulations in place at the time the development was proposed.

Marathon recognized that this site-specific approach cost Stockton considerable expense for construction of the individual stormwater management systems (which were almost all underground), consumed valuable developable land area and maximized the degree and level of land disturbance via excavation and clearing. Marathon recommended that the site-specific approach be replaced with a more regional investigation for stormwater management and was contracted by Stockton to prepare a Master Plan stormwater management investigation of the academic core area of the campus for submission to Pinelands. Marathon previously performed an overall environmental investigation of the entire Stockton campus for wetlands and threatened & endangered species, so stormwater was the last piece of the regulations that would need to be addressed to demonstrate compliance with the Pinelands CMP.

Marathon collaborated with Pinelands and submitted documentation in June 2009 that demonstrated the development of the Master Plan for the academic core area of the campus can take place with minimal stormwater management improvements by limiting impervious cover that will be proposed for full build-out conditions. In obtaining Pinelands' agreement with this approach, the only information that needs to be submitted with each project undertaken as part of the core area Master Plan development will be an accounting of existing impervious surface removed and impervious surface constructed. The rest of the Pinelands CMP requirements have been addressed on a regional scale. This approach will save Stockton time and expense and will be the same method for approval from the Pinelands Commission for the rest of the development proposed on the campus.

Stockton's approved Master Plan is described in the document entitled "The Richard Stockton College of New Jersey April, 2010 Master Plan." The Master Plan indicates the areas and buildings proposed for development within the academic core and within the undeveloped portions of the Stockton property fronting Pomona Road to the north, Duerer Street to the west and Jimmie Leeds Road to the south.

There are generally ten different development areas identified in the Master Plan.

- Development Area 1 is the future buildout of the academic core of the campus;
- Fronting Pomona Road is Development Area 2 the Pomona Community of Learning and Development Area 3 the Barlow Site;
- On the north side of Lake Fred is Development Area 4 the Housing 1 overlay;
- Connecting to both Jimmie Leeds Road and Vera King Farris Drive, on the east side of their intersection, is Development Area 5 and 8 – the Health & Science Campus and Administrative Buildings;
- Fronting Jimmie Leeds Road on the west side of the intersection of Vera King Farris Drive is Development Area 6 – the Research Park;
- At the intersection of Duerer Street and Pomona Road is Development Area 7 Administration Buildings;
- Behind the existing Plant Management Building 70 is Development Area 9 Additional storage buildings; and
- Development Area 10 The Research Park Annex fronting Jimmie Leeds Road west of the intersection of Duerer Street.

The Pomona Community of Learning, Housing 1 overlay, and part of the Health & Science campus contain student housing and associated amenities. The Health & Science campus may also contain a Performing Arts Center, the President's House and a Conference Center. The Research Park will contain office space and labs for research related to Stockton programs and initiatives. The Barlow Site will receive new athletic fields, parking areas and field house amenities. The remainder of the commercial space and administrative buildings will contain general office space for both campus staff and possibly leased space for ancillary services associated with Stockton.

RSC 011.01 Page 2 of 32

Detailed information related to environmental constraints, such as freshwater wetlands and threatened & endangered species on campus, has been documented by Marathon and submitted to the Pinelands Commission. Subsequently, the Stockton Facilities Planning & Construction staff finalized the 2010 Master Plan layout and negotiated with the Pinelands Commission to avoid disturbance to environmentally sensitive areas with the intent to execute an agreement for development of the facilities proposed with the Master Plan. Marathon assisted Stockton by providing advice and guidance on solutions to challenges encountered during preparation of the Master Plan and the general approach to preparing the documents needed by the Pinelands Commission planning and review staff in order for them to draft the agreement. This analysis for the Master Plan quantifies a total area of disturbance and proposed impervious surface allowed to be constructed in connection with the agreement.

It is important to note that Stockton's role as a world-class educational facility, especially in the realm of environmental studies, sustainability, and global awareness and education, is reflected in our approach to the stormwater management facilities provided in this plan. While each development area is similar in proximity to environmentally sensitive areas and position in the landscape, the existing topography and underlying soil conditions allow us to approach the system proposed for each development area differently. As an example, some basin areas will not be created by clearing and excavating; they will instead be created by minimal brush clearing and berming on the downstream side of the area to allow the natural wooded area to remain and act as a bioretention facility that will store runoff at shallow depths and allow it to infiltrate in those natural wooded areas. In other areas clearing may be required due to large variations in topography, but those basin areas are designed to be partially vegetated with low maintenance plantings that will be left to revegetate naturally. The overall goal of this stormwater management design is low impact, low maintenance, low cost measures that will provide water quality treatment the surrounding area deserves and the engineering control the applicable regulations require.

As previously stated, the goal of including a stormwater management master plan in the agreement is to allow Stockton to proceed with the development of the Master Plan components without having to submit to the Pinelands Commission for a Public Development Approval for each separate phase of the future development. After the agreement is executed, Stockton would only have to provide the Pinelands Commission with a notice that work is being started and a running tally of the disturbance and impervious surface proposed with each project. This would allow Pinelands to keep track of the work without a detailed review and limit their involvement to only an accounting of the disturbance area and impervious surface constructed with each project.

RSC 011.01 Page 3 of 32

2.0 SCOPE OF WORK

Stormwater Management Investigation

The Scope of Work includes preparation of a comprehensive stormwater management plan for the development areas of the Master Plan listed in the introduction above. The Phase 2 Development Areas will generally require individual stormwater management systems that will ultimately discharge towards the intermittent stream on-site that feeds Lake Fred and the unnamed tributary to Morse's Mill Stream on the southeast side of Vera King Farris Drive.

Engineering Design Plans

Utilizing the site survey overseen by Marathon and Master Plan documents prepared by Stockton, Marathon prepared engineering plans entitled "2010 Stormwater Master Plan" for Stockton, depicting the proposed Master Plan layout and required stormwater management features, made part of this report by reference. The plans locate and describe the Best Management Practices utilized on the Project to comply with the applicable requirements and provisions of Subchapters 5 and 6 of the NJDEP Stormwater Management Rules at N.J.A.C. 7:8, except as modified and supplemented pursuant to the minimum standards for point and non-point source discharges of surface water runoff described at Subchapter 6 in the Pinelands CMP (Section 7:50-6.84(a)6).

Detailed Soil Investigation

Marathon performed a soil investigation to evaluate soil conditions and to collect soil profile descriptions at the location of six (6) proposed stormwater management areas. Marathon conducted a total of five (5) test pits at each proposed stormwater management area and logged the soil conditions encountered to determine soil texture, depth to groundwater and the estimated seasonal high water table. The test pits were excavated to a depth of 10 feet or to standing groundwater, whichever was shallower.

For each test pit, two (2) soil samples were taken from the most hydraulically restrictive layer to remain below the basin bottom and those replicate samples were tested for permeability. The permeability results, reported in inches/hour, satisfy the requirements outlined in the New Jersey Best Management Practices Manual and Pinelands CMP.

Stormwater Compliance Statement

This Stormwater Compliance Statement documents the pre and post development hydrological conditions and outlines the compliance with the applicable portions of Subchapter 6 in the Pinelands CMP (Section 7:50-6.84(a)6.) The Stormwater Compliance Statement includes a hydrological and hydraulic analysis for the design of the stormwater management systems.

RSC 011.01 Page 4 of 32

3.0 DESIGN CRITERIA

The stormwater management analysis and design is in accordance with the Stormwater Management Rules at N.J.A.C. 7:8, subchapters 5 and 6, as amended, except as modified and supplemented by the Pinelands Comprehensive Management Plan minimum standards for point and non-point source discharges of surface water runoff at N.J.A.C. 7:50, subchapter 6; the New Jersey Stormwater Best Management Practices Manual; and the New Jersey Soil Erosion and Sediment Control Standards.

In accordance with the New Jersey Department of Environmental Protection (NJDEP) Stormwater Management Rules at N.J.A.C. 7:8, the development of the various projects is classified as a "Major Development." A Major Development is defined therein as a development which ultimately disturbs one or more acres of land and/or increases impervious coverage by one-quarter of an acre or more. The three technical requirements of the Stormwater Management Rules at N.J.A.C 7:8 as modified and supplemented by the Pinelands Comprehensive Management Plan that must be met are groundwater recharge, runoff quantity control, and runoff quality.

- Groundwater Recharge Standard N.J.A.C. 7:8-5.4(a)2 as modified by N.J.A.C. 7:50-6.84(a)6iii sets forth the minimum design and performance standards for groundwater recharge as follows:
 - i. The design engineer shall, using the assumptions and factors for stormwater runoff and groundwater recharge calculations at N.J.A.C. 7:8-5.6, demonstrate that the total runoff volume generated from the net increase in impervious surfaces by the ten-year storm is retained and infiltrated on site.
 - iv. The design engineer shall assess the hydraulic impact on the groundwater table and design the site so as to avoid adverse hydraulic impacts. Potential adverse hydraulic impacts include, but are not limited to, exacerbating a naturally or seasonally high water table so as to cause surficial ponding, flooding of basements, or interference with the proper operation of subsurface sewage disposal systems and other subsurface structures in the vicinity or downgradient of the groundwater recharge area.
- Runoff Quantity Control Standard N.J.A.C. 7:8-5.4(a)3 and N.J.A.C. 7:50-6.84(a)6ii requires that in order to control stormwater runoff quantity impacts, the design engineer shall, using the assumptions and factors for stormwater runoff calculations at N.J.A.C. 7:8-5.6, complete one of the following:
 - i. Demonstrate through hydrologic and hydraulic analysis that for stormwater leaving the site, post-construction runoff hydrographs for the two, 10, and 100-year storm events do not exceed, at any point in time, the preconstruction runoff hydrographs for the same storm events; or

RSC 011.01 Page 5 of 32

- ii. Demonstrate through hydrologic and hydraulic analysis that there is no increase, as compared to the pre-construction condition, in the peak runoff rates of stormwater leaving the site for the two, 10, and 100-year storm events and that the increased volume or change in timing of stormwater runoff will not increase flood damage at or downstream of the site. This analysis shall include the analysis of impacts of existing land uses and projected land uses assuming full development under existing zoning and land use ordinances in the drainage area; or
- iii. Design stormwater management measures so that the post-construction peak runoff rates for the two, 10 and 100-year storm events are 50, 75 and 80 percent, respectively, of the pre-construction peak runoff rates. The percentages apply only to the post-construction stormwater runoff that is attributable to the portion of the site on which the proposed development or project is to be constructed.
- Runoff Quality Standard N.J.A.C. 7:8-5.5 requires the stormwater management measures be designed to reduce the post-construction load of total suspended solids (TSS) in stormwater runoff generated from the water quality design storm by 80 percent of the anticipated load from the developed site, expressed as an annual average. Stormwater management measures shall only be required for water quality control if an additional one-quarter acre of impervious surface is being proposed on a development site. The water quality design storm is 1.25 inches of rainfall in two hours. Water quality calculations shall take into account the distribution of rain from the water quality design storm. The calculation of the volume of runoff may take into account the implementation of non-structural and structural stormwater management measures.

Note that the water quality volume generated by the proposed improvements will be less than that required to be retained and infiltrated to meet the groundwater recharge requirement, so the water quality standard will be met.

The rules emphasize that these standards be met by incorporating the following nonstructural stormwater management strategies at N.J.A.C. 7:8-5.3 into the design to the maximum extent practicable. If these measures alone are not sufficient to meet these standards, structural stormwater management measures at N.J.A.C. 7:8-5.7 necessary to meet these standards shall be incorporated into the design.

- Nonstructural stormwater management strategies incorporated into site design shall:
 - 1. Protect areas that provide water quality benefits or areas particularly susceptible to erosion and sediment loss;

RSC 011.01 Page 6 of 32

- 2. Minimize impervious surfaces and break up or disconnect the flow of runoff over impervious surfaces;
- 3. Maximize the protection of natural drainage features and vegetation;
- 4. Minimize the decrease in the "time of concentration" from pre-construction to post-construction. "Time of Concentration" is defined as the time it takes for runoff to travel from the hydraulically most distant point of the drainage area to the point of interest within a watershed;
- 5. Minimize land disturbance including clearing and grading;
- 6. Minimize soil compaction;
- 7. Provide low-maintenance landscaping that encourages retention and planting of native vegetation and minimizes the use of lawns, fertilizers and pesticides;
- 8. Provide vegetated open-channel conveyance systems discharging into and through stable vegetated areas; and
- Provide other source controls to prevent or minimize the use or exposure of pollutants at the site in order to prevent or minimize the release of those pollutants into stormwater runoff. These source controls include, but are not limited to:
 - Site design features that help to prevent accumulation of trash and debris in drainage systems;
 - ii. Site design features that help to prevent discharge of trash and debris from drainage systems;
 - iii. Site design features that help to prevent and/or contain spills or other harmful accumulations of pollutants at industrial or commercial developments; and
 - iv. When establishing vegetation after land disturbance, applying fertilizer in accordance with the requirements established under the Soil Erosion and Sediment Control Act, N.J.S.A. 4:24-39 et seq., and implementing rules.

The NJDEP Stormwater Management rules also set forth requirements for a Special Water Resources Protection Area (SWRPA) which is generally a 300 feet buffer adjacent to a Category One (C1) waters and upstream tributaries of C1 waters within the same Hydrologic Unit Code sub-watershed (HUC-14). Morse's Mill Stream downstream of the Garden State Parkway has been classified as a C1 water. Although SWRPA buffers of 300 feet are required around all Category One waters, buffers of 150 feet are permitted if a site is being redeveloped. No development is permitted within the designated buffer and there are no waivers or variances that can be granted to permit encroachment within these buffers. Most of the existing campus on the northwesterly

RSC 011.01 Page 7 of 32

side of Vera King Farris Drive (a.k.a. College Drive) is already built-out so future development within this area would be considered redevelopment and a reduced buffer of 150 feet should be employed. All of the proposed Phase 1 development, with the exception of some possible road improvements to a section of Vera King Farris Drive, is located outside of the 150 feet buffer. All of the proposed Phase 2 development, with the exception of some possible road improvements to sections of Vera King Farris Drive, is located outside of the 300 feet buffer.

Additionally, riparian zones associated with the NJDEP Flood Hazard Area Control Act, which is a separate, overlapping area of jurisdiction along regulated waters, will also apply to any work at Stockton within 300 feet of the waterways on campus (including Lake Fred) since they drain to, and are in the same HUC-14 as, the portion of Morse's Mill Stream downstream of the Garden State Parkway that is C1. The purpose of the riparian zone, however, is to protect existing vegetation along the waterway. Accordingly, if an area is already disturbed, it can remain disturbed and any improvements will have to be limited to those previously cleared areas. The work proposed by Stockton within 300 feet of the waterways on site (along Farris Drive, portions of the Academic Core Area, and Housing 1) is limited to the previously disturbed areas since those areas are also mostly constrained by wetland buffers associated with those same waterways.

4.0 TECHNIQUES & PROCEDURES OF ANALYSIS

In accordance with the stormwater runoff calculation methodology at N.J.A.C. 7:8-5.6, the quantity (volume and rate) of stormwater runoff for pre and post-developed conditions is calculated based on the USDA NRCS methodology using the NRCS Runoff Equation and Dimensionless Unit Hydrograph, as described in Technical Release 55 - Urban Hydrology for Small Watersheds (TR-55), dated June 1986. A unit peak discharge factor of 285 is applied to the dimensionless unit hydrograph for runoff estimation on lands that are located within the coastal zones of New Jersey rather than the standard factor of 484. This is referred to as the DelMarVa unit hydrograph and will predict a lower peak discharge than that of the standard hydrograph. The volume of runoff will not be affected by the factor change. NRCS 24 hr design storm rainfall depths for New Jersey, as revised September 2004, are used in the calculation.

Pre and post-developed times of concentration (TC) are determined for the pre and post-developed condition using the hydraulically longest flow path. Curve numbers (CN) are chosen for the drainage areas for the pre and post-developed condition based on the hydrologic soil group and land use. Since the developed area is made up of Type A, B, C and D soils, CNs of 30, 55, 70 and 77 were assumed for Natural Woods, respectively; 39, 61, 74 and 80 for lawn and landscaped areas, respectively; and 98 for impervious areas. Note that impervious areas were calculated as separate subareas to generate hydrographs without weighted CNs as outlined in the CMP N.J.A.C. 7:50-6.84(a)6.i(2) and the BMP manual chapter 5.

RSC 011.01 Page 8 of 32

Using the drainage areas, the TCs and CNs as input data, the 2007 version of *Hydraflow Hydrographs*, a hydrologic/hydraulic software program by Intelisolve, was employed to generate the runoff volumes and rates.

Additionally, since the actual area of disturbance is allowed to be the entire upland portion of the development areas outside of the wetland buffers, it is assumed for the purposes of runoff estimation in the post-developed condition that any area that is not impervious will be open space; that is it is conservatively assumed no woods will be retained to provide the maximum runoff volume that may be produced from built out conditions. Note that in reality there will be wooded area retained since it is a goal of the master plan build-out to retain as much naturally wooded area as possible while still meeting the programmatic needs of Stockton.

5.0 KEY HYDROLOGIC PRINCIPALS

Precipitation and Design Storm Events. Precipitation occurs as a series of events characterized by different rainfall amount, intensity, and duration. Although these events occur randomly, analysis of their distribution over a long period of time indicates that the frequency of occurrence of a given storm event follows a statistical pattern. This statistical analysis characterizes storm events based on their frequency of occurrence or return period. Storm events of specific sizes can be identified to support evaluation of designs. Storms with 2-year, 10-year and 100-year return periods are commonly used for residential, industrial, and commercial development design.

The 2-year storm events are usually selected to protect receiving channels from sedimentation and erosion. The 10-year storm events are selected for adequate flow conveyance design and minor flooding considerations. The 100-year event is used to define the limits of floodplains and for consideration of the impacts of major floods.

In Atlantic County, the 2-year, 10-year and 100-year storms are 3.3 inches, 5.2 inches, and 8.9 inches of rainfall over 24 hours, respectively. The 2-year storm has a 50 percent probability of occurring in any given year, while the 10-year and 100-year storms have a 10 percent and 1 percent probability of occurring in any given year, respectively.

6.0 SOIL SURVEY INFORMATION

The project site is shown on the Pleasantville United States Geological Survey (USGS) quad map. Soils in the project sites are indicated on the USDA Natural Resources Conservation Service (NRCS) Web Soil Survey (WSS) as:

RSC 011.01 Page 9 of 32

Soil Type	<u>HSG</u>
AtsA—Atsion sand, 0 to 2 percent slopes AugB—Aura sandy loam, 2 to 5 percent slopes BerAr—Berryland sand, 0 to 2 percent slopes, rarely flooded DocB—Downer loamy sand, 0 to 5 percent slopes EveB—Evesboro sand, 0 to 5 percent slopes GamB—Galloway loamy sand, 0 to 5 percent slopes GamkB—Galloway loamy sand, clayey substratum, 0 to 5 percent slopes HboA—Hammonton sandy loam, 0 to 2 percent slopes MakAt—Manahawkin muck, 0 to 2 percent slopes, frequently flooded MbtB—Matawan sandy loam, 0 to 5 percent slopes PHG—Pits, sand and gravel	D B B/D B A A B D C
SacA—Sassafras sandy loam, 0 to 2 percent slopes WoeA—Woodstown sandy loam, 0 to 2 percent slopes	B C

The limits of the listed soil series areas on the project site are shown on the Drainage Area Plans included in Appendix F.

7.0 TYPICAL BASIN CONSTRUCTION TECHNIQUES

Stockton's intent is to fit into their surrounding environment. To that end the basins proposed as the structural measures to address the engineering requirements of the Pinelands CMP are designed to have minimal impact to the area by retaining as much existing natural vegetation within the basin areas as possible, minimizing changes in topography where practical, and designing them so they are shallow, have very little impact to the existing groundwater table, and no adverse impacts to the wetlands and waterways to which any excess runoff will discharge. The overall design approach for the build-out of the Master Plan is low impact with clearing limited to that only required for the proposed facilities, efficient use of land area for shared parking and clustered development, minimizing cartway widths to that required for public safety, and no compaction of areas not intended to receive buildings or pavement.

As mentioned above, each development area is similar in proximity to environmentally sensitive areas and position in the landscape. The existing topography and underlying soil conditions, however, allow us to approach the system proposed for each development area differently. The complete drainage area description and engineering detail for each development area system are provided in the plans, the calculations in Appendix C, and the following sections. Below is a listing of the general approach for the stormwater management system for each development area:

Development Areas 2 & 3 - Pomona Community of Learning and Barlow Field

These development areas are adjacent to one another and have combined facilities. The majority of Barlow Field will be converted from woods to athletic fields with small parking areas and accessory buildings (food stand, restrooms, etc). The Pomona Community of Learning is a clustered building arrangement with a parking garage to

RSC 011.01 Page 10 of 32

minimize disturbance. Overall, the basin required to meet the engineering standards is large in area, but due to the similarity in topography in most of the downstream area where the basin is situated, much of the basin area is made up of wooded area to remain. That is, a berm will be constructed on the downstream side of the basin and the majority of the upper volume of the basin will remain wooded. The volume is there in the event of a large storm, but will not need to be excavated to create it. Accordingly, the basin proposed for Development Areas 2 & 3 will be made up of about half cleared and graded area (as with most typical structural basins) and half existing natural wooded area. Pretreatment of paved areas in the drainage shed will come in the form of the large downstream open space area of athletic fields and landscaping that will disconnect the proposed impervious surface from the basin. This will provide the requisite pretreatment of runoff prior to infiltration. Where possible and appropriate. small infiltration areas and vegetated conveyance swales will be utilized. The exact layout of those features will depend on the final configuration of the development area. Note that these features will be incorporated into the design not because they are required, but because they can be. Stockton intends to take the most environmentally responsible route possible while providing the most cost-effective solution that will benefit both the environment and the taxpayers who fund the construction.

The soil underlying the stormwater management basin is generally a mix of sands, sandy loams, and clay lenses. A deep substratum of gravelly clay underlies the southwesterly end of the basin. The static groundwater table was observed at a moderately high elevation and as such will act as the controlling restrictive zone below the basin. Since the basin is upgradient to an intermittent stream corridor, it is anticipated that infiltrated runoff will contribute to the base flow of the intermittent stream as the drainage area does naturally. The moderately high groundwater table, or any existing soil strata that could inhibit vertical infiltration, will cause infiltrating groundwater to behave exactly as it does prior to any development — it will move vertically until it contacts a restrictive layer where it will then move laterally to the stream bed. The groundwater mounding analyses in Appendix D provides calculations demonstrating minimal mounding that will not negatively impact the wetlands or stream bed downstream of the development areas.

Development Areas 5 & 8 – Health and Science Campus and Administrative Buildings
These development areas are adjacent to one another and have combined facilities.
The Health and Science campus will be a mixed use development containing health service uses such as a hospital, a geriatric center, leased doctor's offices, professional office space for services associated with Stockton, a performing arts center, and residential units. Since this area will be designed to have professional occupancy during work hours and residential occupancy during remaining times, it is a highly efficient use of land area with shared parking and common facilities. Overall, the basins required to meet the engineering standards are not very large in area and due to the difference in topography in most of the downstream area where the basins are situated, the basins will need to be completely made up of excavated area to allow the necessary volume to be constructed. The basin limits follow the wetland buffer line so while they

RSC 011.01 Page 11 of 32

are structural features, they do not have a very rigid shape which adds to the aesthetic appeal of the facilities. They will also be landscaped with native Pinelands vegetation and the downstream side allowed to naturally revegetate. This development area contains more connecting roadway than the other development areas and thus provides more opportunity for roadside vegetated conveyance areas and areas that can be planted with native low-growing Pinelands vegetation and wildflowers that will require less maintenance than turf and still provide the necessary pedestrian and vehicle safety lines of sight. Pretreatment of paved areas in the drainage shed will come in the form of shallow depressed landscape areas within the parking lots to filter and infiltrate smaller storms and allow larger, lower frequency storms to be safely conveyed to the basin area. Where possible and appropriate, small infiltration areas and vegetated conveyance swales will be utilized. The exact layout of those features will depend on the final configuration of the development area and will be the both cost-effective and environmentally responsible.

The soil underlying the stormwater management basins is a mix of sands, sandy loams, and clay bands. Clay bands that are shallow will be excavated during construction of the basins and replaced with sand excavated elsewhere on the project. The static groundwater table was observed at a moderately high elevation and as such will act as the controlling restrictive zone below the basin. Perched groundwater was encountered above some of the clay bands. Since the basins are upgradient to an intermittent stream corridor, it is anticipated that infiltrated runoff will contribute to the base flow of the intermittent stream as it currently does naturally. The moderately high groundwater table, or any existing soil strata that could inhibit vertical infiltration, will cause infiltrating groundwater to behave exactly as it does prior to any development — it will move vertically until it contacts a restrictive layer where it will then move laterally to the stream bed. The groundwater mounding analyses in Appendix D provides calculations demonstrating minimal mounding that will not negatively impact the wetlands or stream bed downstream of the development areas.

Development Area 6 - Research Park

This area has gently sloping topography that allows the proposed basin to be very shallow and require no excavation. Instead of moving a lot of earth to create storage volume, the approach will be to construct a small berm on the downstream side of the area near the wetlands buffer that will effectively dam up the runoff created by the development and allow it to be retained and infiltrated in the existing wooded area. This large downstream area that will receive the runoff from the developed portion of the site will function as a natural bioretention area and be as low impact as any stormwater management feature can be designed and/or constructed. The upstream development area will have pretreatment areas for runoff in the form of vegetated swales, vegetated filter strips and shallow depressions within the parking areas to provide pretreatment of runoff prior to discharge to the natural basin area.

The soil underlying the stormwater management basin is a mix of sands, sandy loams, and a thick band of clay. The static groundwater table was observed at a high elevation

RSC 011.01 Page 12 of 32

and as such will act as the controlling restrictive zone below the basin. Perched groundwater was encountered above the clay band. Since the basins are upgradient to an intermittent stream corridor, it is anticipated that infiltrated runoff will contribute to the base flow of the intermittent stream as it currently does naturally. The moderately high groundwater table, or any existing soil strata that could inhibit vertical infiltration, will cause infiltrating groundwater to behave exactly as it does prior to any development – it will move vertically until it contacts a restrictive layer where it will then move laterally to the stream bed. The groundwater mounding analyses in Appendix D provides calculations demonstrating minimal mounding that will not negatively impact the wetlands or stream bed downstream of the development areas.

<u>Development Area 7 – Administrative Buildings</u>

This development area is immediately southwest of Barlow Field. The stormwater basin proposed for this area is very similar to that proposed for Development Areas 2 and 3. This basin will also be made up of a berm constructed on the downstream side of the basin with the majority of the upper volume of the basin to remain wooded. Again, this basin will be made up of about half cleared and graded area and half existing woods to remain. Pretreatment of paved areas in the drainage shed will come in the form of shallow depressed landscape areas within the parking lots to filter and infiltrate smaller storms and allow larger, lower frequency storms to be safely conveyed to the basin area. Vegetated conveyance features will also be utilized to the maximum extent possible.

The soil underlying the stormwater management basin is generally a mix of sands and sandy loams. A deep substratum of gravelly clay underlies the northeasterly end of the basin. The static groundwater table was observed at a moderately high elevation and as such will act as the controlling restrictive zone below the basin. Since the basin is upgradient to an intermittent stream corridor, it is anticipated that infiltrated runoff will contribute to the base flow of the intermittent stream as it currently does naturally. The moderately high groundwater table, or any existing soil strata that could inhibit vertical infiltration, will cause infiltrating groundwater to behave exactly as it does prior to any development – it will move vertically until it contacts a restrictive layer where it will then move laterally to the stream bed. The groundwater mounding analyses in Appendix D provides calculations demonstrating minimal mounding that will not negatively impact the wetlands or stream bed downstream of the development areas.

Development Area 10 – Research Park Administrative Annex

This development area is off-campus and at the upstream end of the tributary to Morse's Mill Stream that discharges to Lake Fred. The stormwater basin proposed for this area is very similar to that proposed for Development Areas 2, 3 and 7. This basin will be made up of a berm constructed on the downstream side of the basin with the majority of the upper volume of the basin to remain wooded. Again, this basin will be made up of about half cleared and graded area and half existing woods to remain. Pretreatment of paved areas in the drainage shed will come in the form of shallow depressed landscape areas within the parking lots to filter and infiltrate smaller storms

RSC 011.01 Page 13 of 32

and allow larger, lower frequency storms to be safely conveyed to the basin area. Vegetated conveyance features will also be utilized to the maximum extent possible.

The soil underlying the stormwater management basin is generally a mix of sands and sandy loams. A substratum of mixed clay underlies the middle of the basin. The static groundwater table was observed at a moderately high elevation and as such will act as the controlling restrictive zone below the basin. Since the basin is upgradient to an intermittent stream corridor, it is anticipated that infiltrated runoff will contribute to the base flow of the intermittent stream as it currently does naturally. The moderately high groundwater table, or any existing soil strata that could inhibit vertical infiltration, will cause infiltrating groundwater to behave exactly as it does prior to any development – it will move vertically until it contacts a restrictive layer where it will then move laterally to the stream bed. The groundwater mounding analyses in Appendix D provides calculations demonstrating minimal mounding that will not negatively impact the wetlands or stream bed downstream of the development areas.

7.0 AREAS OF IMPROVEMENTS

DEVELOPMENT AREA 1

Development Area 1 is identified on the Existing Drainage Area Plan (Sheet D0103) and the Proposed Drainage Area Plan (Sheet D0104) prepared by Marathon. The area is located along the southerly and easterly side of Lake Fred and extends to the westerly side of Vera King Farris Drive. The area adjacent to the Lake is improved with existing campus buildings and walkways. The area between the improved areas along Lake Fred and Vera King Farris Drive contains large areas of paved parking lots. It is in these existing parking areas where most of the new Phase 1 Master Plan facilities will be constructed.

An Overall Phase 1 Impervious Area Removal Plan (Sheet D0101) prepared by Marathon indicates the existing facilities as shown on the boundary survey prepared by Pennoni Associates, the topographic survey by Promaps, and field evaluations performed by Marathon. An Overall Phase 1 Impervious Area Addition Plan (Sheet D0102) prepared by Marathon indicates the proposed facilities as shown on the aforementioned Master Plan. The wetland areas and effective wetlands buffer as identified in the 2010 Stockton Master Plan are also shown.

There are two areas within the above described overall area that do not contribute stormwater runoff to the Development Area: the area of the existing West Quad, which is recently completed, and the area of the Campus Center, which is currently under construction. These areas were designed with individual stormwater management systems in conformance with the current stormwater regulations and are self contained as to stormwater quality and quantity management requirements. Accordingly, they are not included or addressed in this report.

RSC 011.01 Page 14 of 32

Under the existing conditions, Development Area 1, which comprises the developed portion of the academic core of the campus, is divided into four distinct drainage sheds: the West (W) Shed consisting of roughly 13.845± acres that flows toward Lake Fred and then into Morse's Mill Stream; a portion of the North (N-1) Shed consisting of roughly 5.502± acres and the remaining North (N-2) Shed consisting of roughly 9.528± acres that also flow toward Lake Fred; and the South (S) Shed consisting of the 23.925± acres that flows toward an unnamed tributary of Morse's Mill Stream that discharges downstream of the dam at Lake Fred into Morse's Mill Stream. The ultimate discharge point for the entire Stockton campus is the point in Morse's Mill Stream immediately upstream of the Garden State Parkway. The Existing Drainage Area Plan (Sheet D0104) graphically depicts the drainage sheds and provides detailed information on the types of land cover associated with the drainage areas. The table below summarizes the volumes and rates of runoff associated with the various design storms:

Existing Peak Runoff Flow Rates and Total Volumes

Drainage Shed	Peak Runoff Flow Rate (cfs)			Total Runoff Volume (cf)		
Direction of Discharge	Q_2	Q ₁₀	Q ₁₀₀	V_2	V ₁₀	V ₁₀₀
North to Lake Fred	53.70	85.93	161.40	216,843	363,436	677,364
South to unnamed tributary	33.59	63.19	130.45	145,567	263,317	525,913
Total to Morse's Mill Stream	87.29	149.12	291.85	362,409	626,754	1,203,278

The MPRC facility has its own separate self-contained infiltration facility designed, approved and constructed in accordance with CMP standards. The improvements within the drainage area to the MPRC will also be modified with the construction of the elements of the Facilities Master Plan. As such, the runoff volume to the existing MPRC system cannot be increased. The table below summarizes the runoff volume draining to the system under existing conditions:

Existing Runoff Volumes to MPRC System

Drainage Shed	Total Runoff Volume (cf)				
	V_2	V_{10}	V ₁₀₀		
Total to MPRC System	40,835	66,253	115,994		

Under the proposed conditions, the drainage sheds within the Development Area are slightly altered in size and cover with the implementation of the Master Plan. A majority of the existing at-grade parking areas are replaced with garage structures to make way for the proposed academic buildings and the campus greens. West (W) Shed remains at roughly 13.845± acres but the impervious cover is slightly increased; the North (N-1) Shed remains unchanged; the North (N-2) Shed increases slightly to roughly 9.650± acres; and the South (S) Shed decreases to roughly 23.163± acres. Please also note

RSC 011.01 Page 15 of 32

that the South Shed also has a sub-shed that drains to two (2) proposed depressions to retain and infiltrate runoff generated by 1.900 acres of the campus green landscape and sidewalk areas. The Proposed Overall Drainage Area Plan (Sheet D0104) graphically depicts the drainage sheds and provides detailed information on the types of land cover associated with the drainage areas. The table below shows the reduction of impervious areas for the Development Area:

PROJECT AREA COMPARISON								
		Imper	vious	Perv	Pervious			
	Total Area	Paving & Walks (incl. Gravel)	Roof	Open Space	Woods			
Existing	56.55 Ac	27.03 Ac	8.31 Ac	10.93 Ac	10.28 Ac			
Existing	Subtotal	35.3	35.34 Ac		1 Ac			
Dropood	56.55 Ac	18.00 Ac	16.02 Ac	16.26 Ac	6.27 Ac			
Proposed	Subtotal	34.02 Ac		22.53	3 Ac			
Difference -1.32 Ac +1.32 Ac					2 Ac			

Notes:

- 1. Refer to Existing Drainage Area Plan sheet D0103 and the Proposed Drainage Area Plan sheet D0104 prepared by Marathon Engineering and Environmental Services, Inc. issued May 27, 2009.
- 2. The areas of the West Quad, which is already constructed, and the Campus Center, which is currently under construction, are not included in the Area of Improvements.

The above table demonstrates that there will be no increase in the impervious areas in the Development Area as indicated on the aforementioned plan. A determination of the net increase in impervious areas as required by the Pinelands Stormwater Management Regulations indicates that there is a <u>decrease</u> in impervious area of 1.32 acres. Therefore, no storage volume will be required for stormwater infiltration facilities. The table below summarizes the peak rates and volumes of runoff generated from the Development Areas in their post developed condition.

Proposed Peak Runoff Flow Rates and Total Volumes

Drainage Shed Direction of Discharge	Peak Runoff Flow Rate (cfs)			Total Runoff Volume (cf)		
Direction of Discharge	Q_2	Q ₁₀	Q ₁₀₀	V_2	V ₁₀	V ₁₀₀
North to Lake Fred	51.46	82.86	158.98	208,383	352,583	664,710
South to unnamed tributary	33.59	61.76	123.74	143,116	257,664	521,979
Total to Morse's Mill Stream	85.05	144.63	282.73	351,499	610,247	1,186,690

The above table demonstrates that there will be no increase in the rate or volume of runoff. Therefore, the only stormwater management measures required in Development Area 1 upon full build-out will be the two small landscaped depressions that accept

RSC 011.01 Page 16 of 32

runoff generated by a portion of the campus green area shown on the Proposed Drainage Area Plan sheet D0104. Soil logs and permeability test results for these two shallow depressions are included in Appendix D.

The self-contained MPRC Shed increases in size to hold a portion (28,000 sf or 0.64 acres) of the footprint of proposed Garage 1. The existing stormwater management system within this shed will remain unchanged and the total volume discharging to it will be slightly decreased. The table below summarizes the runoff volume draining to the system under proposed conditions:

Proposed Runoff Volumes to MPRC System

Drainage Shed	Total Runoff Volume (cf) V ₂ V ₁₀ V ₁₀₀			
Total to MPRC System	36,462 62,305 115,95			

As shown in tables above, the pre-developed peak runoff flow rate and total volume leaving the site towards Lake Fred to the north and the unnamed tributary to Morse's Mill Stream to the south, or the total combined flow and volume to both locations, does not increase from pre to post-developed conditions. Any minimal change in runoff timing for the two, ten or one-hundred year storms will not increase flood damages at or downstream of the parcel since the total volume leaving the site is decreased.

The decrease in impervious surface and small infiltration depressions proposed for the Stockton Facilities Stormwater Master Plan allows the design to comply with the requirements of the CMP and State Stormwater Management rules. The combined use of non-structural and structural methods are in accordance with the applicable requirements and show no increase in peak runoff flow rates or total volumes leaving the site or towards any wetlands or waterbodies.

It is also important to note that the post-construction runoff volumes were generated by conservatively assuming the landscaped areas proposed will not contain any existing wooded area that will likely remain. Accordingly, if any of the existing wooded area does remain after construction of the campus green area, there will be a reduction in the amount of runoff leaving the site.

DEVELOPMENT AREAS 2 & 3

Development Areas 2 and 3 are identified on the Phase 2 Stormwater Master Plan (Sheet C1401) prepared by Marathon and are the sites of proposed Pomona Community of Learning and the proposed Barlow recreation facilities. The areas front on the southerly side of Pomona Road. The areas drain in the easterly direction towards a tributary of Morse's Mill Stream which discharges into Lake Fred and then into Morse's Mill Stream. For purposes of determining stormwater management compliance, the stormwater analysis assumes that the entire site under its pre-

RSC 011.01 Page 17 of 32

developed conditions is pervious (woods and open space). The table below shows the pre and post developed cover conditions for the Development Areas:

PROJECT AREA COMPARISON									
		Imper	vious	Pervi	ious				
	Total Area	Paving & Walks	Roof	Open Space	Woods				
		(incl. Gravel)							
Existing	106.30 Ac	0 Ac	0 Ac	34.85 Ac	71.45 Ac				
Existing	Subtotal	0 /	Ac .	106.3	0 Ac				
Dropood	106.30 Ac	9.35 Ac	2.6 Ac	84.07 Ac	10.28 Ac				
Proposed	Subtotal	11.9	5 Ac	94.35	5 Ac				

Nonstructural stormwater management strategies at N.J.A.C. 7:8-5.3 will be implemented to the maximum extent practicable on the project (Refer to Section 13). Low-impact development measures such as vegetative retention swales and rain gardens disconnect and pre-treat stormwater runoff from parking areas and drives. The excess parking area stormwater is conveyed, along with runoff from the buildings and recreation field, and discharged into an open stormwater management basin that is designed to retain and infiltrate the total runoff volume generated from the net increase in impervious surfaces by the ten-year storm. The basin is designed so that the post-construction peak runoff discharge rates for the 10 and 100-year storm events do not exceed 75 and 80 percent, respectively, of the pre-construction peak runoff rates. The basin absorbs the entire runoff volume from the two-year storm event. Note that the volume retained in the swales and rain garden areas, which will be designed in detail when the actual field layout is determined in the future, is not required to meet the groundwater recharge standard and are solely intended to pretreat runoff prior to infiltration.

The table below summarizes the peak rates of runoff generated from the Development Areas in their pre and post developed condition, the maximum storage volume and elevation, and the provided 10-year net increase in impervious cover (NIC) volume. Drainage shed modeling of the Development Areas are provided in Appendix C.

	DEVELOPMENT AREAS 2 & 3								
		Peak Discharge (CFS)	Allowable Discharge (CFS)	Maximum Storage Volume (CF)	Maximum Storage Elevation (FT)	10-Year NIC Volume (CF)			
	100-Year	77.64							
Existing	10-Year	12.63							
	2-Year	0.98							
	100-Year	59.72	62.11	690,948	50.99				
Proposed	10-Year	8.77	9.47	339,400	49.99	195,075			
	2-Year	0.00	0.49	208,490	49.46				

RSC 011.01 Page 18 of 32

DEVELOPMENT AREA 4

Development Area 4 is the proposed Housing 1 overlay. The project will replace the existing housing units with new low-rise units within the footprint of the existing buildings and adjacent courtyard. The area sits on the northerly bank of Lake Fred and discharges to that watercourse. Since the area proposed for improvement is previously disturbed and no increase in impervious surface is proposed, no stormwater management measures are required.

DEVELOPMENT AREAS 5 EAST, 5 WEST AND 8

The Development Areas are identified on the Stormwater Plan (Sheet C1402) prepared by Marathon and are the site of the Health & Science campus and proposed administrative buildings. Development Area 8 is situated within the boundary of Development Area 5 East. The areas front on the Jimmie Leeds Road and Vera King Farris Drive and are located on the easterly and northerly sides of the hospital complex. The areas drain towards a tributary of Morse's Mill Stream which discharges downstream of Lake Fred. For purposes of determining stormwater management compliance, the stormwater analysis assumes that the entire site under its predeveloped conditions is wooded. The tables below show the pre and post developed cover conditions for the Development Areas:

	PROJECT AREA COMPARISON-5 EAST								
		Imper	vious	Pervious					
	Total Area	Paving & Roof (Walks (incl. Gravel)		Open Space	Woods				
Existing	44.00 Ac	0 Ac	0 Ac	0 Ac	44.00 Ac				
Existing	Subtotal	0 /	4c	44.00) Ac				
Dropood	44.00 Ac	12.34 Ac	8.40 Ac	23.26 Ac	0 Ac				
Proposed	Subtotal	20.7	4 Ac	23.26	6 Ac				

PROJECT AREA COMPARISON-5 WEST									
		Imper	vious	Pervious					
	Total Area			Open Space	Woods				
Cyloting	35.36 Ac	0 Ac	0 Ac	0 Ac	35.36 Ac				
Existing	Subtotal	0 /	Ac	35.36	6 Ac				
35.36 Ac		8.42 Ac 6.26 Ac		20.68 Ac 0 Ac					
Proposed	Subtotal	14.6	8 Ac	20.68	3 Ac				

Nonstructural stormwater management strategies at N.J.A.C. 7:8-5.3 will be implemented to the maximum extent practicable on the project (Refer to Section 13).

RSC 011.01 Page 19 of 32

Low-impact development measures will be employed such as vegetative retention swales and rain gardens disconnect and pre-treat stormwater runoff from parking areas and drives. The stormwater is conveyed and discharged into one of two open stormwater management basins that are designed to retain and infiltrate the total runoff volume generated from the net increase in impervious surfaces by the ten-year storm. The basin are designed so that the post-construction peak runoff discharge rates for the 10 and 100-year storm events do not exceed 75 and 80 percent, respectively, of the pre-construction peak runoff rates. The basins absorb the entire runoff volume from the two-year storm event. Note that the volume retained in the swales and rain garden areas, which will be designed in detail when the actual field layout is determined in the future, is not required to meet the groundwater recharge standard and are solely intended to pretreat runoff prior to infiltration.

The tables below summarize the peak rates of runoff generated from the Development Areas in their pre and post developed condition, the maximum storage volume and elevation, and the provided 10-year net increase in impervious cover (NIC) volume. Drainage shed modeling of the Development Areas are provided in Appendix C.

	DEVELOPMENT AREA 5 EAST								
		Peak Discharge (CFS)	Allowable Discharge (CFS)	Maximum Storage Volume (CF)	Maximum Storage Elevation (FT)	10-Year NIC Volume (CF)			
	100-Year	63.79							
Existing	10-Year	21.36							
	2-Year	5.69							
	100-Year	51.05	51.03	616,820	55.55				
Proposed	10-Year	4.64	16.02	436,059	54.87	395,981			
	2-Year	0.00	2.85	295,529	54.33				

	DEVELOPMENT AREA 5 WEST								
		Peak Discharge (CFS)	Allowable Discharge (CFS)	Maximum Storage Volume (CF)	Maximum Storage Elevation (FT)	10-Year NIC Volume (CF)			
	100-Year	45.70							
Existing	10-Year	11.61							
	2-Year	1.76							
	100-Year	35.85	36.56	426,770	50.33				
Proposed	10-Year	3.00	8.71	299,778	49.58	264,621			
	2-Year	0.00	0.88	195,825	48.85				

RSC 011.01 Page 20 of 32

DEVELOPMENT AREA 6

The Development Area is identified on the Stormwater Plan (Sheet C1401 and C1403) prepared by Marathon and is the site of the proposed Research Park. The Development Area fronts on the northerly side of Duerer Street. The area drains in the northerly direction towards a tributary of Morse's Mill Stream which discharges into Lake Fred and Morse's Mill Stream. For purposes of determining stormwater management compliance, the stormwater analysis assumes that the entire site under its predeveloped conditions is wooded. The table below shows the pre and post developed cover conditions for the Development Area:

PROJECT AREA COMPARISON-6								
		Imper	vious	Pervi	ous			
	Total Area	Paving & Roof (Walks (incl. Gravel)		Open Space	Woods			
Existing	48.20 Ac	0 Ac	0 Ac	0 Ac	48.20 Ac			
Existing	Subtotal	0 /	4c	48.20) Ac			
Proposed 48.20 Ac		16.30 Ac	5.62 Ac	14.21 Ac 12.07 Ac				
Proposed	Subtotal	21.9	2 Ac	26.28	3 Ac			

Nonstructural stormwater management strategies at N.J.A.C. 7:8-5.3 will be implemented to the maximum extent practicable on the project (Refer to Section 13). Low-impact development measures such as vegetative retention swales and rain gardens disconnect and pre-treat stormwater runoff from parking areas and drives. The stormwater is conveyed and discharged into an open stormwater management basin that is designed to retain and infiltrate the total runoff volume generated from the net increase in impervious surfaces by the ten-year storm. The basin is designed so that the post-construction peak runoff discharge rates for the 10 and 100-year storm events do not exceed 75 and 80 percent, respectively, of the pre-construction peak runoff rates. The basin absorbs the entire runoff volume from the two-year storm event. Note that the volume retained in the swales and rain garden areas, which will be designed in detail when the actual field layout is determined in the future, is not required to meet the groundwater recharge standard and are solely intended to pretreat runoff prior to infiltration.

The table below summarizes the peak rates of runoff generated from the Development Area in its pre and post developed condition, the maximum storage volume and elevation, and the required 10-year net increase in impervious cover (NIC) volume. Drainage shed modeling of the Development Area is provided in Appendix C.

RSC 011.01 Page 21 of 32

	DEVELOPMENT AREA 6									
		Peak Discharge (CFS)	Allowable Discharge (CFS)	Maximum Storage Volume (CF)	Maximum Storage Elevation (FT)	10-Year NIC Volume (CF)				
	100-Year	32.13								
Existing	10-Year	4.43								
	2-Year	0.25								
	100-Year	24.92	25.70	648,534	53.91					
Proposed	10-Year	2.42	3.32	449,008	53.19	395,981				
	2-Year	0.00	0.12	278,250	52.43					

DEVELOPMENT AREA 7

The Development Area is identified on the Phase 2 Stormwater Master Plan (Sheet C1401) prepared by Marathon and is the site of proposed administrative buildings. The area fronts on the southeast corner of Pomona Road and Duerer Street. The area drains in the easterly direction towards a tributary of Morse's Mill Stream which discharges into Lake Fred and Morse's Mill Stream. For purposes of determining stormwater management compliance, the stormwater analysis assumes that the entire site under its pre-developed conditions is wooded. The table below shows the pre and post developed cover conditions for the Development Area:

PROJECT AREA COMPARISON								
		Imper	vious	Perv	ious			
	Total Area	Paving & Walks	Roof	Open Space	Woods			
		(incl. Gravel)						
Existing	36.49 Ac	0 Ac	0 Ac	0 Ac	36.49 Ac			
Existing	Subtotal	00	Ac	36.49	9 Ac			
Proposed	36.49 Ac	3.21 Ac	8.76 Ac	10.00 Ac	14.52 Ac			
Proposed	Subtotal	11.9	7 Ac	24.52	2 Ac			

Nonstructural stormwater management strategies at N.J.A.C. 7:8-5.3 will be implemented to the maximum extent practicable on the project (Refer to Section 13). Low-impact development measures such as vegetative retention swales and rain gardens disconnect and pre-treat stormwater runoff from parking areas and drives. The stormwater is conveyed and discharged into an open stormwater management basin that is designed to retain and infiltrate the total runoff volume generated from the net increase in impervious surfaces by the ten-year storm. The basin is designed so that the post-construction peak runoff discharge rates for the 10 and 100-year storm events do not exceed 75 and 80 percent, respectively, of the pre-construction peak runoff rates. The basins absorb the entire runoff volume from the two-year storm event. Note

RSC 011.01 Page 22 of 32

that the volume retained in the swales and rain garden areas, which will be designed in detail when the actual field layout is determined in the future, is not required to meet the groundwater recharge standard and are solely intended to pretreat runoff prior to infiltration.

The table below summarizes the peak rates of runoff generated from the Development Area in their pre and post developed condition, the maximum storage volume and elevation, and the provided 10-year net increase in impervious cover (NIC) volume. Drainage shed modeling of the Development Area is provided in Appendix C.

	DEVELOPMENT AREA 7									
		Peak Discharge (CFS)	Allowable Discharge (CFS)	Maximum Storage Volume (CF)	Maximum Storage Elevation (FT)	10-Year NIC Volume (CF)				
	100-Year	44.68								
Existing	10-Year	11.83								
	2-Year	2.02								
	100-Year	35.67	35.74	366,361	54.07					
Proposed	10-Year	2.97	8.87	242,751	53.52	212,335				
	2-Year	0.00	1.01	158,291	53.14					

DEVELOPMENT AREA 9

The Development Area is identified on the Stormwater Plan (Sheet C1400) prepared by Marathon and is the site of the proposed storage facility for Plant Management. The area fronts on Vera King Farris Drive. The project entails construction of two new storage buildings within the area that is currently cleared and covered with a compacted gravel surface. The area drains in the easterly direction towards a tributary of Morse's Mill Stream which discharges downstream of Lake Fred. Since the area proposed for improvement is previously disturbed and no increase in impervious surface is proposed, no stormwater management measures are required

DEVELOPMENT AREA 10

The Development Area is identified on the Stormwater Plan (Sheet C1401 and C1403) prepared by Marathon and is the site of the proposed Research Park Administrative Annex. The Development Area fronts on Jimmie Leeds Road, Insbruck Avenue and Duerer Street. The area drains in the northerly direction towards a tributary of Morse's Mill Stream which discharges into Lake Fred and Morse's Mill Stream. For purposes of determining stormwater management compliance, the stormwater analysis assumes that the entire site under its pre-developed conditions is wooded. The table below show the pre and post developed cover conditions for the Development Area:

RSC 011.01 Page 23 of 32

	PROJECT AREA COMPARISON-10									
		Imper	vious	Pervious						
	Total Area	Paving & Walks	Roof	Roof Open Space V						
		(incl. Gravel)								
Existing	24.35 Ac	0 Ac	0 Ac	0 Ac	24.35 Ac					
Existing	Subtotal	0 A	Ac	24.35 Ac						
Dropood	24.35 Ac	0.94 Ac	5.60 Ac	3.52 Ac	14.29 Ac					
Proposed	Subtotal	6.54	Ac	17.81 Ac						

Nonstructural stormwater management strategies at N.J.A.C. 7:8-5.3 will be implemented to the maximum extent practicable on the project (Refer to Section 13). Low-impact development measures such as vegetative retention swales and rain gardens disconnect and pre-treat stormwater runoff from parking areas and drives. The stormwater is conveyed and discharged into an open stormwater management basin that is designed to retain and infiltrate the total runoff volume generated from the net increase in impervious surfaces by the ten-year storm. The basin is designed so that the post-construction peak runoff discharge rates for the 10 and 100-year storm events do not exceed 75 and 80 percent, respectively, of the pre-construction peak runoff rates. The basins absorb the entire runoff volume from the two-year storm event. Note that the volume retained in the swales and rain garden areas, which will be designed in detail when the actual field layout is determined in the future, is not required to meet the groundwater recharge standard and are solely intended to pretreat runoff prior to infiltration.

The table below summarizes the peak rates of runoff generated from the Development Area in its pre and post developed condition, the maximum storage volume and elevation, and the provided 10-year net increase in impervious cover (NIC) volume. Drainage shed modeling of the Development Area is provided in Appendix C.

	DEVELOPMENT AREA 10										
		Peak Discharge (CFS)	Allowable Discharge (CFS)	Maximum Storage Volume (CF)	Maximum Storage Elevation (FT)	10-Year NIC Volume (CF)					
	100-Year	22.87									
Existing	10-Year	7.50									
	2-Year	1.87									
	100-Year	17.81	18.30	275,554	58.13						
Proposed	10-Year	2.54	5.63	165,897	57.53	124,812					
	2-Year	0.00	0.94	111,315	57.22						

RSC 011.01 Page 24 of 32

8.0 COMPLIANCE WITH GROUNDWATER RECHARGE STANDARD AT N.J.A.C. 7:50-6.84(a)6iii

For Development Area 1 (the previously developed core academic area), the groundwater recharge standard does not apply since there is a net decrease in impervious surfaces.

For the development areas in existing vacant portions of the site, in accordance with N.J.A.C. 7:50-6.84(a)6iii, the stormwater runoff volume generated by the ten (10) year twenty-four (24) hour storm from the net increase in impervious surfaces is retained and infiltrated on-site and shown in section 7 above.

The table in Appendix C summarizes the total ten-year runoff volume generated by the site under post-development conditions and the volume infiltrated.

9.0 COMPLIANCE WITH RUNOFF QUANTITY STANDARD AT N.J.A.C. 7:50-6.84(a)6ii

For the Development Area 1, in accordance with N.J.A.C. 7:50-6.84(a)6ii(1), the post-construction runoff hydrographs for the two, 10, and 100-year storm events do not exceed, at any point in time, the pre-construction runoff hydrographs for the same storm events.

For the development areas in existing vacant portions of the site, in accordance with N.J.A.C. 7:50-6.84(a)6ii(3), the peak post-development stormwater runoff rates for the 2 year, 10 year and 100 year storms do not exceed 50, 75 and 80 percent, respectively, of the peak pre-development stormwater rates for the same storms.

The table in Appendix C summarizes the discharge rates, storage volumes and storage elevation within each basin system for the post-developed conditions under normal operations assuming no depletion of volume due to infiltration:

10.0 COMPLIANCE WITH RUNOFF QUALITY STANDARD AT N.J.A.C. 7:8-5.5

In accordance with N.J.A.C. 7:8-5.5, a land development that creates 0.25 acres or more of new or additional impervious surface must include stormwater management measures that reduce the average annual total suspended solids (TSS) load in the site's post-construction runoff by 80%. Since the development in the Master Plan proposes to construct more than 0.25 acres of additional impervious surface, this project must meet the Runoff Water Quality Standards of the NJ Stormwater Regulations.

The infiltration basins are designed to accommodate the full volume of runoff from the water quality storm. Infiltration basins are assigned a TSS removal rate of 80%. The rate

RSC 011.01 Page 25 of 32

provided is explained in detail in Chapter 9 of the BMP Manual. Additionally, the vegetated conveyance areas and vegetated infiltration areas within the proposed parking lots will provided between 50% and 80% TSS removal prior to discharge to the basins.

11.0 COMPLIANCE WITH INFILTRATION BASIN DESIGN, SITING AND CONSTRUCTION STANDARD AT N.J.A.C. 7:50-6.84(a)6iv

Stormwater infiltration facilities are designed to provide a minimum separation of at least two feet between the elevation of the lowest point of the bottom of the infiltration facility and the seasonal high water level;

Stormwater infiltration facilities are sited in suitable soils verified by laboratory testing to have permeability rates between one and 20 inches per hour. A factor of safety of two was applied to the soil's permeability rate in determining the infiltration facility's design permeability rate;

Groundwater mounding analysis has been performed to assess the hydraulic impacts of mounding of the water table resulting from infiltration of stormwater runoff from the maximum storm designed for infiltration. Groundwater mounding does not cause stormwater or groundwater to breakout to the land surface or cause adverse impacts to adjacent water bodies, wetlands or subsurface structures, including, but not limited to basements and septic systems;

To the maximum extent practical, stormwater management measures are designed to limit site disturbance, maximize stormwater management efficiencies, maintain or improve aesthetic conditions and incorporate pretreatment as a means of extending the functional life and increasing the pollutant removal capability of structural stormwater management facilities;

The basins are designed to minimize disturbance by avoiding clearing and excavation where possible and maintaining the naturally wooded area to be shallow storage for runoff that will act as a bioretention area for runoff. Aesthetic conditions are maintained in the basin areas by minimizing tree removal and incorporation of functional landscape areas in the parking lots. Those same landscape areas in the parking lots will be pretreatment for the runoff prior to discharge to the stormwater management facilities. They will be low depth vegetated swales and rain gardens designed to accept the first flush of runoff and provide pretreatment of runoff from the parking areas. Any runoff in excess of the pretreatment volume in the landscape areas will be safely conveyed to the basins by a combination of vegetated conveyance areas and inlets and piping that will be designed in detail once the final layout of the respective development areas is determined.

RSC 011.01 Page 26 of 32

To avoid sedimentation that may result in clogging and reduction of infiltration capability and to maintain maximum soil infiltration capacity, the construction of stormwater infiltration basins shall be managed in accordance with the following standards:

- (A) Due to the timelines associated with full build-out of the development areas, the stormwater infiltration basins may be placed into operation prior to the complete stabilization of the upstream drainage areas. Where possible, temporary stormwater management facilities and sediment basins will be utilized upstream of the basins to remove any sedimentation prior to discharge to the facilities. These measures, in conjunction with soil erosion and sediment control measures that will be utilized during construction in accordance with NJ State Soil Erosion and Sediment Control Standards, will ensure no accumulation of sediment will take place within the basins or downstream. Additionally, if possible (where excavation is proposed) the basin's bottom during this period will be constructed at a depth at least two feet higher than its final design elevation. When the drainage area has been completely stabilized, all accumulated sediment shall be removed from the infiltration basin, which shall then be excavated to its final design elevation; and
- (B) To avoid compacting the infiltration basin's subgrade soils, no heavy equipment such as backhoes, dump trucks or bulldozers shall be permitted to operate within the footprint of the stormwater infiltration basin. All excavation required to construct a stormwater infiltration basin shall be performed by equipment placed outside the basin where possible. If equipment is required within the basin footprint, it will be low ground pressure equipment that will not compact the subgrade soils. The soils within the excavated area will be renovated and tilled after construction is completed. Earthwork associated with stormwater infiltration basin construction, including excavation, grading, cutting or filling, shall not be performed when soil moisture content is above the lower plastic limit.

12.0 COMPLIANCE WITH AS-BUILT REQUIREMENT AT N.J.A.C. 7:50-6.84(a)6v

In accordance with N.J.A.C. 7:50-6.84(a)6v(1), after all construction activities have been completed on the Project Site and finished grade has been established in the infiltration basin, replicate post-development field permeability tests will be conducted to determine if as-built soil permeability rates are consistent with design permeability rates.

If the results of the post-development field permeability tests fail to achieve the minimum required design permeability rate, utilizing a factor of safety of two, the infiltration basin will be renovated and re-tested until such minimum required permeability rates are achieved; and

RSC 011.01 Page 27 of 32

In accordance with N.J.A.C. 7:50-6.84(a)6v(2), After all construction activities and required field testing have been completed on the Project Site, as-built plans, including as-built elevations of all stormwater management measures will be prepared to verify sufficient volume exists within the basin(s) to meet the design requirements outlined herein.

13.0 CONFORMANCE WITH NONSTRUCTURAL MANAGEMENT STRATEGIES AT N.J.A.C. 7:8-5.3

In accordance with N.J.A.C. 7:8-5.2(a), nonstructural stormwater management strategies are incorporated into the site design of the development. A total of nine strategies are used to the maximum extent practicable to meet the groundwater recharge, stormwater quality, and stormwater quantity requirements prior to utilizing structural stormwater management measures. Nonstructural stormwater management strategies incorporated into the site design include:

- 1. Protecting wetland areas and other environmentally sensitive areas by inclusion of three hundred feet buffer;
- 2. Minimizing impervious surfaces by reducing cartway widths and parking stall dimensions and breaking up or disconnecting the flow of runoff from parking areas, drives and roadways by incorporating small-scale distributed vegetative swales and rain gardens;
- 3. Protecting and preserving natural drainage features and vegetation to slow runoff, filter out pollutants and facilitate infiltration;
- 4. Minimizing the decrease in the "time of concentration" from pre-construction to post-construction through grading to encourage sheet flow and to lengthen flow paths.
- 5. Minimizing land disturbance by limiting clearing and grading to the areas to be developed and protecting vegetation to remain.
- 6. Minimizing soil compaction by limiting same to cartway, parking and building footprint areas.
- 7. Providing low-maintenance landscaping that encourages retention and planting of native vegetation and minimizing the use of lawns, fertilizers and pesticides;
- 8. Providing vegetated open-channel conveyance systems discharging into and through stable vegetated areas to help filter runoff and encourage recharge; and

RSC 011.01 Page 28 of 32

- 9. Providing other source controls to prevent or minimize the use or exposure of pollutants at the site in order to prevent or minimize the release of those pollutants into stormwater runoff. These source controls include, but are not limited to:
 - i. Preventing the accumulation of trash and debris in drainage systems;
 - ii. Preventing the discharge of trash and debris from drainage systems;
 - iii. Applying fertilizer in accordance with the requirements established under the Soil Erosion and Sediment Control Act, N.J.S.A. 4:24-39 et seq., and implementing rules.

The New Jersey Nonstructural Stormwater Management Strategies Point System (NSPS) Worksheet will be prepared for each individual project described herein at the time the actual development plans are made. The NSPS Worksheet provides a tool in determining that the strategies have been used to the "maximum extent practicable" at a major development as required by the Rules. If the NSPS demonstrates that sufficient nonstructural stormwater management measures have been utilized at the project, no further proof of compliance with the maximum extent practicable requirement shall be required. However, if the NSPS fails to demonstrate such compliance, such results shall not be used to disapprove any permit application sought by the proposed development. Instead, the College will be required to demonstrate compliance through other and/or additional means. This includes the Low Impact Development (LID) Checklist contained in Appendix A of the New Jersey Stormwater Best Management Practices Manual, which includes a rigorous alternatives analysis for each measure.

14.0 CONFORMANCE WITH LOW IMPACT DEVELOPMENT STANDARD IN CHAPTER 2 OF THE NEW JERSEY STORMWATER BEST MANAGEMENT PRACTICES MANUAL

The rules emphasize the employment of effective alternatives to conventional centralized stormwater management strategy. Strategies have been developed to minimize and prevent adverse stormwater runoff impacts from occurring and to provide necessary treatment closer to the origin of those impacts. Such strategies, known as Low Impact Development or LID, seek to reduce and/or prevent adverse runoff impacts through sound site planning and both nonstructural and structural techniques that preserve or closely mimic the natural or pre-developed hydrologic response to precipitation. Low impact development is a comprehensive technology-based approach to managing stormwater. Stormwater is managed in small, cost-effective landscape features rather than being conveyed and entirely managed in large pond facilities located at the bottom of drainage areas. Low impact development techniques interact with the rainfall-runoff process, controlling stormwater runoff and pollutants closer to the source and providing site design measures that can significantly reduce the overall impact of land development on stormwater runoff.

RSC 011.01 Page 29 of 32

Effective low impact development includes the use of both nonstructural and structural stormwater management measures that are a division of a larger group of practices and facilities known as Best Management Practices or BMPs. The BMPs utilized in low impact development, known as Integrated Management Practices or IMPs, focus first on minimizing both the quantitative and qualitative changes to a site's predeveloped hydrology through nonstructural practices and then providing treatment as necessary through a network of structural facilities distributed throughout the site.

The primary goal of Low Impact Development methods is to mimic the predevelopment site hydrology by using site design techniques that store, infiltrate, evaporate, and detain runoff. Use of these techniques helps to reduce off-site runoff and ensure adequate groundwater recharge. The objective of low-impact development is accomplished by:

- 1. Minimizing stormwater impacts to the extent practicable. Techniques include reducing imperviousness, conserving natural resources and ecosystems, maintaining natural drainage courses, reducing use of pipes, and minimizing clearing and grading.
- 2. Providing runoff storage measures dispersed uniformly throughout a site landscape with the use of a variety of detention, retention, and runoff practices.
- 3. Maintaining predevelopment time of concentration by strategically routing flows to maintain travel time and control the discharge.

Low-impact development technology employs integrated management practices to achieve desired post development hydrologic conditions. Management practices that are suited to low-impact development and will be incorporated into the development include:

Bioretention - Bioretention is a practice to manage and treat stormwater runoff by using a conditioned planting soil bed and planting materials to filter runoff stored within a shallow depression. The method combines physical filtering and adsorption with biological processes. The system can include the following components: a pretreatment filter strip of grass channel inlet area, a shallow surface water ponding area, a vegetative planting area, a soil zone, an underdrain system, and an overflow outlet structure.

Dry Wells - A dry well consists of a small excavated pit backfilled with stone aggregate. Dry wells function as infiltration systems used to control runoff from building rooftops. Another special application of dry wells is modified catch basins, where inflow is a form of direct surface runoff. Dry wells provide the majority of treatment by processes related to soil infiltration, including adsorption, trapping, filtering, and bacterial degradation.

Filter Strips - Filter strips are typically bands of close-growing vegetation, usually grass, planted between pollutant source areas and a downstream receiving waterbody. They also can be used as outlet or pretreatment devices for other stormwater control

RSC 011.01 Page 30 of 32

practices. For LID sites, a filter strip should be viewed as only one component in a stormwater management system.

Vegetated Buffers - Vegetated buffers are strips of vegetation, either natural or planted, around sensitive areas such as waterbodies, wetlands, woodlands, or highly erodible soils. In addition to protecting sensitive areas, vegetated strips help to reduce stormwater runoff impacts by trapping sediment and sediment-bound pollutants, providing some infiltration, and slowing and dispersing stormwater flows over a wide area.

Level Spreaders - A level spreader typically is an outlet designed to convert concentrated runoff to sheet flow and disperse it uniformly across a slope to prevent erosion. One type of level spreader is a shallow trench filled with crushed stone. The lower edge of the level spreader must be exactly level if the spreader is to work properly.

Grassed Swales - Swales are simple drainage and grassed channels that primarily served to transport stormwater runoff away from roadways and rights-of-way. Two types of grassed swales are being used for this purpose: the dry swale, which provides both quantity (volume) and quality control by facilitating stormwater infiltration, and the wet swale, which uses residence time and natural growth to reduce peak discharge and provide water quality treatment before discharge to a downstream location. The wet swale typically has water tolerant vegetation permanently growing in the retained body of water. These systems are often used on roadway designs.

Cisterns - Stormwater runoff cisterns are roof water management devices that provide retention storage volume in underground storage tanks. On-site storage with later reuse of stormwater also provides an opportunity for water conservation and the possibility of reducing water utility costs.

Infiltration Trenches - An infiltration trench is an excavated trench that has been back-filled with stone to form a subsurface basin. Stormwater runoff is diverted into the trench and is stored until it can be infiltrated into the soil, usually over a period of a few days. Infiltration trenches are very adaptable IMPs, and the availability of many practical configurations make them ideal for small urban drainage areas. They are most effective and have a longer life cycle when some form of pretreatment is included in their design. Pretreatment may include techniques like vegetated filter strips or grassed swales. Care must be taken to avoid clogging of infiltration trenches, especially during site construction activities.

RSC 011.01 Page 31 of 32

15.0 CONFORMANCE WITH SOIL EROSION CONTROL STANDARD AT N.J.A.C. 7:8-5.4(a)1

The development of each project will comply with the minimum design and performance standards for erosion control established under the Soil Erosion and Sediment Control Act, N.J.S.A. 4:24-39 et seq. and implementing rules. Each project will be submitted to the Cape Atlantic Conservation District for certification of a Soil Erosion and Sediment Control Plan prior to commencement of construction.

16.0 CONCLUSION

This Stormwater Compliance Report demonstrates that Stockton's goal to provide the most environmentally responsible and cost-effective stormwater management system for the development proposed within the Master Plan can be met with low impact techniques that provide both functional and aesthetic benefits. The different development areas, and their associated drainage patterns and underlying soil conditions, provide opportunity for the use of different stormwater management techniques and features to address the applicable Stormwater Management Regulations of the Pinelands Comprehensive Management Plan. The general theme of the development approach is low impact techniques relying on functional landscaping elements and naturally wooded areas to treat and attenuate runoff prior to discharge downstream. This approach ensures existing drainage patterns and intensities are maintained so there are no negative impacts to downstream wetland buffers, wetlands, waterways and waterbodies.

As described above, the stormwater management and collection systems are designed in accordance with applicable state regulations and requirements. The stormwater management and collection systems are designed to accommodate the required design storms and to provide groundwater recharge, runoff control, and water quality measures as outlined in N.J.A.C. 7:8 and the Pinelands CMP N.J.A.C. 7:50-6.84(a)6.

RSC 011.01 Page 32 of 32

APPENDIX A

Existing and Proposed Conditions

THE RICHARD STOCKTON COLLEGE OF NEW JERSEY STORMWATER MASTER PLAN AREAS

PROPOSED CONDITION

AREA	Soil Type	HSG	TOTAL AREA	TOTAL Impervious	Building	Roadway	Parking Impervious	Parking pervious	TOTAL Pervious	Open Space	Woods	Meadow
	71-			•		·	•					
2 & 3	AtsA	D	0.43	0.00					0.43		0.43	
	DocB	В	59.85	0.00					59.85	50.00	9.85	
	GamB	Α	46.02	11.95	2.60	1.65	3.37	4.33	34.07	34.07		
		TOTAL	106.30	11.95	2.60	1.65	3.37	4.33	94.35	84.07	10.28	0.00
4			3.77	3.77	3.77			1	0.00			
4			0.00		3.11							
		TOTAL	3.77	0.00 3.77	3.77	0.00	0.00		0.00	0.00	0.00	0.00
		IOTAL	3.77	3.77	3.77	0.00	0.00		0.00	0.00	0.00	0.00
5-E	SacA	В	5.25	2.42	1.03	0.00	1.39		2.83	2.83	0.00	
	DocB	В	19.16	10.81	3.47	3.60	3.74		8.35	8.35	0.00	
	MbtB	С	12.19	2.69	1.61	0.00	1.08		9.50	9.50	0.00	
	WoeA	C	7.40	4.82	2.29	0.00	2.53		2.58	2.58	0.00	
		TOTAL	44.00	20.74	8.40	3.60			23.26	23.26	0.00	0.00
5-W	AtsA	D	1.05	0.00					1.05	1.05	0.00	
	AugB	В	9.45	0.00					9.45	9.45	0.00	
	DocB	В	20.72	14.68	6.26	3.24	5.18		6.04	6.04	0.00	
	GamkB	Α	2.90	0.00					2.90	2.90	0.00	
	HboA	С	1.24	0.00					1.24	1.24	0.00	
		TOTAL	35.36	14.68	6.26	3.24	5.18		20.68	20.68	0.00	0.00
•	DD		0.45	0.00				ı	0.45	0.45		
6	DocB EveB	B	6.15 5.46	0.00					6.15 5.46	6.15 5.46		
	GamB	Α Α			F 00		10.20		2.60			
		A	24.52	21.92	5.62		16.30			2.60	10.07	
	WoeA	C TOTAL	12.07 48.20	0.00 21.92	5.62	0.00	16.30		12.07 26.28	14.21	12.07 12.07	0.00
		IOIAL	40.20	21.32	3.02	0.00	10.50		20.20	14.21	12.07	0.00
7	AtsA	D	0.69	0.00					0.69		0.69	
	HboA	В	35.80	11.97	3.21		8.76		23.83	10.00	13.83	
		TOTAL	36.49	11.97	3.21	0.00			24.52	10.00	14.52	0.00
10	SacA	В	5.49	3.27	0.47		2.80		2.22	2.22		
	WoeA	С	8.12	3.27	0.47		2.80		4.85	4.85		
		TOTAL	13.61	6.54	0.94	0.00	5.60		7.07	7.07	0.00	0.00

THE RICHARD STOCKTON COLLEGE OF NEW JERSEY STORMWATER MASTER PLAN AREAS

EXISTING CONDITION

2 8.3	AREA	Soil Type	HSG	TOTAL AREA	TOTAL Impervious	Building	Roadway	Parking	TOTAL Pervious	Open Space	Woods	Meadow
DocB	ANEA	Soli Type	1130	7111271	Impervious	Dallaling	Roddway	r arking	1 CIVIOUS	Орасс	**************************************	Wicadow
GamB	2 & 3	AtsA	D	0.43	0.00				0.43		0.43	
TOTAL 106.30 0.00 0.00 0.00 106.30 34.85 71.45 0.15		DocB	В	59.85	0.00				59.85	34.85	25.00	
A		GamB		46.02	0.00				46.02		46.02	
TOTAL 3.26 3.26 2.53 0.00 0.73 0.00 0.00 0.00 0.00			TOTAL	106.30	0.00	0.00	0.00	0.00	106.30	34.85	71.45	0.00
TOTAL 3.26 3.26 2.53 0.00 0.73 0.00 0.00 0.00 0.00				2 26	2.26	2.52		0.72	0.00			-
TOTAL 3.26 3.26 2.53 0.00 0.73 0.00 0.00 0.00 0.00 0.00	4					2.00		0.73				
5-E SacA B 5.25 0.00 5.25 5.25 DocB B 19.16 0.00 19.16 19.16 MbtB C 12.19 0.00 12.19 12.19 WoeA C 7.40 0.00 7.40 7.40 TOTAL 44.00 0.00 0.00 0.00 44.00 0.00 44.00 5-W AtsA D 1.05 0.00 1.05 1.05 AugB B 9.45 0.00 9.45 9.45 DocB B 20.72 0.00 20.72 20.72 GamkB A 2.90 0.00 2.90 2.90 HboA C 1.24 0.00 1.24 1.24 TOTAL 35.36 0.00 0.00 35.36 0.00 35.36 0.00 6 DocB B 6.15 0.00 6.15 6.15 6.15 EveB A 5.46			TOTAL			2.52	0.00	0.73		0.00	0.00	0.00
DocB			IUIAL	3.20	3.20	2.33	0.00	0.73	0.00	0.00	0.00	0.00
DocB	5-E	SacA	В	5.25	0.00				5.25		5.25	
MbtB C 12.19 0.00 12.19 12.19 WoeA C 7.40 0.00 7.40 7.40 7.40 TOTAL 44.00 0.00 0.00 0.00 44.00 0.00 44.00 0.00 5-W AtsA D 1.05 0.00 1.05 1.05 AugB B 9.45 0.00 9.45 9.45 DocB B 20.72 0.00 20.72 20.72 GamkB A 2.90 0.00 2.90 2.90 HboA C 1.24 0.00 1.24 1.24 TOTAL 35.36 0.00 0.00 35.36 0.00 35.36 0.0 6 DocB B 6.15 0.00 5.46 5.46 5.46 GamB A 23.47 0.00 23.47 23.47 23.47 WoeA C 13.12 0.00 13.12 13.12 13.12												
WoeA C 7.40 0.00 7.40 7.40 TOTAL 44.00 0.00 0.00 0.00 44.00 0.00 44.00 0.00 5-W AtsA D 1.05 0.00 1.05 1.05 AugB B 9.45 0.00 9.45 9.45 DocB B 20.72 0.00 20.72 20.72 GamkB A 2.90 0.00 2.90 2.90 HboA C 1.24 0.00 1.24 1.24 TOTAL 35.36 0.00 0.00 35.36 0.00 35.36 0.00 6 DocB B 6.15 0.00 6.15 6.15 6.15 EveB A 5.46 0.00 5.46 5.46 5.46 GamB A 23.47 0.00 13.12 13.12 13.12 TOTAL 48.20 0.00 0.00 0.00 48.20 0.00												
TOTAL 44.00 0.00 0.00 0.00 44.00 0.00 44.00 0.00 5-W AtsA D 1.05 0.00 1.05 1.05 AugB B 9.45 0.00 9.45 9.45 DocB B 20.72 20.72 20.72 GamkB A 2.90 0.00 2.90 2.90 HboA C 1.24 0.00 1.24 1.24 TOTAL 35.36 0.00 0.00 0.00 35.36 0.00 EveB A 5.46 0.00 5.46 5.46 GamB A 23.47 0.00 23.47 23.47 WoeA C 13.12 0.00 13.12 13.12 TOTAL 48.20 0.00 0.00 0.00 48.20 0.00 AtsA D 0.69 0.69 0.69 HboA B 35.80 35.80 35.80 TO		WoeA			0.00							
AugB B 9.45 0.00 9.45 9.45 DocB B 20.72 0.00 20.72 20.72 GamkB A 2.90 0.00 2.90 2.90 HboA C 1.24 0.00 1.24 1.24 TOTAL 35.36 0.00 0.00 0.00 35.36 0.00 6 DocB B 6.15 0.00 6.15 6.15 EveB A 5.46 0.00 5.46 5.46 GamB A 23.47 0.00 13.12 13.12 WoeA C 13.12 0.00 13.12 13.12 TOTAL 48.20 0.00 0.00 0.00 48.20 0.00 AtsA D 0.69 0.69 0.69 HboA B 35.80 35.80 35.80 TOTAL 36.49 0.00 0.00 0.00 36.49 0.00 0.69 MoeA<						0.00	0.00	0.00		0.00		0.00
AugB B 9.45 0.00 9.45 9.45 DocB B 20.72 0.00 20.72 20.72 GamkB A 2.90 0.00 2.90 2.90 HboA C 1.24 0.00 1.24 1.24 TOTAL 35.36 0.00 0.00 0.00 35.36 0.00 6 DocB B 6.15 0.00 6.15 6.15 EveB A 5.46 0.00 5.46 5.46 GamB A 23.47 0.00 13.12 13.12 WoeA C 13.12 0.00 13.12 13.12 TOTAL 48.20 0.00 0.00 0.00 48.20 0.00 AtsA D 0.69 0.69 0.69 HboA B 35.80 35.80 35.80 TOTAL 36.49 0.00 0.00 0.00 36.49 0.00 0.69 MoeA<												
DocB B 20.72 0.00 20.72 20.72 GamkB A 2.90 0.00 2.90 2.90 HboA C 1.24 0.00 1.24 1.24 TOTAL 35.36 0.00 0.00 0.00 35.36 0.00 35.36 0.0 6 DocB B 6.15 0.00 6.15 6.15 6.15 EveB A 5.46 0.00 5.46 5.46 5.46 GamB A 23.47 0.00 23.47 23.47 23.47 WoeA C 13.12 0.00 13.12 13.12 13.12 TOTAL 48.20 0.00 0.00 0.00 48.20 0.00 48.20 0.0 7 AtsA D 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69	5-W											
GamkB A 2.90 0.00 2.90 2.90 HboA C 1.24 0.00 1.24 1.24 TOTAL 35.36 0.00 0.00 0.00 35.36 0.00 6 DocB B 6.15 0.00 6.15 6.15 EveB A 5.46 0.00 5.46 5.46 GamB A 23.47 0.00 23.47 23.47 WoeA C 13.12 0.00 13.12 13.12 TOTAL 48.20 0.00 0.00 0.00 48.20 0.00 7 AtsA D 0.69 0.69 0.69 0.69 HboA B 35.80 35.80 35.80 35.80 TOTAL 36.49 0.00 0.00 0.00 36.49 0.00 0.69 MoeA C 8.12 0.00 8.12 8.12 8.12												
HboA C 1.24 0.00 1.24 1.24 1.24 TOTAL 35.36 0.00 0.00 0.00 35.36 0.00 35.36 0.00 6												
TOTAL 35.36 0.00 0.00 0.00 35.36 0.00 35.36 0.0 6 DocB B 6.15 0.00 6.15 6.15 EveB A 5.46 0.00 5.46 5.46 GamB A 23.47 0.00 23.47 23.47 WoeA C 13.12 0.00 13.12 13.12 TOTAL 48.20 0.00 0.00 0.00 48.20 0.00 AtsA D 0.69 0.00 0.69 0.69 0.69 HboA B 35.80 35.80 35.80 35.80 35.80 TOTAL 36.49 0.00 0.00 0.00 36.49 0.00 0.69 0.0 10 SacA B 5.49 0.00 5.49 5.49 WoeA C 8.12 0.00 8.12 8.12												
6 DocB B 6.15 0.00 6.15 6.15 EveB A 5.46 0.00 5.46 5.46 GamB A 23.47 0.00 23.47 23.47 WoeA C 13.12 0.00 13.12 13.12 TOTAL 48.20 0.00 0.00 0.00 48.20 0.00 48.20 0.00 TOTAL B 35.80 35.80 35.80 35.80 35.80 35.80 0.00 0.69		HboA										
EveB A 5.46 0.00 5.46 5.46 GamB A 23.47 0.00 23.47 23.47 WoeA C 13.12 0.00 13.12 13.12 TOTAL 48.20 0.00 0.00 48.20 0.00 48.20 0.00 AtsA D 0.69 0.00 0.00 35.80 35.80 35.80 TOTAL 36.49 0.00 0.00 0.00 36.49 0.00 0.69 MoeA C 8.12 0.00 8.12 8.12			TOTAL	35.36	0.00	0.00	0.00	0.00	35.36	0.00	35.36	0.00
EveB A 5.46 0.00 5.46 5.46 GamB A 23.47 0.00 23.47 23.47 WoeA C 13.12 0.00 13.12 13.12 TOTAL 48.20 0.00 0.00 48.20 0.00 48.20 0.00 AtsA D 0.69 0.00 0.00 35.80 35.80 35.80 TOTAL 36.49 0.00 0.00 0.00 36.49 0.00 0.69 10 SacA B 5.49 0.00 5.49 5.49 WoeA C 8.12 0.00 8.12 8.12				I								
GamB A 23.47 0.00 23.47 23.47 WoeA C 13.12 0.00 13.12 13.12 TOTAL 48.20 0.00 0.00 48.20 0.00 48.20 0.00 AtsA D 0.69 0.00 0.69 <th>6</th> <th></th>	6											
WoeA C 13.12 0.00 13.12 13.12 TOTAL 48.20 0.00 0.00 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 0.69<												
TOTAL 48.20 0.00 0.00 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 48.20 0.00 0.69<												
7 AtsA D 0.69 0.00 0.69<		WoeA				0.00	0.00	0.00		0.00		0.00
HboA B 35.80 35.80 35.80 35.80 TOTAL 36.49 0.00 0.00 0.00 36.49 0.00 0.69 0.0 10 SacA B 5.49 0.00 5.49 5.49 WoeA C 8.12 0.00 8.12 8.12			IOTAL	48.20	0.00	0.00	0.00	0.00	48.20	0.00	48.20	0.00
HboA B 35.80 35.80 35.80 35.80 35.80 35.80	7	AtsA	D	0.69	0.00			Ī	0.69		0.69	
TOTAL 36.49 0.00 0.00 0.00 36.49 0.00 0.69 0.0 10 SacA B 5.49 0.00 5.49 5.49 WoeA C 8.12 0.00 8.12 8.12	-				0.00							
WoeA C 8.12 0.00 8.12 8.12		110071			0.00	0.00	0.00	0.00		0.00		0.00
WoeA C 8.12 0.00 8.12 8.12				•								
	10											
TOTAL 13.61 0.00 0.00 0.00 13.61 0.00 13.61 0.0		WoeA										
			TOTAL	13.61	0.00	0.00	0.00	0.00	13.61	0.00	13.61	0.00

APPENDIX B

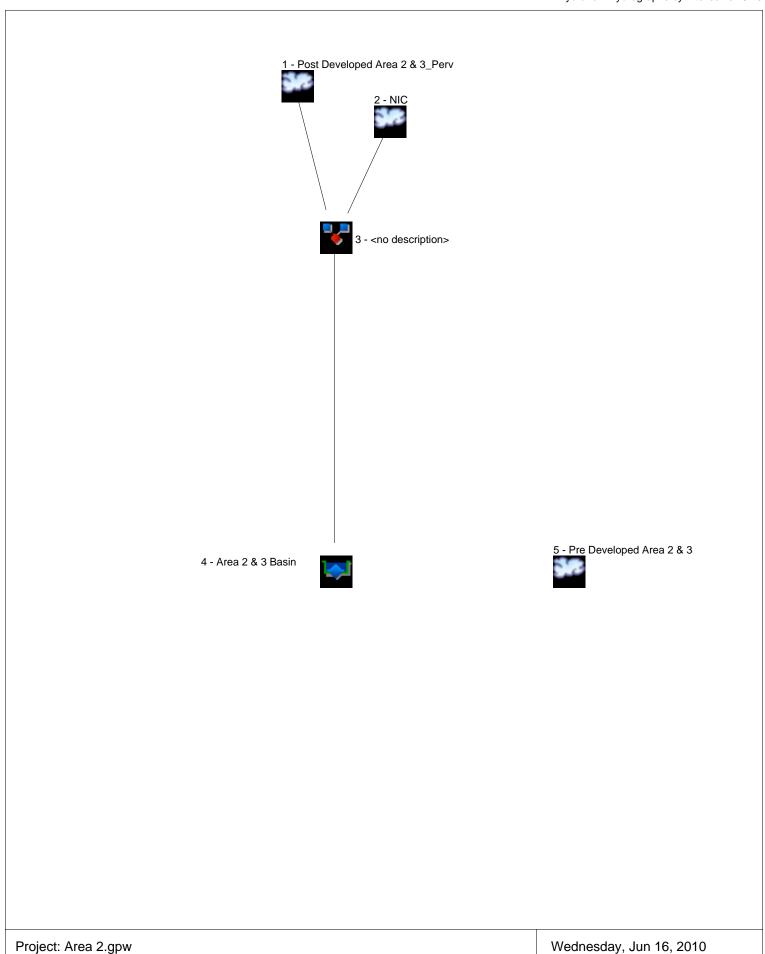
Stormwater Management Basin Volumes

THE RICHARD STOCKTON COLLEGE OF NEW JERSEY PHASE 2 STORMWATER MASTER PLAN

BASIN VOLUMES

	Elevation	Area	Incremental Volume	Cumulative Volume	
Area 2	52 51 50 49.5 49	378,731 360,399 342,222 248,747 155,272	369,565 351,311 248,747 101,005 88,592	1,063,693 694,128 342,817 195,075 94,070	Primary Spillway
	48 47.5	21,912	5,478 0	5,478 0	
Area 5 East	56 55 54.7	269,340 263,271 261,467	266,306 260,265 181,554	736,533 470,228 391,517	Primary Spillway
	54 53 52 51	257,259 68,215 13,118 0	162,737 40,667 6,559 0	209,963 47,226 6,559 0	
Area 5 West	51 50 49.4	192,920 185,921 147,243	189,421 153,689 53,740	553,991 364,570 264,621	Primary Spillway
	49 48 47 46 45.3	121,457 83,077 53,875 15,530	102,267 68,476 34,703 5,436	210,881 108,614 40,138 5,436	· ·····a.y opay
Area 6	55 54	345,659 301,338	323,499 276,944	996,424 672,925	
	53 52 51 50 49	252,550 163,467 90,200 16,039	208,009 126,834 53,120 8,020 0	395,981 187,973 61,139 8,020	Primary Spillway
Area 7	55 54 53.4	271,849 263,172 212,335	267,511 220,808 78,156	615,279 347,768 205,116	Primary Spillway
	53 52 51.6	178,444 53,912 0	116,178 10,782 0	126,960 10,782 0	
Area 10	59 58	187,833 182,035	184,934 179,164	435,872 250,938	Drimany Chillian
	57.3 57 56.5	178,015 176,292 110,805	53,146 71,774 0	124,920 71,774 0	Primary Spillway

APPENDIX C


Pre and Post-Developed 2, 10, 50, and 100-Year Storm Runoff Calculations

THE RICHARD STOCKTON COLLEGE OF NEW JERSEY PHASE 2 STORMWATER MASTER PLAN

DEVELOPMENT AREA	2 & 3	5 East	5 West	6	7	10
Drainage Shed Area (Acres) Impervious Cover (Acres)	106.30 11.95	44.00 20.74	35.36 14.68	48.20 21.92	36.49 11.97	13.61 6.54
BASIN DATA						
B/(GIIV B/(I/)(
Top of Berm Elevation	52.00	56.60	51.30	55.00	55.00	59.10
Bottom of Basin Elevation	47.20	51.00	45.30	49.00	51.60	56.50
Height to Top of Berm(Feet)	4.80	5.60	6.00	6.00	3.40	2.60
Pond Depth to Spillway (Feet)	2.40	3.70	4.10	4.00	1.80	0.80
Emergency Spillway Width (Feet)	40	40	40	40	40	40
Emergency Spillway Elevation	51.00	55.60	50.30	54.00	54.00	58.10
Primary Spillway Width (Feet)	14	25	15	11	25	9
Primary Spillway Elevation	49.60	54.70	49.40	53.00	53.40	57.30
Discharge Velocity (CFS) (100 Yr. Storm)	2.53	2.14	2.14	1.96	1.90	1.79

THE RICHARD STOCKTON COLLEGE OF NEW JERSEY PHASE 2 STORMWATER MASTER PLAN

DEVELOPMENT AREA	2 & 3	5 East	5 West	6	7	10
POST DEVELOPED						
Required 10 Year NIC Volume (CF) Provided 10 Year NIC Volume (CF)	175,409 195,075	371,271 395,981	262,790 264,621	392,395 395,981	202,165 205,116	117,074 124,812
100 Year Design Storm						
Peak Discharge (CFS) Max. Storage Volume (CF)	59.72 690,948	51.05 616,820	35.85 426,770	24.92 648,534	35.67 366,361	17.81 275,554
Max. Storage Elevation	50.99	55.55	50.33	53.91	54.07	58.13
10 Year Design Storm			0.00	0.40		0.74
Peak Discharge (CFS) Max. Storage Volume (CF) Max. Storage Elevation	8.77 339,400 49.99	4.64 436,059 54.87	3.00 299,778 49.58	2.42 449,008 53.19	2.97 242,751 53.52	2.54 165,897 57.53
, and the second	40.00	04.07	40.00	30.10	00.02	37.33
2 Year Design Storm Peak Discharge (CFS)	0.00	0.00	0.00	0.00	0.00	0.00
Max. Storage Volume (CF)	208,490	295,529	195,825	278,250	158,291	111,315
Max. Storage Elevation	49.46	54.33	48.85	52.43	53.14	57.22
PREDEVELOPED						
100 Year Design Storm						
Peak Discharge (CFS)	77.64	63.79	45.70	32.13	44.68	22.87
Allowable Discharge (CFS)	62.11	51.03	36.56	25.70	35.74	18.30
10 Year Design Storm						
Peak Discharge (CFS)	12.63	21.36	11.61	4.43	11.83	7.50
Allowable Discharge (CFS)	9.47	16.02	8.71	3.32	8.87	5.63
2 Year Design Storm						
Peak Discharge (CFS)	0.98 0.49	5.69 2.85	1.76 0.88	0.25 0.12	2.02 1.01	1.87 0.94
Allowable Discharge (CFS)	0.49	2.00	0.00	0.12	1.01	0.94

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	7.597	2	742	76,285				Post Developed Area 2 & 3_Perv
2	SCS Runoff	32.66	2	726	132,206				NIC
3	Combine	33.76	2	726	208,490	1, 2			<no description=""></no>
4	Reservoir	0.000	2	n/a	0	3	49.46	208,490	Area 2 & 3 Basin
5	SCS Runoff	0.974	2	942	27,390				Pre Developed Area 2 & 3
Are	a 2.gpw	ı	1	<u> </u>	Return P	eriod: 2 Ye	ar	Wednesday	y, Jun 16, 2010

Hydraflow Hydrographs by Intelisolve v9.23

Wednesday, Jun 16, 2010


Hyd. No. 1

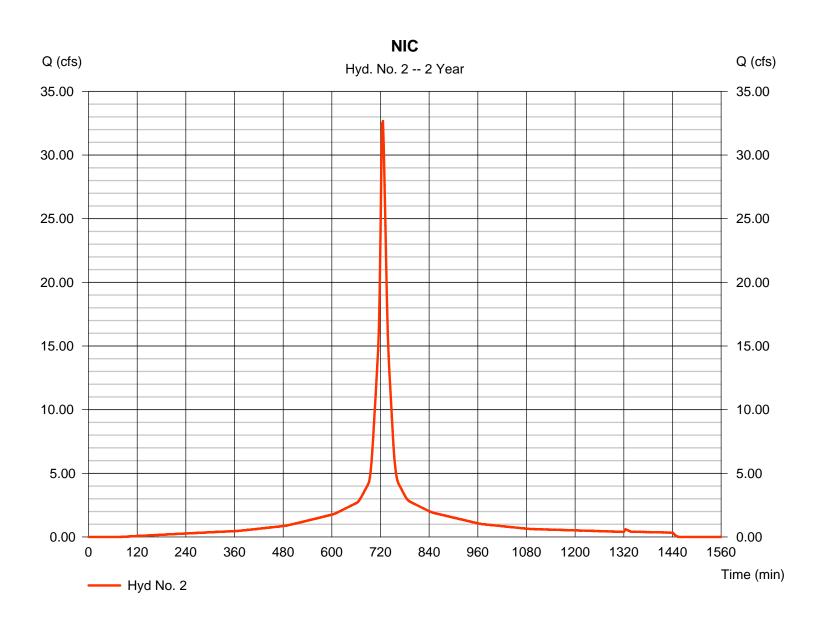
Post Developed Area 2 & 3_Perv

Hydrograph type = SCS Runoff Storm frequency = 2 yrsTime interval = 2 minDrainage area = 94.350 acBasin Slope = 0.0 %Tc method = USER Total precip. = 3.30 inStorm duration = 24 hrs

Peak discharge = 7.597 cfs
Time to peak = 742 min
Hyd. volume = 76,285 cuft
Curve number = 53*
Hydraulic length = 0 ft
Time of conc. (Tc) = 6.00 min
Distribution = Type III
Shape factor = 285

^{*} Composite (Area/CN) = + (0.430 x 77) + (50.000 x 61) + (9.850 x 55) + (34.070 x 39)] / 94.350

Hydraflow Hydrographs by Intelisolve v9.23

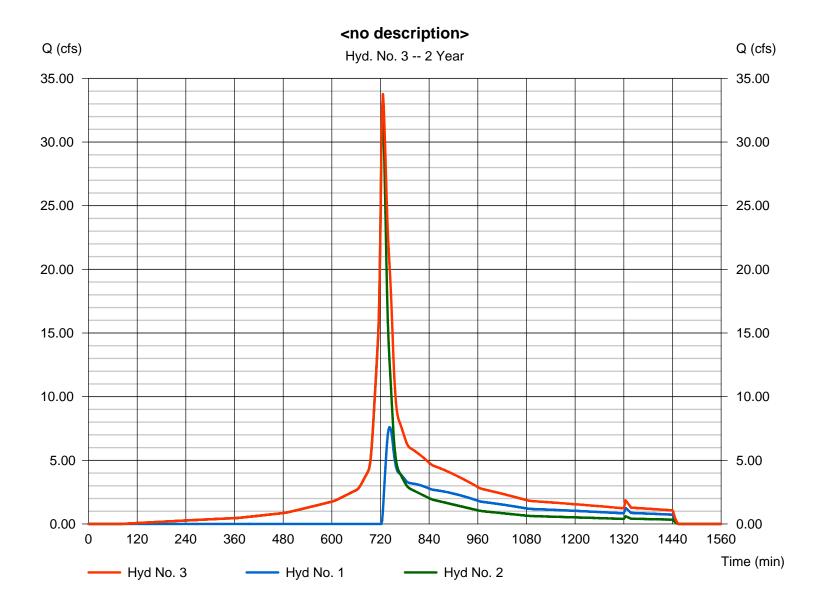

Wednesday, Jun 16, 2010

Hyd. No. 2

NIC

Hydrograph type = SCS Runoff Peak discharge = 32.66 cfsStorm frequency Time to peak = 2 yrs= 726 min Time interval = 2 minHyd. volume = 132,206 cuft Drainage area = 11.950 acCurve number = 98*Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) = 6.00 minTc method = USER Distribution Total precip. = 3.30 in= Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = [(2.600 x 98) + (1.650 x 98) + (3.370 x 98) + (4.330 x 98)] / 11.950


Hydraflow Hydrographs by Intelisolve v9.23

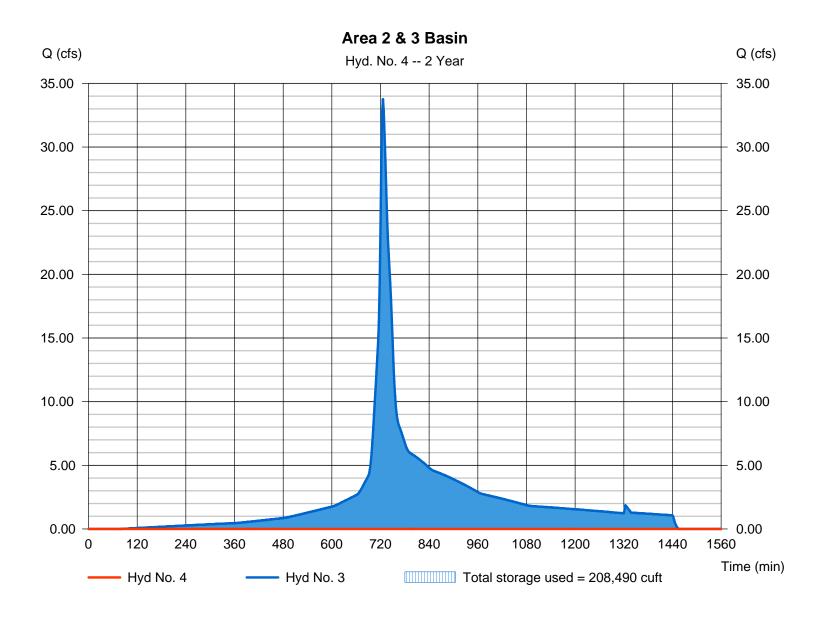
Wednesday, Jun 16, 2010

Hyd. No. 3

<no description>

Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 2 min Inflow hyds. = 1, 2 Peak discharge = 33.76 cfs
Time to peak = 726 min
Hyd. volume = 208,490 cuft
Contrib. drain. area = 106.300 ac

Hydraflow Hydrographs by Intelisolve v9.23


Wednesday, Jun 16, 2010

Hyd. No. 4

Area 2 & 3 Basin

Inflow hyd. No. = 3 - <no description> Max. Elevation = 49.46 ft
Reservoir name = Area 2 & 3 Max. Storage = 208,490 cuft

Storage Indication method used.

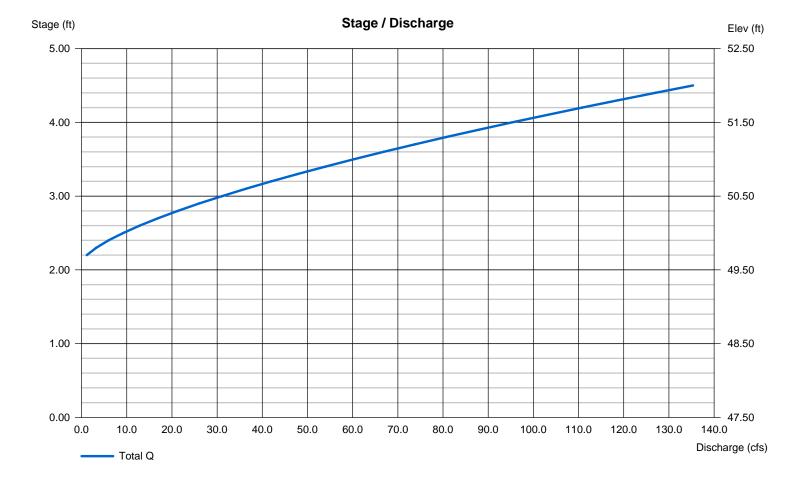
Pond Report

Hydraflow Hydrographs by Intelisolve v9.23

Wednesday, Jun 16, 2010

Pond No. 1 - Area 2 & 3

Pond Data


Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 47.50 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	47.50	00	0	0
0.50	48.00	21,912	5,478	5,478
1.50	49.00	155,272	88,592	94,070
2.50	50.00	342,222	248,747	342,817
3.50	51.00	360,399	351,311	694,128
4.50	52.00	378,731	369,566	1,063,693

Culvert / Orifice Structures Weir Structures [B] [C] [PrfRsr] [B] [D] [A] [A] [C] 0.00 0.00 Rise (in) = 0.000.00 0.00 Crest Len (ft) = 14.00 0.00 0.00 Span (in) = 0.000.00 0.00 0.00 Crest El. (ft) = 49.60 0.00 0.00 0.00 No. Barrels = 00 Weir Coeff. = 2.60 3.33 3.33 3.33 Invert El. (ft) 0.00 0.00 0.00 Weir Type = 0.00= Broad 0.00 0.00 Multi-Stage Length (ft) = 0.000.00 No = No No No = 0.000.00 0.00 Slope (%) n/a N-Value = .013.013 .013 n/a Orifice Coeff. = 0.600.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area) = n/aNo No No = 0.00Multi-Stage TW Elev. (ft)

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Hydraflow Hydrographs by Intelisolve v9.23

Wednesday, Jun 16, 2010

Hyd. No. 5

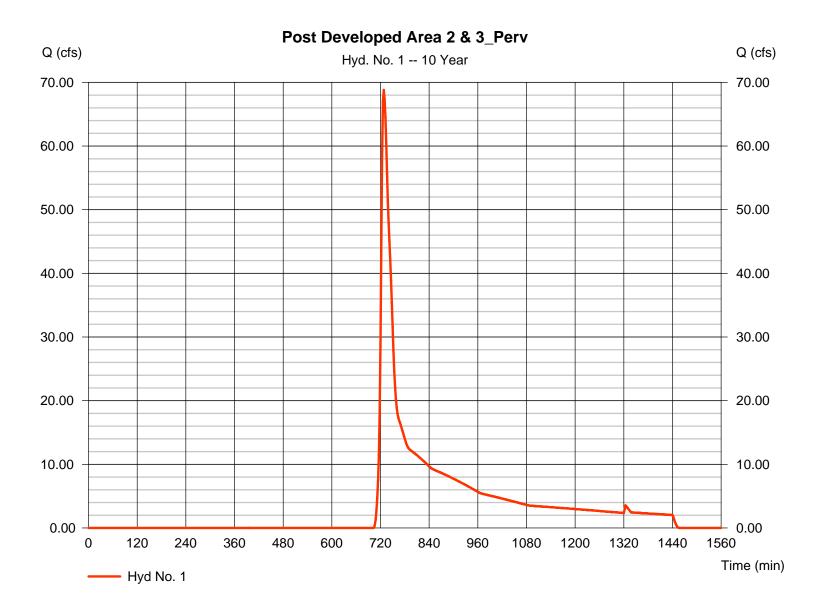
Pre Developed Area 2 & 3

Hydrograph type = SCS Runoff Peak discharge = 0.974 cfs= 2 yrsStorm frequency Time to peak = 942 min Time interval = 2 minHyd. volume = 27,390 cuftDrainage area = 106.300 acCurve number = 46*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 53.30 minTotal precip. = 3.30 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = [(0.430 x 77) + (25.000 x 55) + (46.020 x 30) + (34.850 x 61)] / 106.300

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	68.81	2	728	324,984				Post Developed Area 2 & 3_Perv
2	SCS Runoff	51.85	2	726	213,919				NIC
3	Combine	118.88	2	726	538,904	1, 2			<no description=""></no>
4	Reservoir	8.765	2	930	295,563	3	49.99	339,400	Area 2 & 3 Basin
5	SCS Runoff	12.63	2	798	213,634				Pre Developed Area 2 & 3
Are	a 2.gpw				Return P	eriod: 10 Y	ear	Wednesday	/, Jun 16, 2010

Hydraflow Hydrographs by Intelisolve v9.23


Wednesday, Jun 16, 2010

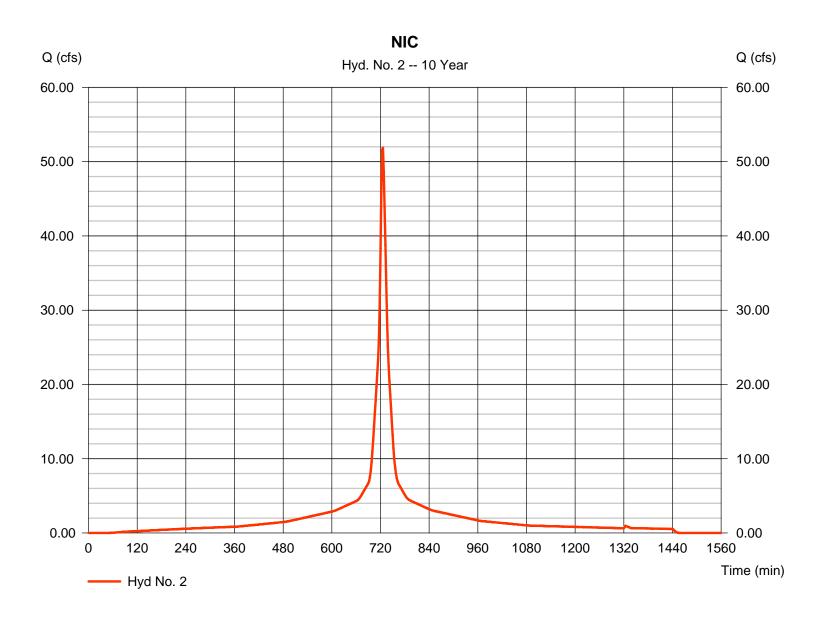
Hyd. No. 1

Post Developed Area 2 & 3_Perv

Hydrograph type = SCS Runoff Peak discharge = 68.81 cfsStorm frequency Time to peak = 10 yrs= 728 min Time interval = 2 minHyd. volume = 324,984 cuftDrainage area = 94.350 acCurve number = 53*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = USER Time of conc. (Tc) = 6.00 minTotal precip. = 5.20 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = + (0.430 x 77) + (50.000 x 61) + (9.850 x 55) + (34.070 x 39)] / 94.350

Hydraflow Hydrographs by Intelisolve v9.23


Wednesday, Jun 16, 2010

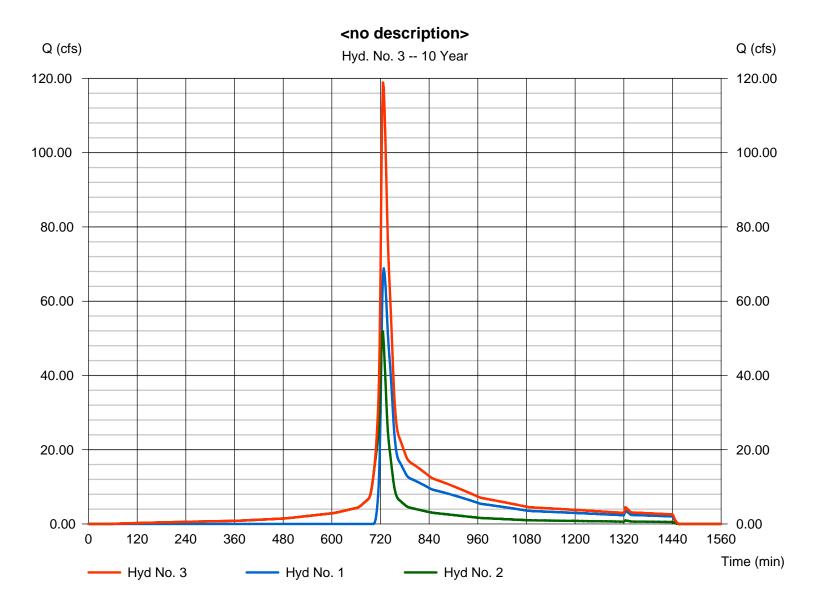
Hyd. No. 2

NIC

Hydrograph type = SCS Runoff Peak discharge = 51.85 cfsStorm frequency Time to peak = 10 yrs= 726 min Time interval = 2 minHyd. volume = 213,919 cuftDrainage area = 11.950 acCurve number = 98*Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) = 6.00 minTc method = USER Total precip. = 5.20 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = $[(2.600 \times 98) + (1.650 \times 98) + (3.370 \times 98) + (4.330 \times 98)] / 11.950$

Hydraflow Hydrographs by Intelisolve v9.23

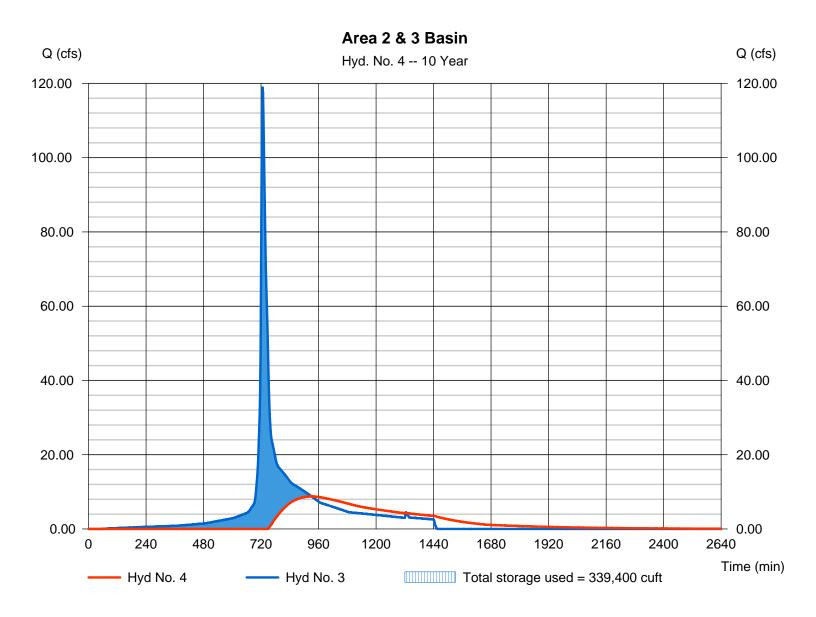

Wednesday, Jun 16, 2010

Hyd. No. 3

<no description>

Hydrograph type = Combine Storm frequency = 10 yrs Time interval = 2 min Inflow hyds. = 1, 2

Peak discharge = 118.88 cfs Time to peak = 726 min Hyd. volume = 538,904 cuft Contrib. drain. area = 106.300 ac


Hydraflow Hydrographs by Intelisolve v9.23

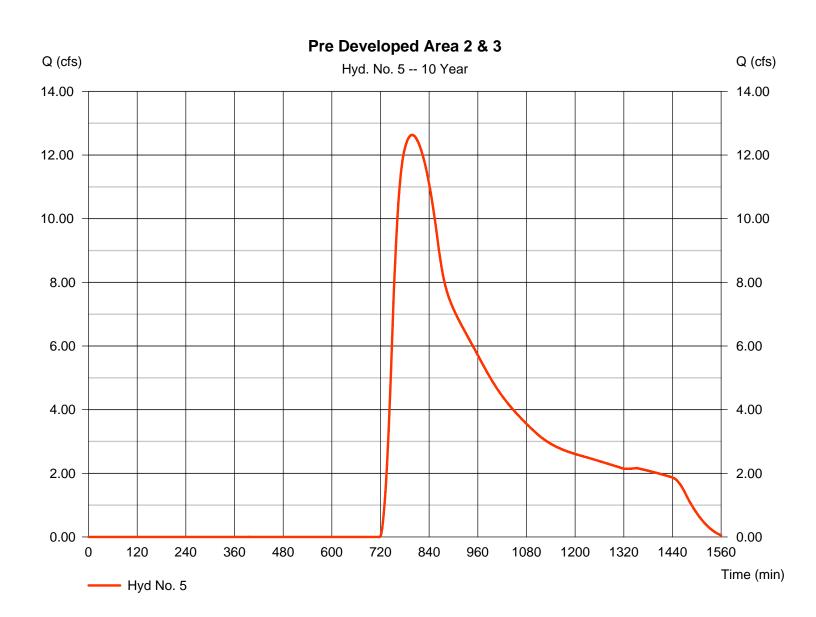
Wednesday, Jun 16, 2010

Hyd. No. 4

Area 2 & 3 Basin

Hydrograph type = Reservoir Peak discharge = 8.765 cfsStorm frequency Time to peak = 10 yrs= 930 min Time interval = 2 minHyd. volume = 295,563 cuftInflow hyd. No. = 3 - <no description> Max. Elevation = 49.99 ftReservoir name = Area 2 & 3 Max. Storage = 339,400 cuft

Hydraflow Hydrographs by Intelisolve v9.23


Wednesday, Jun 16, 2010

Hyd. No. 5

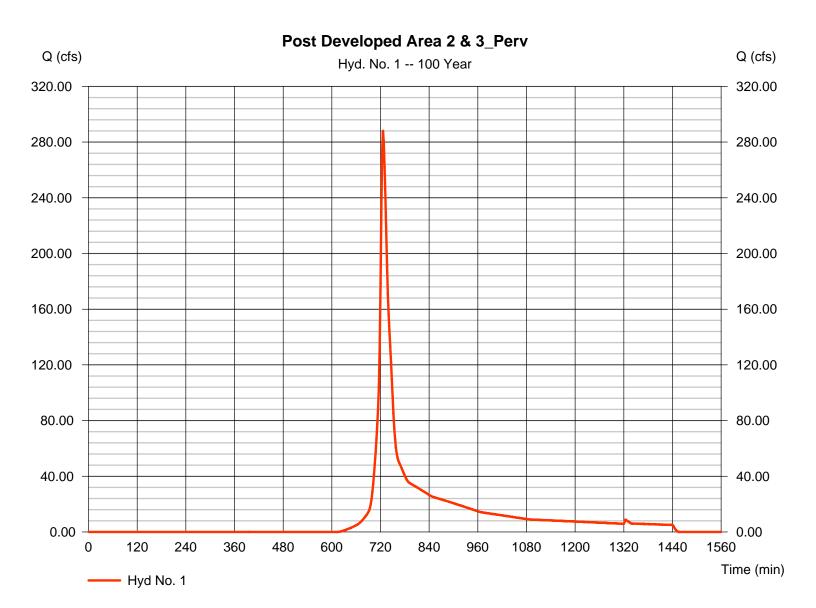
Pre Developed Area 2 & 3

Hydrograph type = SCS Runoff Peak discharge = 12.63 cfsStorm frequency = 10 yrsTime to peak = 798 min Time interval = 2 minHyd. volume = 213,634 cuft Drainage area = 106.300 acCurve number = 46*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 53.30 minTotal precip. = 5.20 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = $[(0.430 \times 77) + (25.000 \times 55) + (46.020 \times 30) + (34.850 \times 61)] / 106.300$

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	287.99	2	726	1,080,606				Post Developed Area 2 & 3_Perv
2	SCS Runoff	89.07	2	726	373,268				NIC
3	Combine	377.06	2	726	1,453,873	1, 2			<no description=""></no>
4	Reservoir	59.72	2	768	1,210,534	3	50.99	690,948	Area 2 & 3 Basin
5	SCS Runoff	77.64	2	772	899,930				Pre Developed Area 2 & 3
Are	a 2.gpw				Return P	eriod: 100	Year	Wednesday	/, Jun 16, 2010

Hydraflow Hydrographs by Intelisolve v9.23


Wednesday, Jun 16, 2010

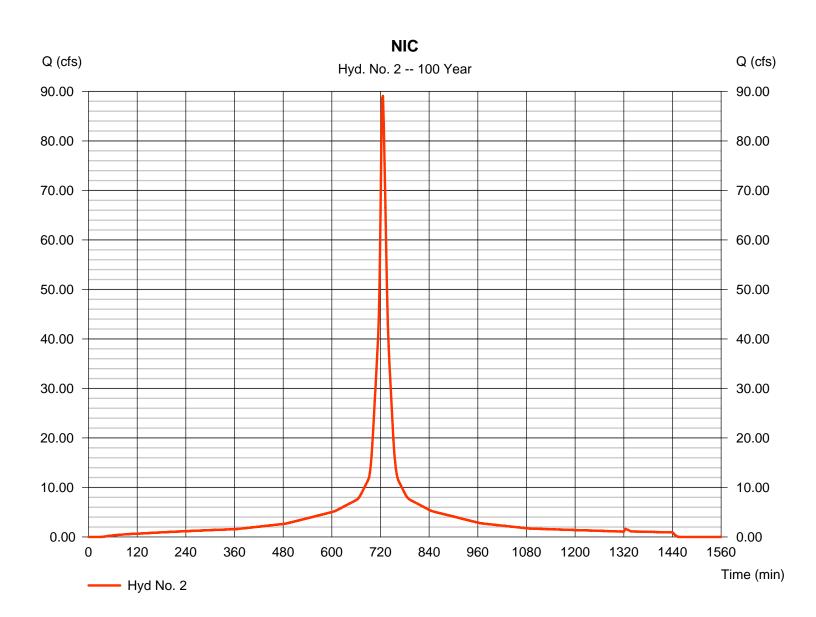
Hyd. No. 1

Post Developed Area 2 & 3_Perv

= SCS Runoff Hydrograph type Peak discharge = 287.99 cfsStorm frequency Time to peak = 100 yrs= 726 min Time interval = 2 minHyd. volume = 1,080,606 cuft Drainage area = 94.350 acCurve number = 53*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = USER Time of conc. (Tc) = 6.00 minTotal precip. = 8.90 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = + (0.430 x 77) + (50.000 x 61) + (9.850 x 55) + (34.070 x 39)] / 94.350

Hydraflow Hydrographs by Intelisolve v9.23

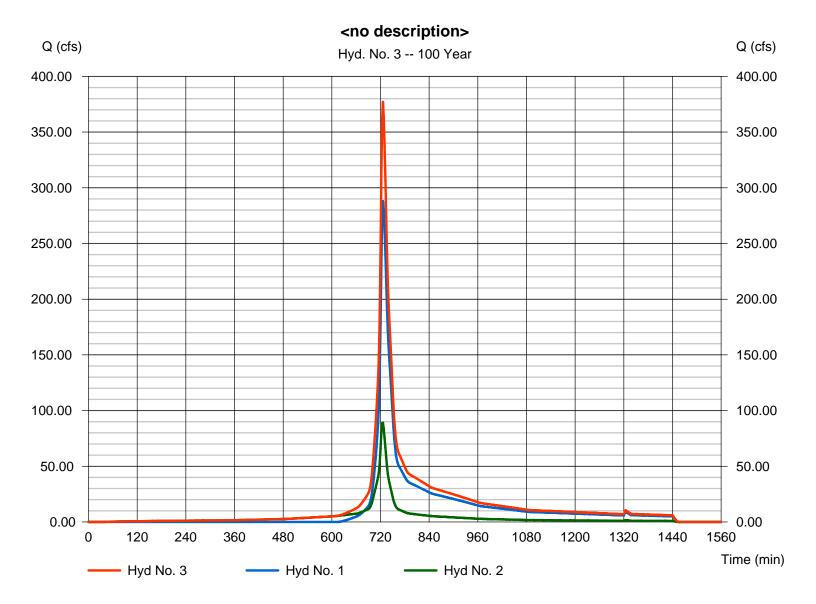

Wednesday, Jun 16, 2010

Hyd. No. 2

NIC

= SCS Runoff Hydrograph type Peak discharge = 89.07 cfsStorm frequency Time to peak = 100 yrs= 726 min Time interval = 2 minHyd. volume = 373,268 cuft Drainage area = 11.950 acCurve number = 98*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = USER Time of conc. (Tc) = 6.00 minDistribution Total precip. = 8.90 in= Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = $[(2.600 \times 98) + (1.650 \times 98) + (3.370 \times 98) + (4.330 \times 98)] / 11.950$


Hydraflow Hydrographs by Intelisolve v9.23

Wednesday, Jun 16, 2010

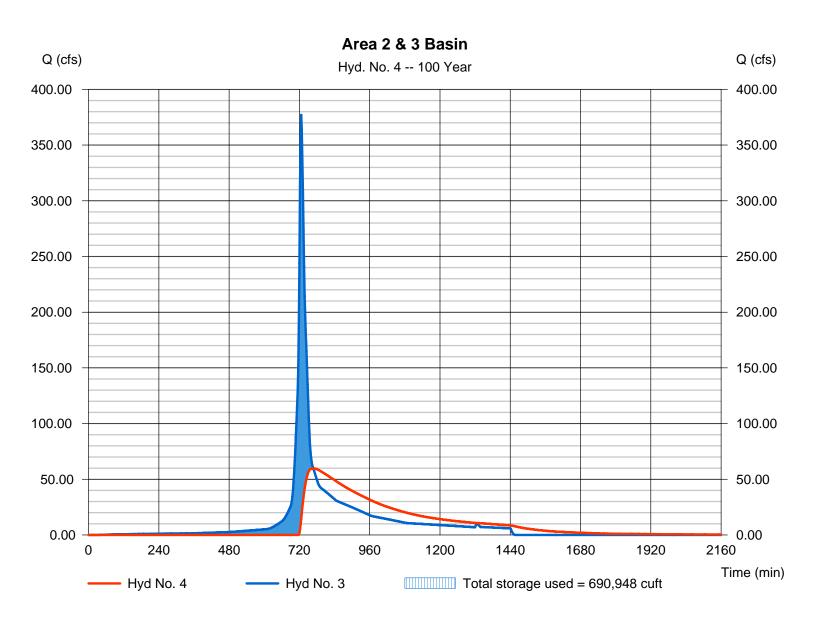
Hyd. No. 3

<no description>

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 2 min Inflow hyds. = 1, 2 Peak discharge = 377.06 cfs Time to peak = 726 min Hyd. volume = 1,453,873 cuft Contrib. drain. area = 106.300 ac

Hydraflow Hydrographs by Intelisolve v9.23

Wednesday, Jun 16, 2010


Hyd. No. 4

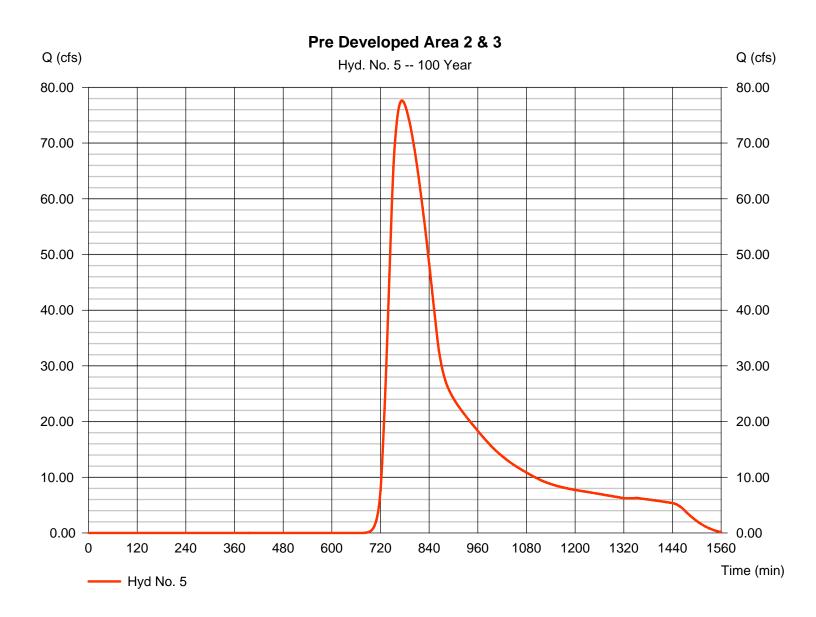
Area 2 & 3 Basin

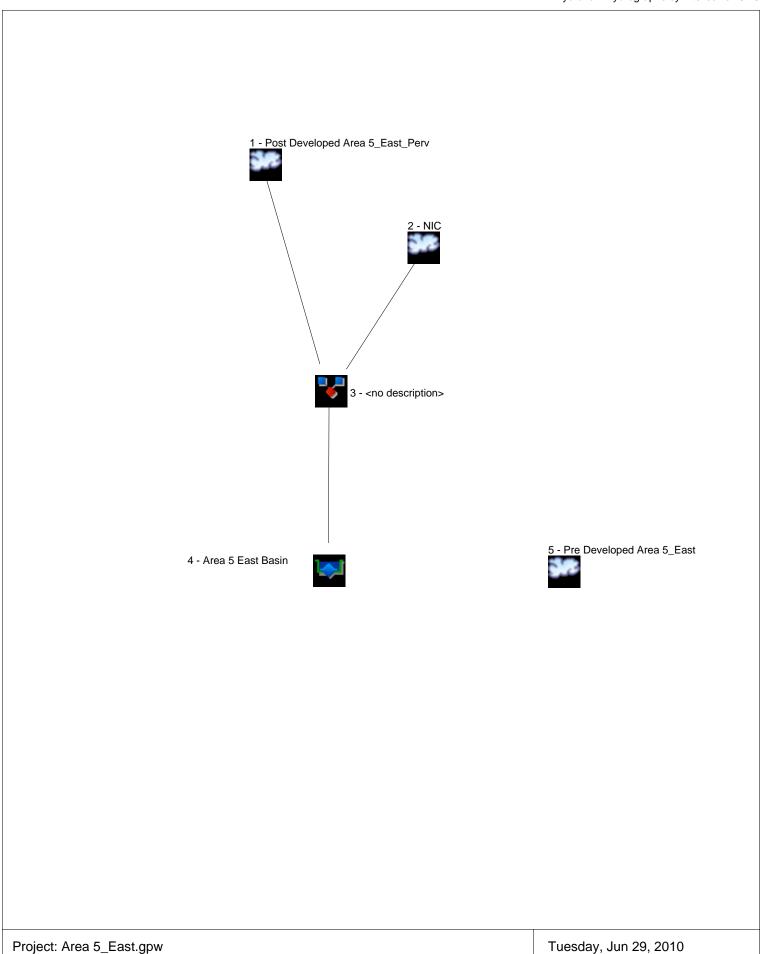
Hydrograph type = Reservoir Peak discharge = 59.72 cfs Storm frequency = 100 yrs Time to peak = 768 min

Time interval = 2 min Hyd. volume = 1,210,534 cuft

Inflow hyd. No. = 3 - <no description> Max. Elevation = 50.99 ft
Reservoir name = Area 2 & 3 Max. Storage = 690,948 cuft

Hydraflow Hydrographs by Intelisolve v9.23


Wednesday, Jun 16, 2010


Hyd. No. 5

Pre Developed Area 2 & 3

Hydrograph type = SCS Runoff Peak discharge = 77.64 cfsStorm frequency Time to peak = 100 yrs= 772 min Time interval = 2 minHyd. volume = 899,930 cuftDrainage area = 106.300 acCurve number = 46*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 53.30 minDistribution Total precip. = 8.90 in= Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = [(0.430 x 77) + (25.000 x 55) + (46.020 x 30) + (34.850 x 61)] / 106.300

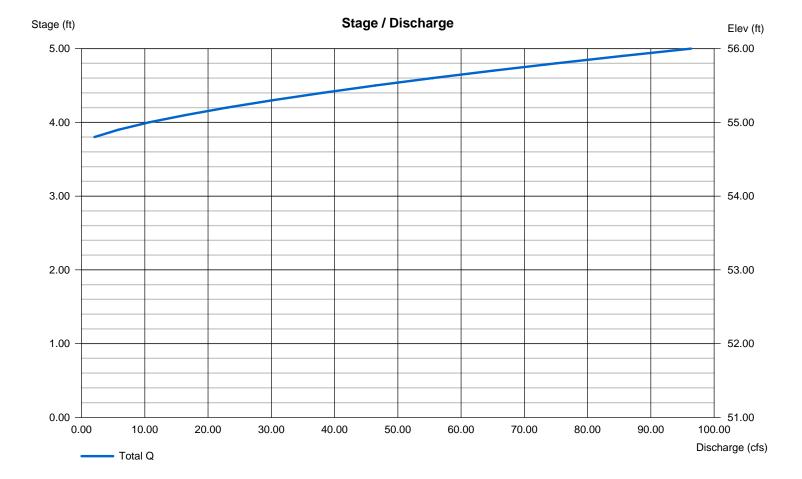
Pond Report

Hydraflow Hydrographs by Intelisolve v9.23

Tuesday, Jun 29, 2010

Pond No. 1 - Area 5 East

Pond Data


Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 51.00 ft

Stage / Storage Table

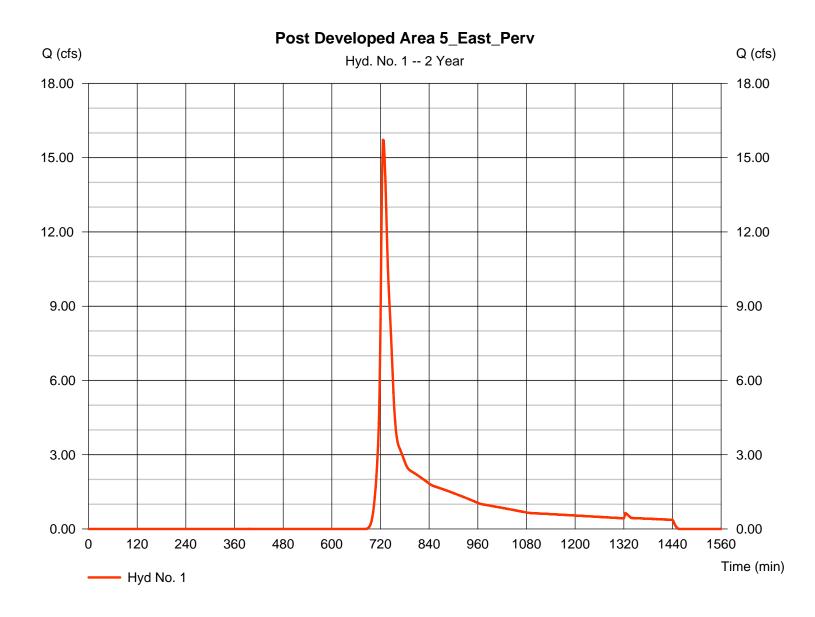
Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	51.00	00	0	0
1.00	52.00	13,118	6,559	6,559
2.00	53.00	68,215	40,667	47,226
3.00	54.00	257,259	162,737	209,963
4.00	55.00	263,271	260,265	470,228
5.00	56.00	269,340	266,306	736,533

Culvert / Orifice Structures Weir Structures [B] [C] [PrfRsr] [B] [D] [A] [A] [C] 0.00 Rise (in) = 0.000.00 0.00 Crest Len (ft) = 25.00 0.00 0.00 0.00 Span (in) = 0.000.00 0.00 0.00 Crest El. (ft) = 54.70 0.00 0.00 0.00 No. Barrels = 00 Weir Coeff. = 2.60 3.33 3.33 3.33 Invert El. (ft) 0.00 0.00 0.00 Weir Type = 0.00= Broad = 0.000.00 0.00 Multi-Stage Length (ft) 0.00 No = No No No = 0.000.00 Slope (%) 0.00 n/a N-Value = .013.013 .013 n/a Orifice Coeff. = 0.600.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area) = n/aNo No No = 0.00Multi-Stage TW Elev. (ft)

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	15.72	2	726	66,078				Post Developed Area 5_East_Perv
2	SCS Runoff	56.69	2	726	229,451				NIC
3	Combine	72.41	2	726	295,529	1, 2			<no description=""></no>
4	Reservoir	0.000	2	n/a	0	3	54.33	295,529	Area 5 East Basin
5	SCS Runoff	5.690	2	788	83,780				Pre Developed Area 5_East
Are	a 5_East.gpw				Return P	eriod: 2 Ye	ar	Tuesday, J	un 29, 2010

Hydraflow Hydrographs by Intelisolve v9.23

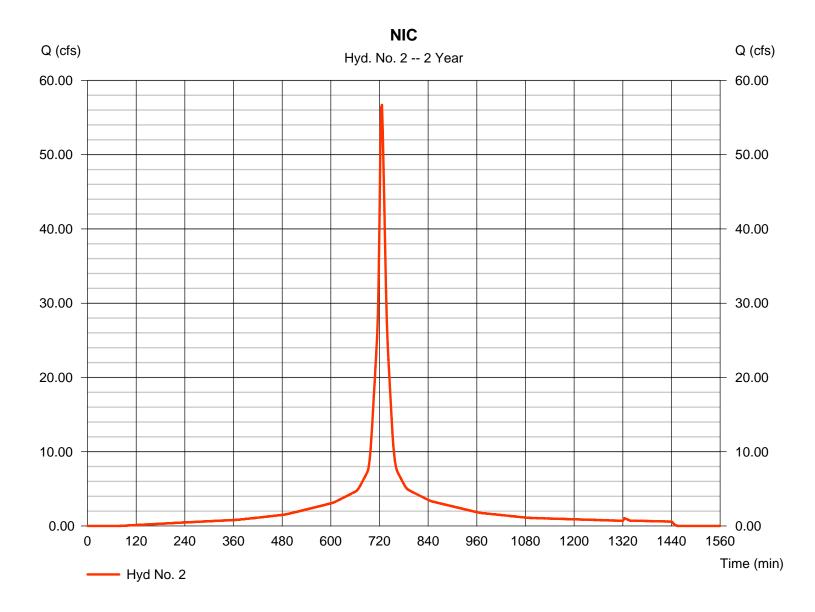

Tuesday, Jun 29, 2010

Hyd. No. 1

Post Developed Area 5_East_Perv

Hydrograph type = SCS Runoff Peak discharge = 15.72 cfsTime to peak Storm frequency = 2 yrs $= 726 \, \text{min}$ Time interval = 2 minHyd. volume = 66,078 cuftDrainage area = 23.260 acCurve number = 68*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = USER Time of conc. (Tc) = 6.00 minTotal precip. = 3.30 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = [(2.830 x 61) + (8.350 x 61) + (9.500 x 74) + (2.580 x 74)] / 23.260

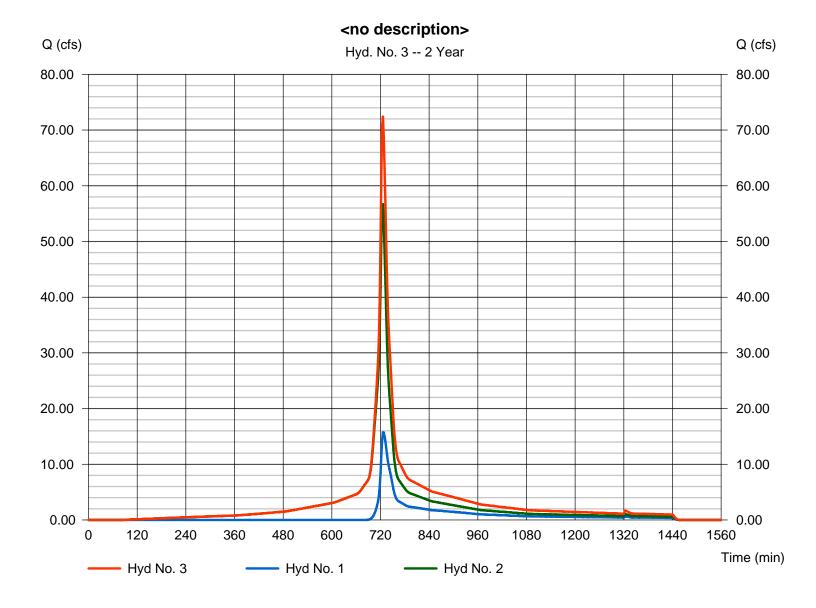

Hydraflow Hydrographs by Intelisolve v9.23

Tuesday, Jun 29, 2010

Hyd. No. 2

NIC

Hydrograph type = SCS Runoff Peak discharge = 56.69 cfsStorm frequency Time to peak = 2 yrs= 726 min Time interval = 2 minHyd. volume = 229,451 cuftDrainage area = 20.740 acCurve number = 98 Basin Slope = 0.0 % Hydraulic length = 0 ftTime of conc. (Tc) = 6.00 minTc method = USER Distribution Total precip. = 3.30 in= Type III Storm duration = 24 hrs Shape factor = 285


Hydraflow Hydrographs by Intelisolve v9.23

Tuesday, Jun 29, 2010

Hyd. No. 3

<no description>

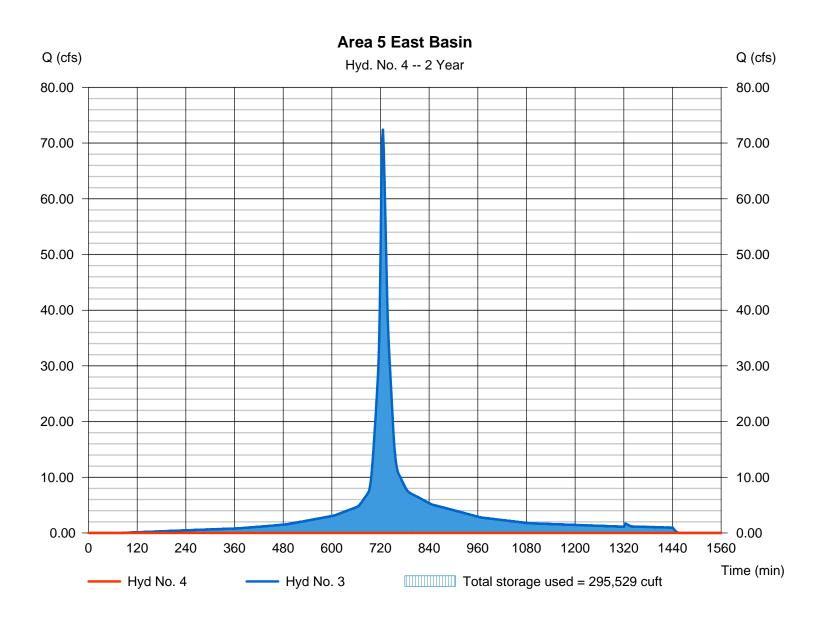
Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 2 min Inflow hyds. = 1, 2 Peak discharge = 72.41 cfs Time to peak = 726 min Hyd. volume = 295,529 cuft Contrib. drain. area = 44.000 ac

Hydraflow Hydrographs by Intelisolve v9.23

Tuesday, Jun 29, 2010

= 0.000 cfs

= n/a


= 0 cuft

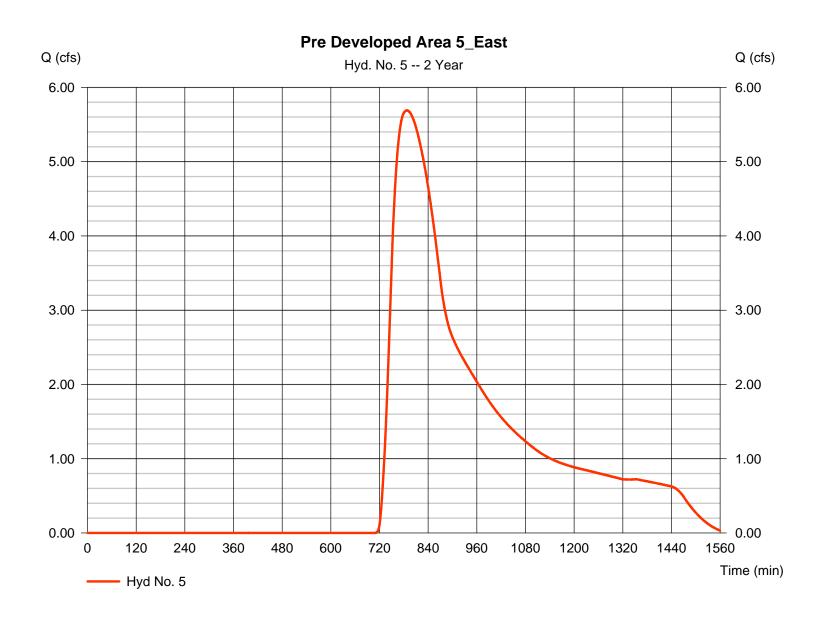
Hyd. No. 4

Area 5 East Basin

Hydrograph type= ReservoirPeak dischargeStorm frequency= 2 yrsTime to peakTime interval= 2 minHyd. volumeInflow byd. No.= 3 cno descriptionMay Floyetion

Inflow hyd. No. = 3 - <no description> Max. Elevation = 54.33 ft
Reservoir name = Area 5 East Max. Storage = 295,529 cuft

Hydraflow Hydrographs by Intelisolve v9.23


Tuesday, Jun 29, 2010

Hyd. No. 5

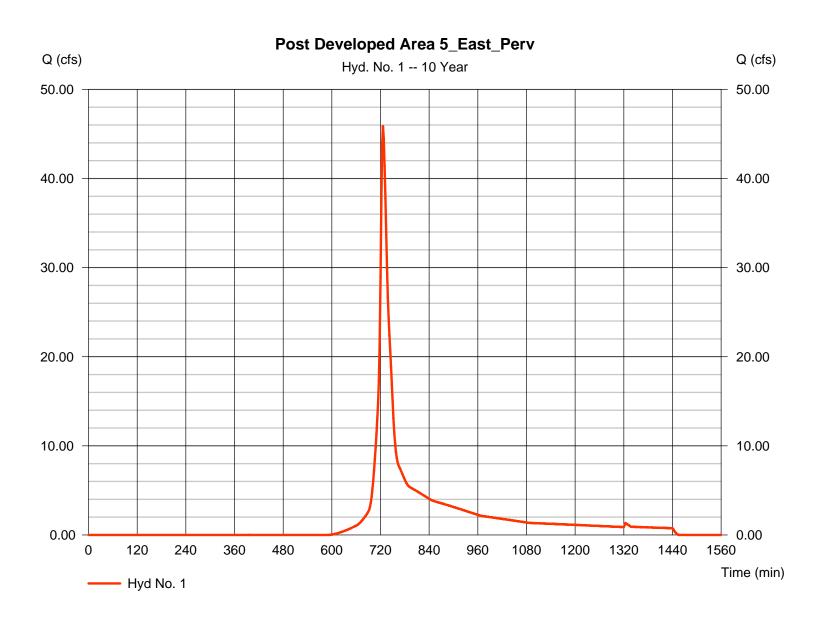
Pre Developed Area 5_East

Hydrograph type = SCS Runoff Peak discharge = 5.690 cfsTime to peak Storm frequency = 2 yrs= 788 min Time interval = 2 minHyd. volume = 83,780 cuftDrainage area = 44.000 acCurve number = 62*Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) = 54.30 minTc method = TR55 Total precip. = 3.30 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = [(24.400 x 55) + (19.600 x 70)] / 44.000

łyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	45.87	2	726	169,747				Post Developed Area 5_East_Perv
2	SCS Runoff	89.99	2	726	371,271				NIC
3	Combine	135.87	2	726	541,018	1, 2			<no description=""></no>
4	Reservoir	4.638	2	988	148,858	3	54.87	436,059	Area 5 East Basin
5	SCS Runoff	21.36	2	774	249,730				Pre Developed Area 5_East

Hydraflow Hydrographs by Intelisolve v9.23

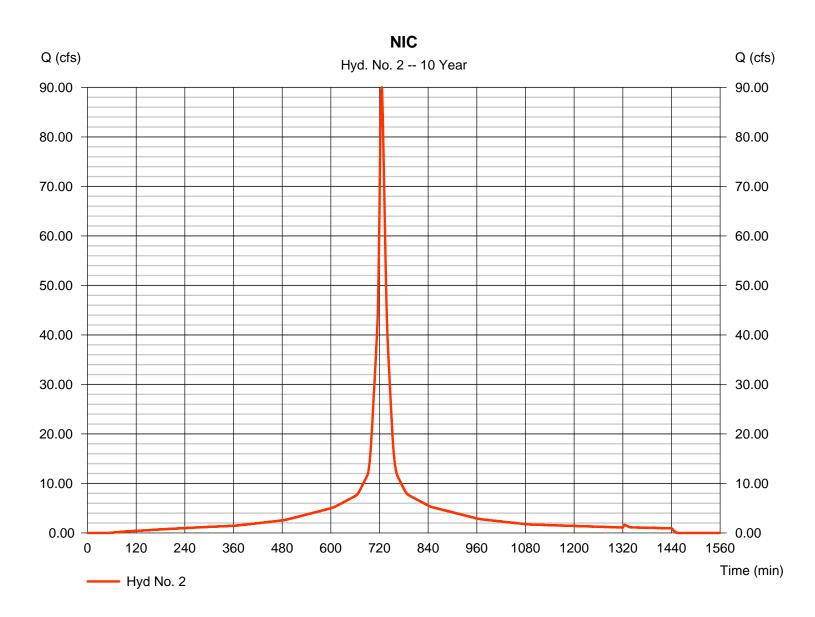

Tuesday, Jun 29, 2010

Hyd. No. 1

Post Developed Area 5_East_Perv

Hydrograph type = SCS Runoff Peak discharge = 45.87 cfsStorm frequency = 10 yrsTime to peak = 726 min Time interval = 2 minHyd. volume = 169,747 cuft Drainage area = 23.260 acCurve number = 68*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = USER Time of conc. (Tc) = 6.00 minTotal precip. = 5.20 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = $[(2.830 \times 61) + (8.350 \times 61) + (9.500 \times 74) + (2.580 \times 74)] / 23.260$

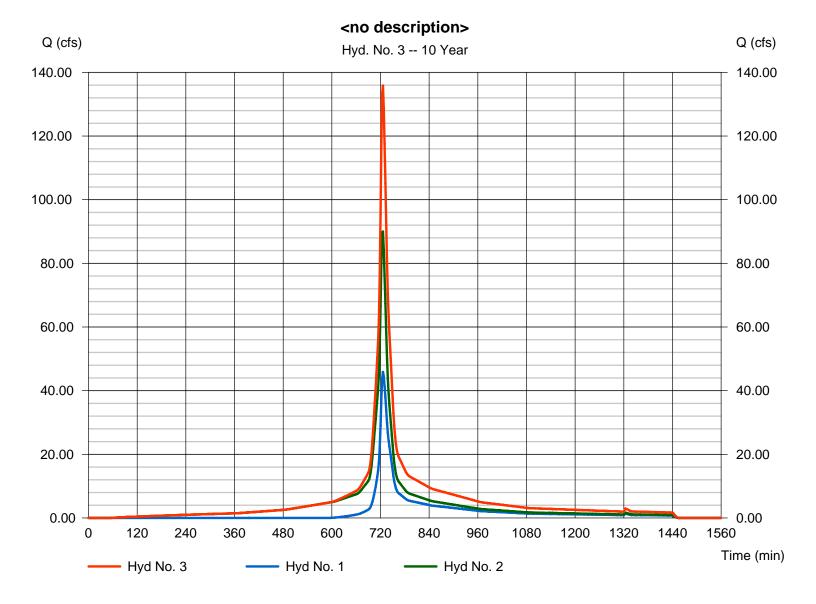

Hydraflow Hydrographs by Intelisolve v9.23

Tuesday, Jun 29, 2010

Hyd. No. 2

NIC

Hydrograph type = SCS Runoff Peak discharge = 89.99 cfsStorm frequency Time to peak = 10 yrs= 726 min Time interval = 2 minHyd. volume = 371,271 cuftCurve number Drainage area = 20.740 ac= 98 Basin Slope = 0.0 % Hydraulic length = 0 ftTime of conc. (Tc) = 6.00 minTc method = USER Distribution Total precip. = 5.20 in= Type III Storm duration = 24 hrs Shape factor = 285

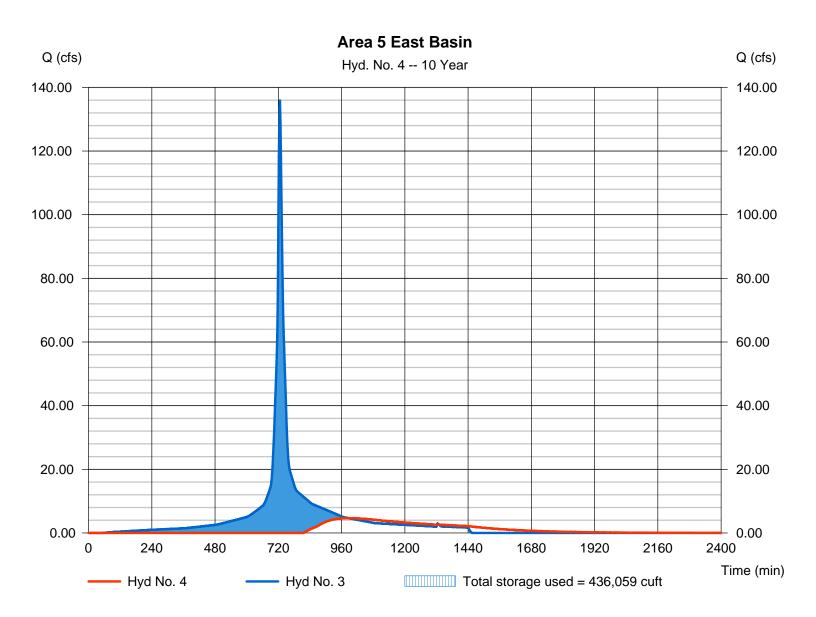

Hydraflow Hydrographs by Intelisolve v9.23

Tuesday, Jun 29, 2010

Hyd. No. 3

<no description>

Hydrograph type = Combine Storm frequency = 10 yrs Time interval = 2 min Inflow hyds. = 1, 2 Peak discharge = 135.87 cfs Time to peak = 726 min Hyd. volume = 541,018 cuft Contrib. drain. area = 44.000 ac


Hydraflow Hydrographs by Intelisolve v9.23

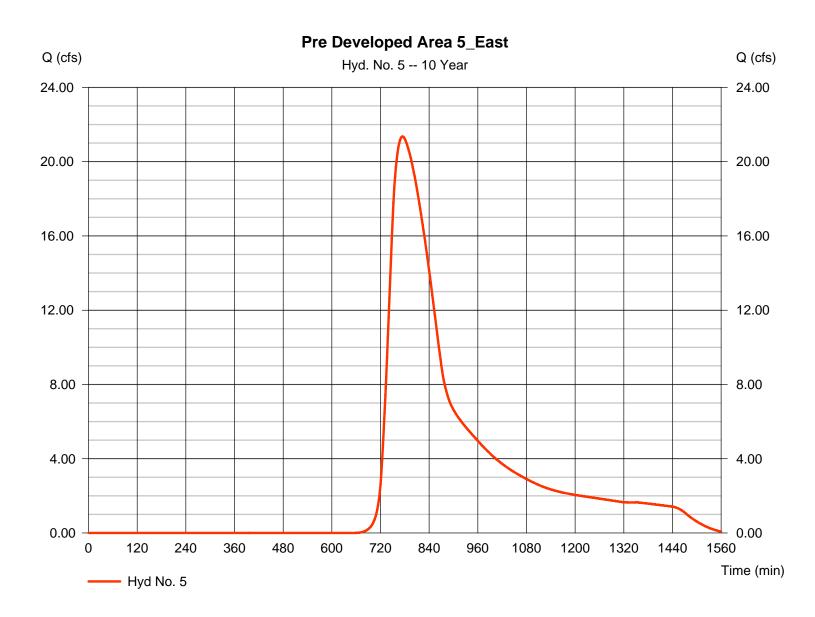
Tuesday, Jun 29, 2010

Hyd. No. 4

Area 5 East Basin

Hydrograph type = Reservoir Peak discharge = 4.638 cfsStorm frequency Time to peak = 10 yrs= 988 min Time interval = 2 minHyd. volume = 148,858 cuft Max. Elevation Inflow hyd. No. = 3 - <no description> = 54.87 ftReservoir name = Area 5 East Max. Storage = 436,059 cuft

Hydraflow Hydrographs by Intelisolve v9.23


Tuesday, Jun 29, 2010

Hyd. No. 5

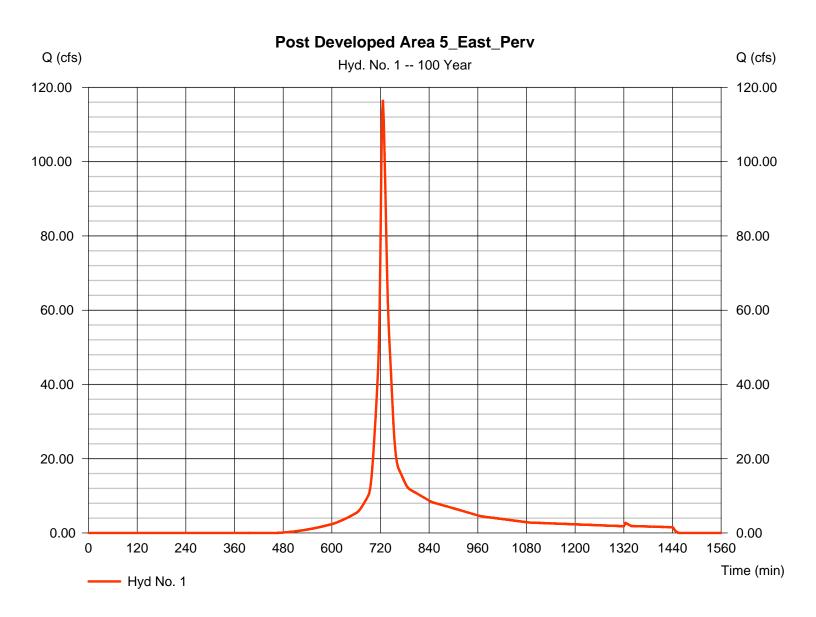
Pre Developed Area 5_East

Hydrograph type = SCS Runoff Peak discharge = 21.36 cfsStorm frequency Time to peak = 10 yrs= 774 min Time interval = 2 minHyd. volume = 249,730 cuftDrainage area = 44.000 acCurve number = 62*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 54.30 minTotal precip. = 5.20 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = [(24.400 x 55) + (19.600 x 70)] / 44.000

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	116.39	2	726	419,626				Post Developed Area 5_East_Perv
2	SCS Runoff	154.58	2	726	647,831				NIC
3	Combine	270.98	2	726	1,067,456	1, 2			<no description=""></no>
4	Reservoir	51.05	2	756	675,296	3	55.55	616,820	Area 5 East Basin
4 5	Reservoir SCS Runoff	51.05 63.79	2 2	756 768	675,296 681,580	3	55.55	616,820	Area 5 East Basin Pre Developed Area 5_East
Are	a 5_East.gpw	,	<u> </u>		Return P	eriod: 100	Year	Tuesday, J	un 29, 2010

Hydraflow Hydrographs by Intelisolve v9.23

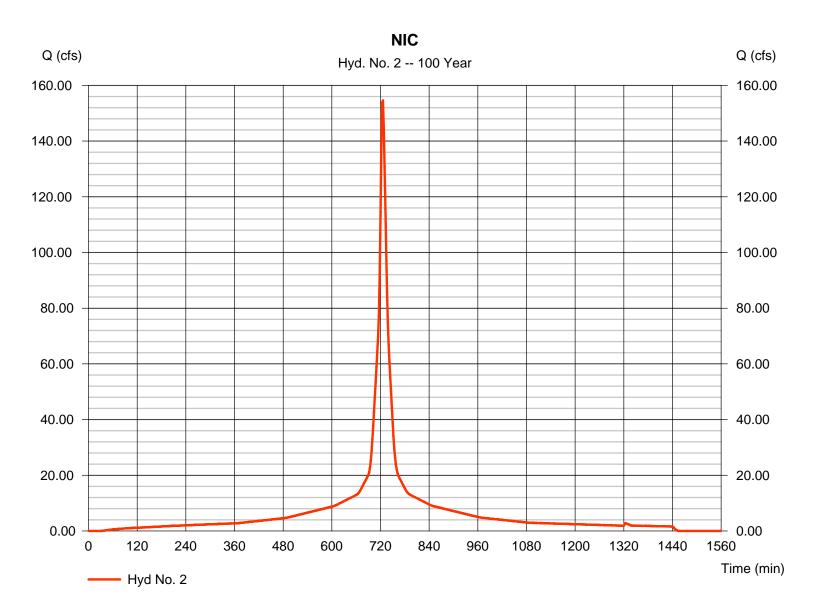

Tuesday, Jun 29, 2010

Hyd. No. 1

Post Developed Area 5_East_Perv

= SCS Runoff Hydrograph type Peak discharge = 116.39 cfsTime to peak Storm frequency = 100 yrs= 726 min Time interval = 2 minHyd. volume = 419,626 cuft Drainage area = 23.260 acCurve number = 68*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = USER Time of conc. (Tc) = 6.00 minTotal precip. = 8.90 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = $[(2.830 \times 61) + (8.350 \times 61) + (9.500 \times 74) + (2.580 \times 74)] / 23.260$


Hydraflow Hydrographs by Intelisolve v9.23

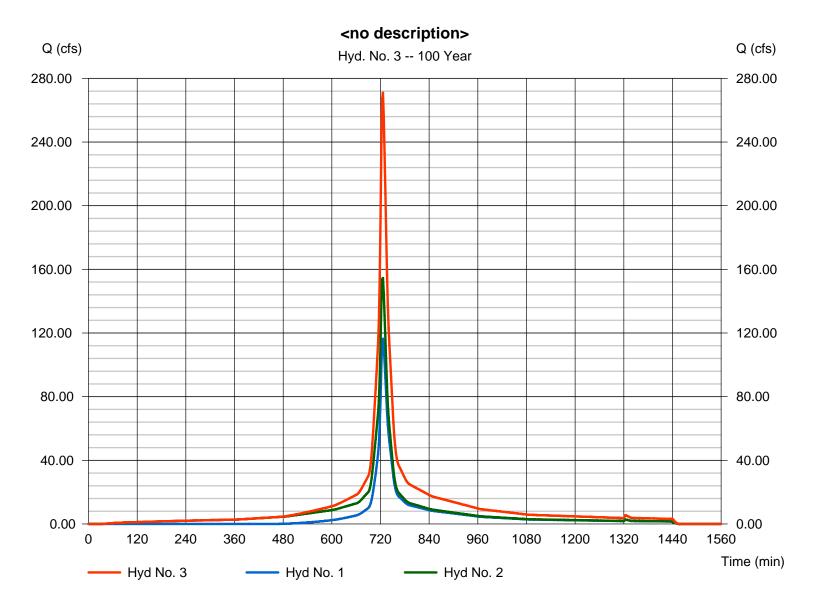
Tuesday, Jun 29, 2010

Hyd. No. 2

NIC

= SCS Runoff Hydrograph type Peak discharge = 154.58 cfsStorm frequency Time to peak = 726 min = 100 yrsTime interval = 2 minHyd. volume = 647,831 cuftCurve number Drainage area = 20.740 ac= 98 Basin Slope = 0.0 % Hydraulic length = 0 ftTime of conc. (Tc) = 6.00 minTc method = USER Distribution Total precip. = 8.90 in= Type III Storm duration = 24 hrs Shape factor = 285

Hydraflow Hydrographs by Intelisolve v9.23

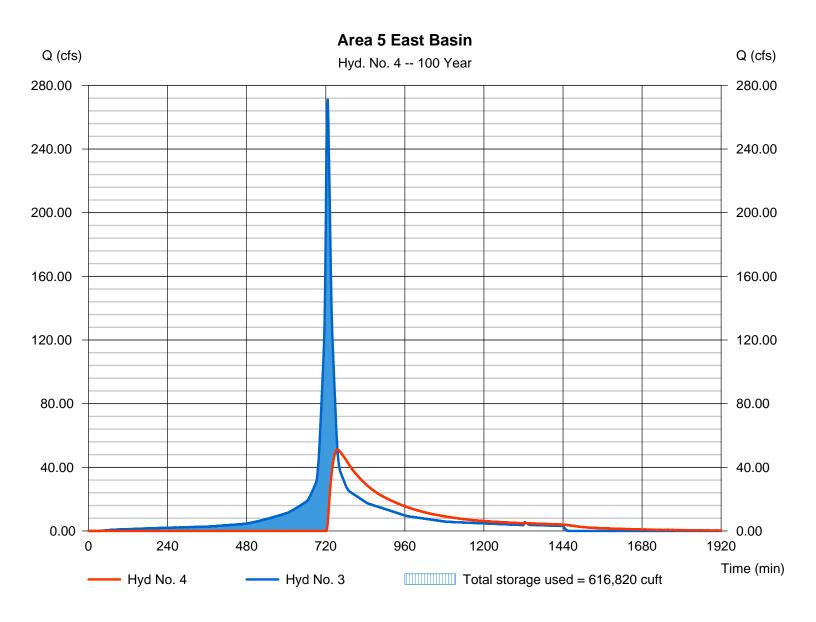

Tuesday, Jun 29, 2010

Hyd. No. 3

<no description>

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 2 min Inflow hyds. = 1, 2

Peak discharge = 270.98 cfs
Time to peak = 726 min
Hyd. volume = 1,067,456 cuft
Contrib. drain. area = 44.000 ac


Hydraflow Hydrographs by Intelisolve v9.23

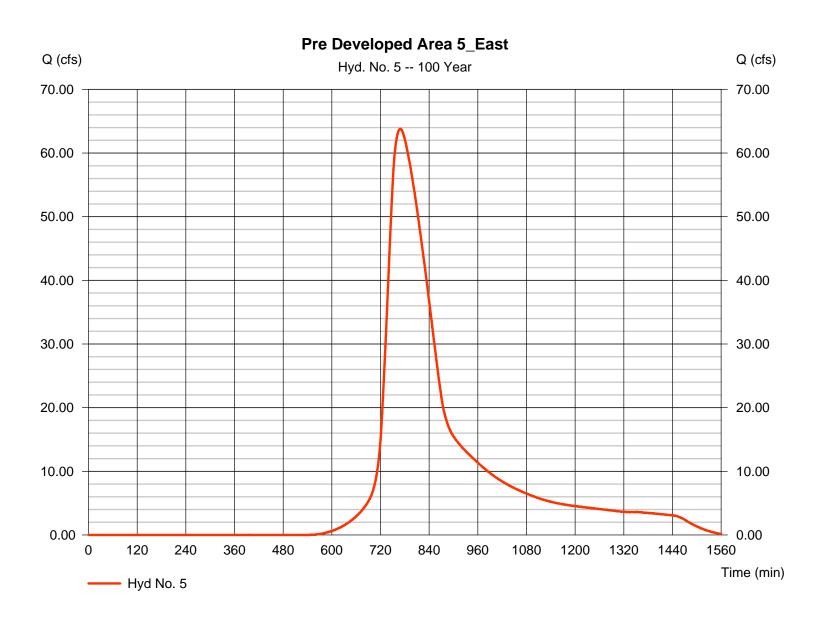
Tuesday, Jun 29, 2010

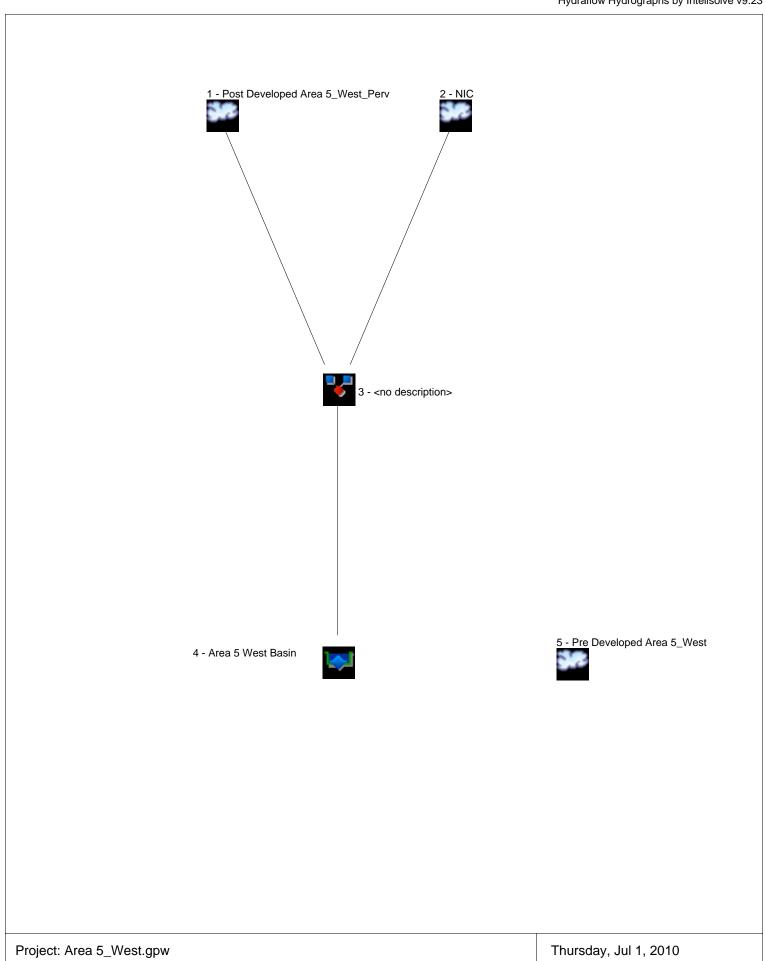
Hyd. No. 4

Area 5 East Basin

Hydrograph type = Reservoir Peak discharge = 51.05 cfsStorm frequency Time to peak = 100 yrs= 756 min Time interval = 2 minHyd. volume = 675,296 cuftMax. Elevation Inflow hyd. No. = 3 - <no description> = 55.55 ftReservoir name = Area 5 East Max. Storage = 616,820 cuft

Hydraflow Hydrographs by Intelisolve v9.23


Tuesday, Jun 29, 2010


Hyd. No. 5

Pre Developed Area 5_East

Hydrograph type = SCS Runoff Peak discharge = 63.79 cfsStorm frequency Time to peak = 100 yrs= 768 min Time interval = 2 minHyd. volume = 681,580 cuftDrainage area = 44.000 acCurve number = 62*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 54.30 minDistribution Total precip. = 8.90 in= Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = [(24.400 x 55) + (19.600 x 70)] / 44.000

Pond Report

Hydraflow Hydrographs by Intelisolve v9.23

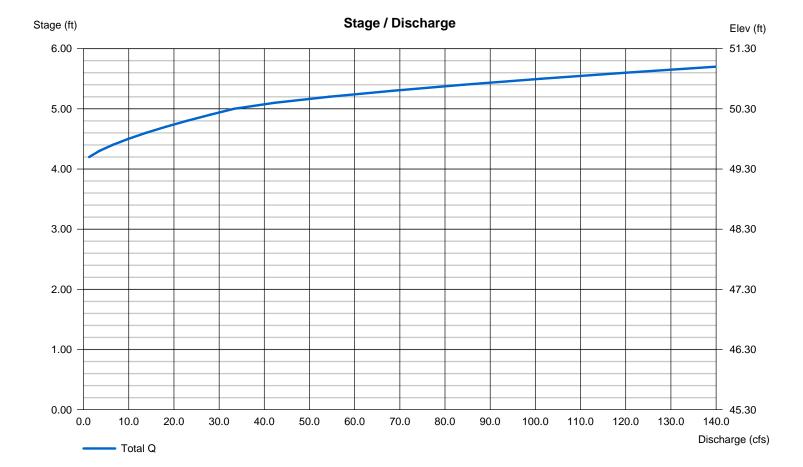
Thursday, Jul 1, 2010

Pond No. 1 - Area 5 West

Pond Data

Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 45.30 ft

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	45.30	00	0	0
0.70	46.00	15,530	5,436	5,436
1.70	47.00	53,875	34,703	40,138
2.70	48.00	83,077	68,476	108,614
3.70	49.00	121,457	102,267	210,881
4.70	50.00	185,921	153,689	364,570
5.70	51.00	192,920	189,421	553,991

Culvert / Orifice Structures

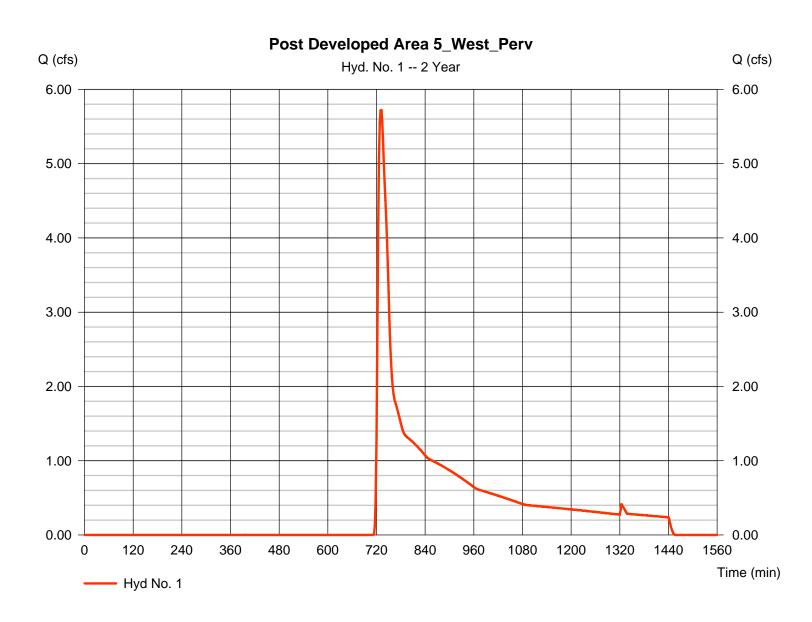
Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 15.00	40.00	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 49.40	50.30	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 2.60	2.60	2.60	3.33
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	= Broad	Broad	Broad	
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	5.722	2	732	33,417				Post Developed Area 5_West_Perv
2	SCS Runoff	40.13	2	726	162,408				NIC
3	Combine	45.20	2	726	195,825	1, 2			<no description=""></no>
4	Reservoir	0.000	2	n/a	0	3	48.85	195,825	Area 5 West Basin
5	SCS Runoff	1.762	2	798	32,362				Pre Developed Area 5_West
	a 5_West.gp\		•		D	eriod: 2 Ye	•	Thursday,	1.1.4.0040

Hydraflow Hydrographs by Intelisolve v9.23

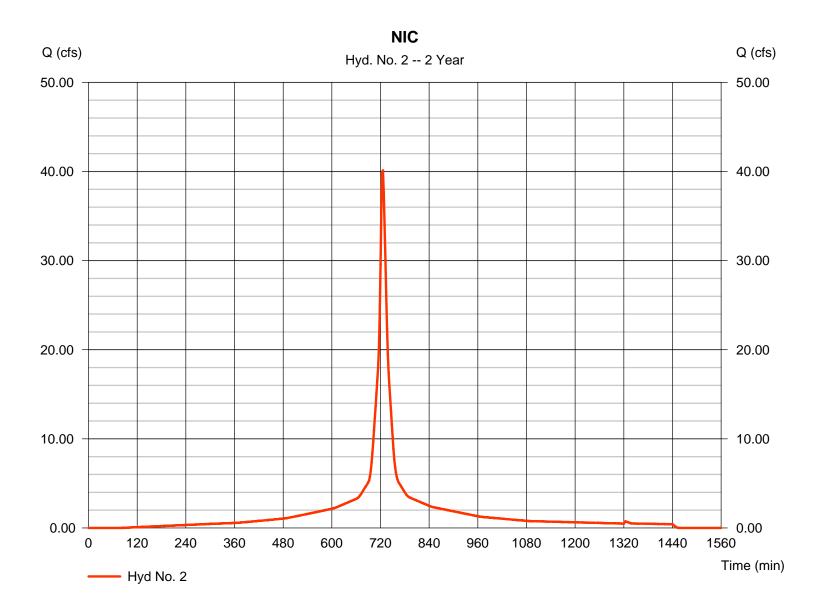

Thursday, Jul 1, 2010

Hyd. No. 1

Post Developed Area 5_West_Perv

Hydrograph type = SCS Runoff Peak discharge = 5.722 cfsStorm frequency = 2 yrsTime to peak = 732 min Time interval = 2 minHyd. volume = 33,417 cuftDrainage area = 20.680 acCurve number $= 60^*$ Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = USER Time of conc. (Tc) = 6.00 minTotal precip. = 3.30 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = $[(1.050 \times 80) + (9.450 \times 61) + (6.040 \times 61) + (2.900 \times 39) + (1.240 \times 74)] / 20.680$

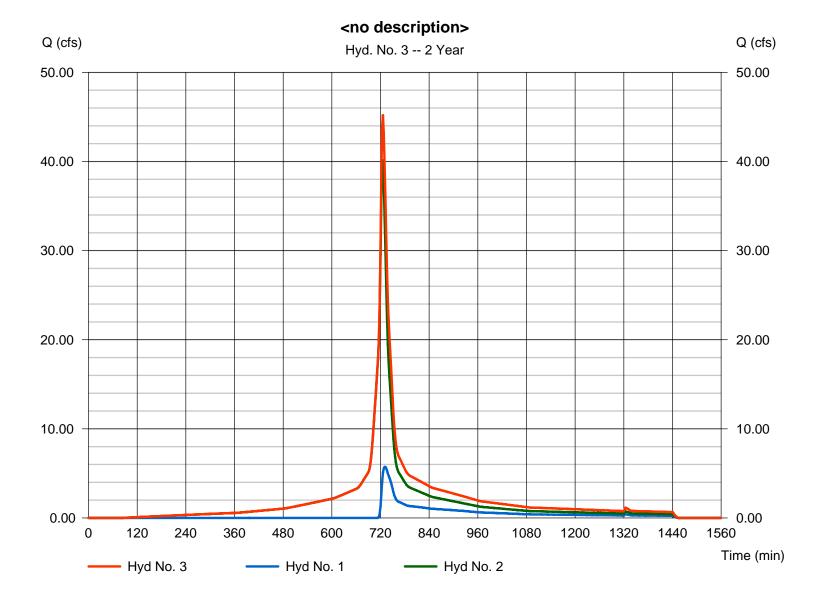

Hydraflow Hydrographs by Intelisolve v9.23

Thursday, Jul 1, 2010

Hyd. No. 2

NIC

= SCS Runoff Hydrograph type Peak discharge = 40.13 cfsStorm frequency Time to peak = 2 yrs= 726 min Time interval = 2 minHyd. volume = 162,408 cuft Drainage area = 14.680 acCurve number = 98 Basin Slope = 0.0 % Hydraulic length = 0 ftTime of conc. (Tc) = 6.00 minTc method = USER Distribution Total precip. = 3.30 in= Type III Storm duration = 24 hrs Shape factor = 285


Hydraflow Hydrographs by Intelisolve v9.23

Thursday, Jul 1, 2010

Hyd. No. 3

<no description>

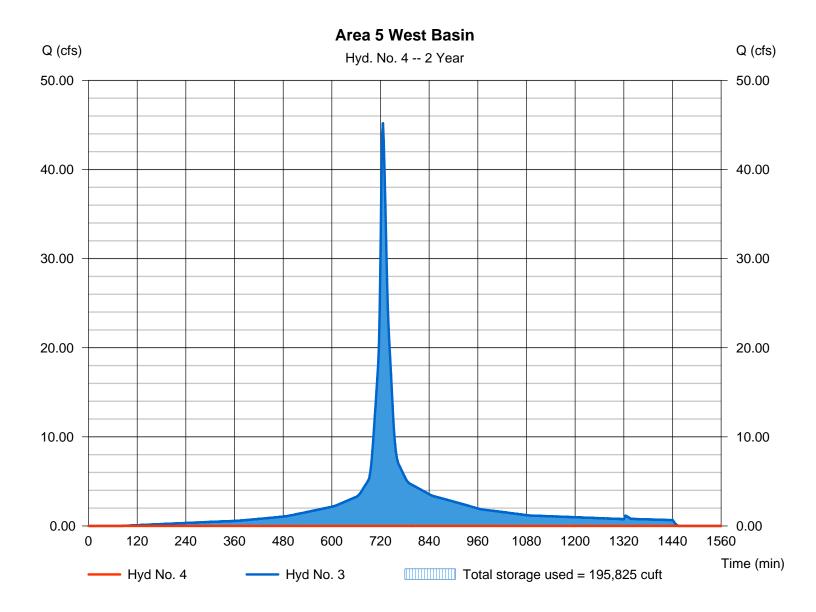
Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 2 min Inflow hyds. = 1, 2 Peak discharge = 45.20 cfs
Time to peak = 726 min
Hyd. volume = 195,825 cuft
Contrib. drain. area = 35.360 ac

Hydraflow Hydrographs by Intelisolve v9.23

Thursday, Jul 1, 2010

= 0.000 cfs

= n/a


= 0 cuft

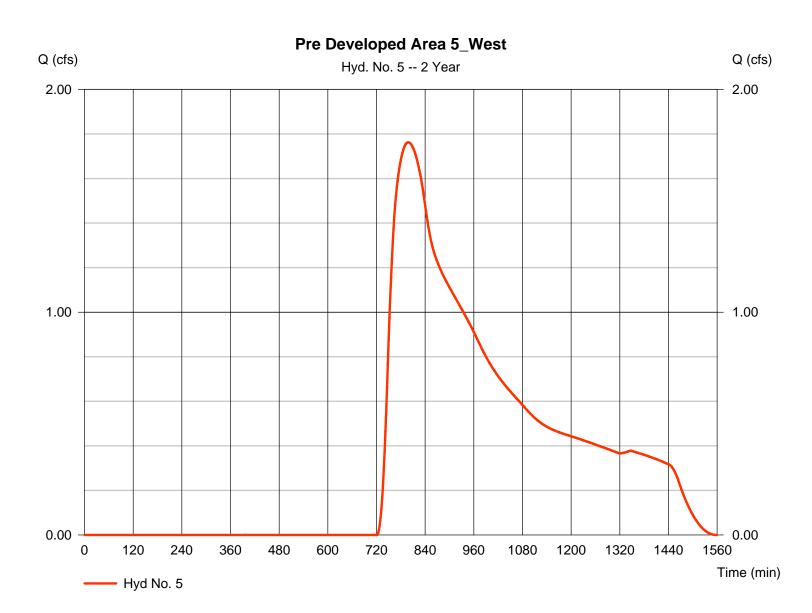
Hyd. No. 4

Area 5 West Basin

Hydrograph type= ReservoirPeak dischargeStorm frequency= 2 yrsTime to peakTime interval= 2 minHyd. volume

Inflow hyd. No. = 3 - <no description> Max. Elevation = 48.85 ft
Reservoir name = Area 5 West Max. Storage = 195,825 cuft

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jul 1, 2010

Hyd. No. 5

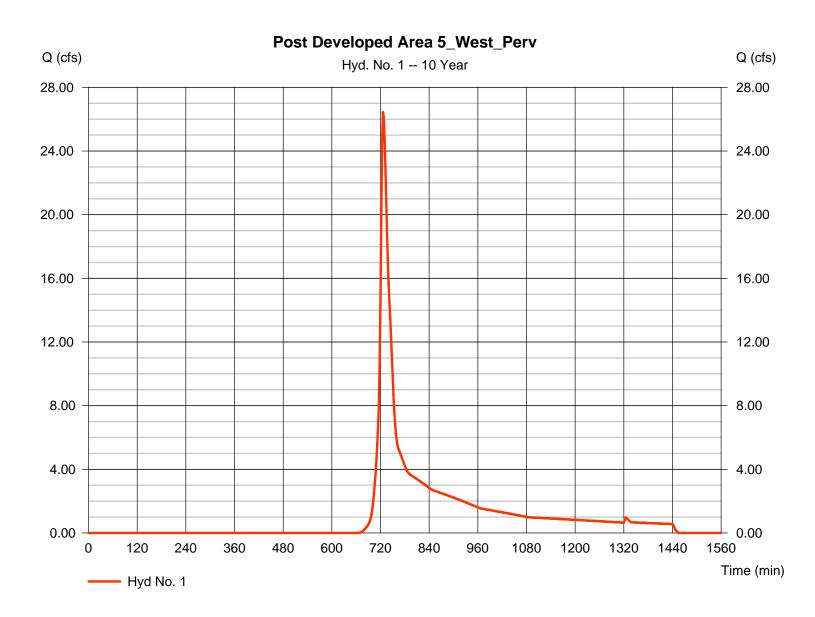
Pre Developed Area 5_West

Hydrograph type = SCS Runoff Peak discharge = 1.762 cfsStorm frequency = 2 yrsTime to peak = 798 min Time interval = 2 minHyd. volume = 32,362 cuftDrainage area = 35.360 acCurve number = 54*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 42.30 minTotal precip. = 3.30 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = [(1.050 x 77) + (9.450 x 55) + (20.720 x 55) + (2.900 x 30) + (1.240 x 55)] / 35.360

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	26.44	2	726	105,878				Post Developed Area 5_West_Perv
2	SCS Runoff	63.70	2	726	262,790				NIC
3	Combine	90.14	2	726	368,668	1, 2			<no description=""></no>
4	Reservoir	3.001	2	1014	96,299	3	49.58	299,778	Area 5 West Basin
5	SCS Runoff	11.61	2	768	130,873				Pre Developed Area 5_West
Are	a 5_West.gpv	v			Return P	eriod: 10 Y	ear	Thursday,	Jul 1, 2010

Hydraflow Hydrographs by Intelisolve v9.23

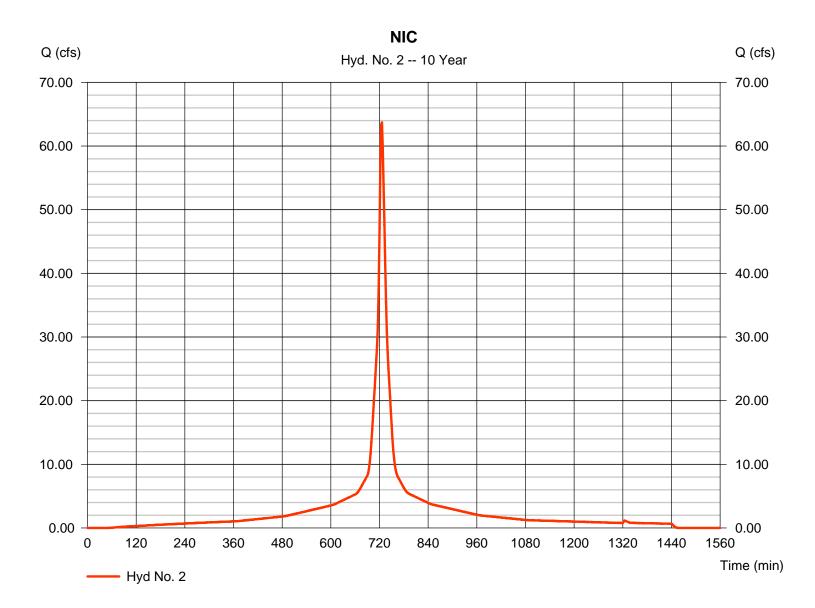

Thursday, Jul 1, 2010

Hyd. No. 1

Post Developed Area 5_West_Perv

Hydrograph type = SCS Runoff Peak discharge = 26.44 cfsStorm frequency = 10 yrsTime to peak $= 726 \, \text{min}$ Time interval = 2 minHyd. volume = 105,878 cuft Drainage area = 20.680 acCurve number $= 60^*$ Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = USER Time of conc. (Tc) = 6.00 minTotal precip. = 5.20 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = $[(1.050 \times 80) + (9.450 \times 61) + (6.040 \times 61) + (2.900 \times 39) + (1.240 \times 74)] / 20.680$

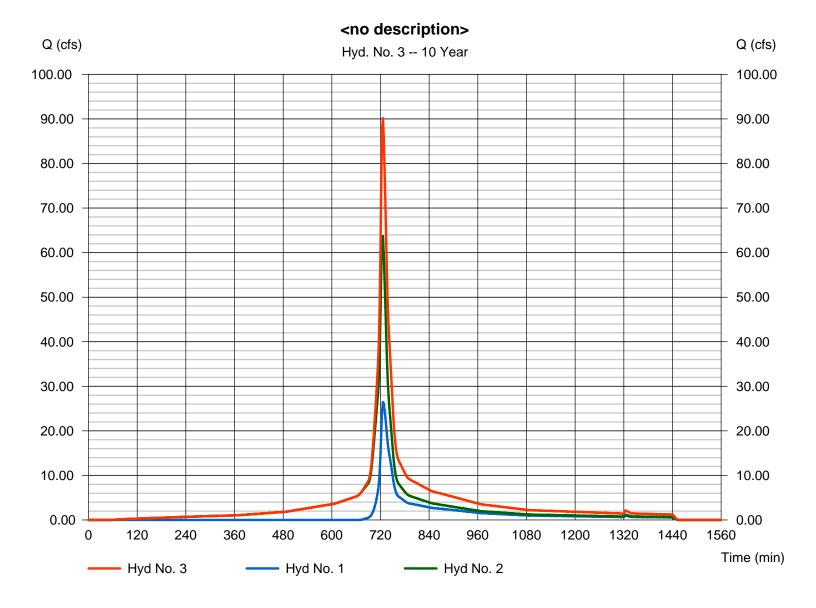

Hydraflow Hydrographs by Intelisolve v9.23

Thursday, Jul 1, 2010

Hyd. No. 2

NIC

= SCS Runoff Hydrograph type Peak discharge = 63.70 cfsStorm frequency Time to peak = 10 yrs= 726 min Time interval = 2 minHyd. volume = 262,790 cuftDrainage area = 14.680 acCurve number = 98 Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) = 6.00 minTc method = USER Distribution Total precip. = 5.20 in= Type III Storm duration = 24 hrs Shape factor = 285


Hydraflow Hydrographs by Intelisolve v9.23

Thursday, Jul 1, 2010

Hyd. No. 3

<no description>

Hydrograph type = Combine Storm frequency = 10 yrs Time interval = 2 min Inflow hyds. = 1, 2 Peak discharge = 90.14 cfs Time to peak = 726 min Hyd. volume = 368,668 cuft Contrib. drain. area = 35.360 ac

Hydraflow Hydrographs by Intelisolve v9.23

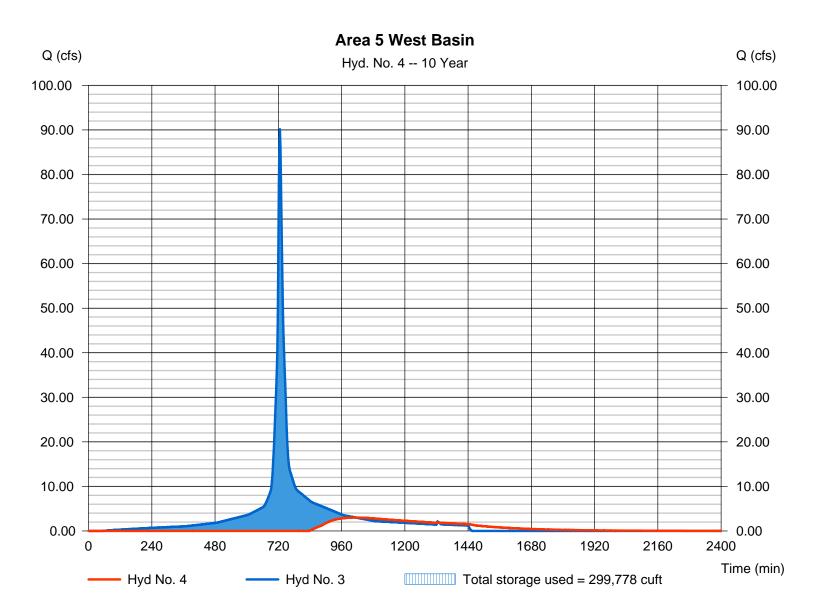
Thursday, Jul 1, 2010

= 3.001 cfs

 $= 1014 \, \text{min}$

Hyd. No. 4

Area 5 West Basin


Hydrograph type = Reservoir Storm frequency = 10 yrs Time interval = 2 min

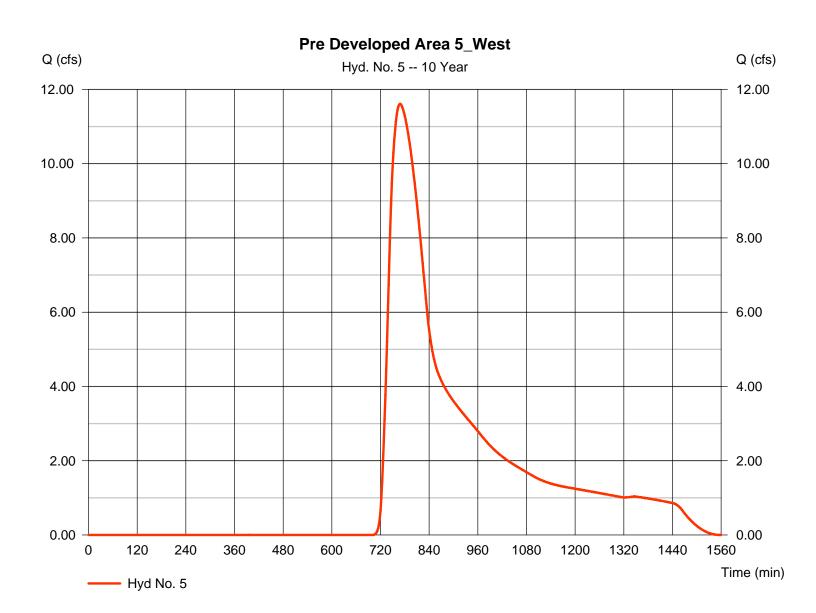
Time interval = 2 min Hyd. volume = 96,299 cuft
Inflow hyd. No. = 3 - <no description> Max. Elevation = 49.58 ft
Reservoir name = Area 5 West Max. Storage = 299,778 cuft

Peak discharge

Time to peak

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jul 1, 2010

Hyd. No. 5

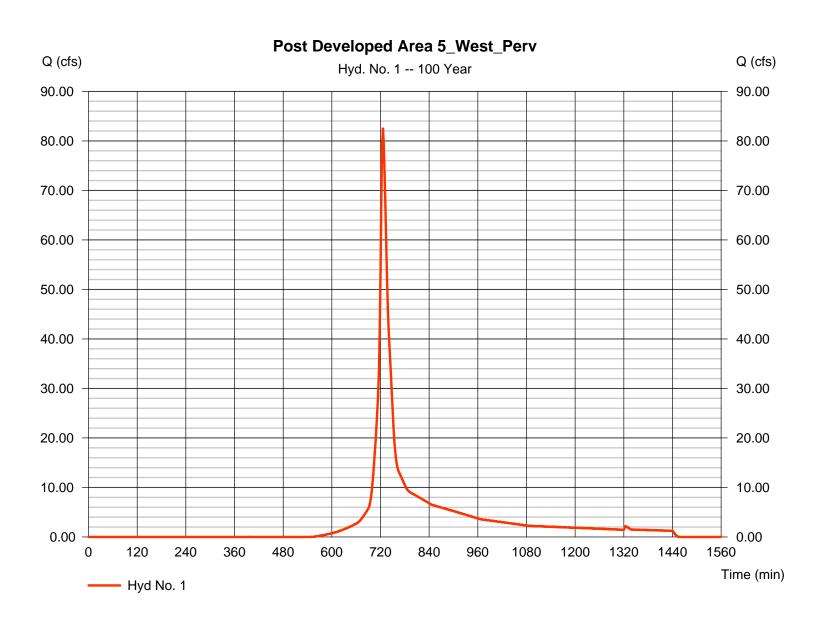
Pre Developed Area 5_West

Hydrograph type = SCS Runoff Peak discharge = 11.61 cfsStorm frequency = 10 yrsTime to peak = 768 min Time interval = 2 minHyd. volume = 130,873 cuft Drainage area = 35.360 acCurve number = 54*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 42.30 minTotal precip. = 5.20 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = [(1.050 x 77) + (9.450 x 55) + (20.720 x 55) + (2.900 x 30) + (1.240 x 55)] / 35.360

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	82.49	2	726	300,057				Post Developed Area 5_West_Perv
2	SCS Runoff	109.41	2	726	458,541				NIC
3	Combine	191.90	2	726	758,598	1, 2			<no description=""></no>
4	Reservoir	35.85	2	756	486,229	3	50.33	426,770	Area 5 West Basin
5	SCS Runoff	35.85 45.70	2 2	762	486,229	3	50.33	426,770	Pre Developed Area 5_West
	a 5_West.gpv					Period: 100		Thursday,	

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jul 1, 2010

Hyd. No. 1

Post Developed Area 5_West_Perv

= SCS Runoff Hydrograph type Peak discharge = 82.49 cfsStorm frequency Time to peak = 100 yrs $= 726 \, \text{min}$ Time interval = 2 minHyd. volume = 300,057 cuftDrainage area = 20.680 acCurve number $= 60^*$ Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = USER Time of conc. (Tc) = 6.00 minTotal precip. = 8.90 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = $[(1.050 \times 80) + (9.450 \times 61) + (6.040 \times 61) + (2.900 \times 39) + (1.240 \times 74)] / 20.680$

Hydraflow Hydrographs by Intelisolve v9.23

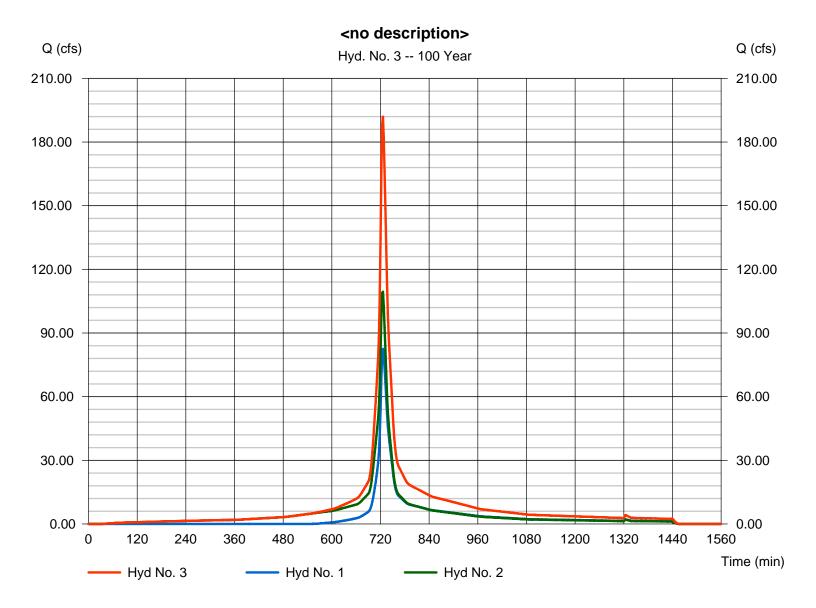
Thursday, Jul 1, 2010

Hyd. No. 2

NIC

= SCS Runoff Hydrograph type Peak discharge = 109.41 cfsStorm frequency Time to peak = 100 yrs= 726 min Time interval = 2 minHyd. volume = 458,541 cuftDrainage area = 14.680 acCurve number = 98 Basin Slope = 0.0 % Hydraulic length = 0 ftTime of conc. (Tc) = 6.00 minTc method = USER Distribution Total precip. = 8.90 in= Type III Storm duration = 24 hrs Shape factor = 285

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jul 1, 2010

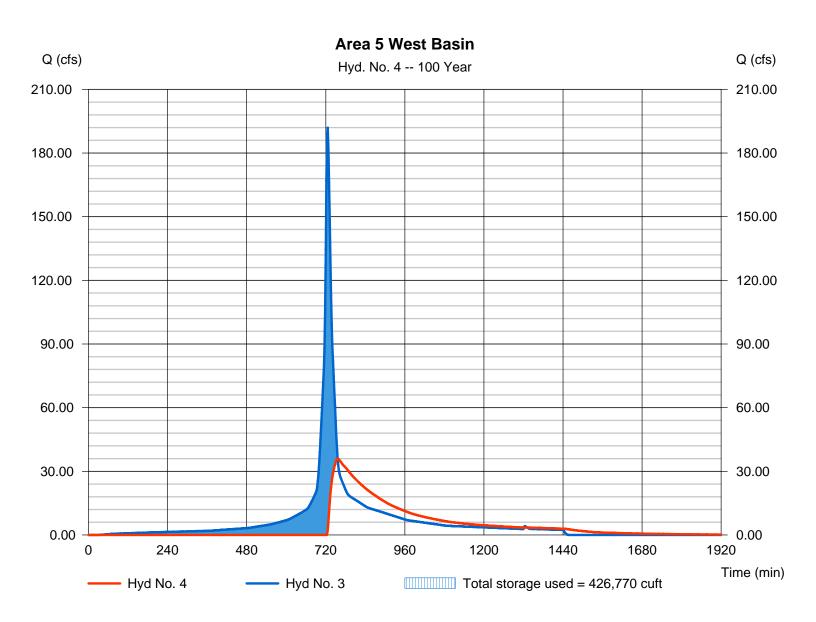
Hyd. No. 3

<no description>

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 2 min Inflow hyds. = 1, 2

Peak discharge = 191.90 cfs Time to peak = 726 min Hyd. volume = 758,598 cuft Contrib. drain. area = 35.360 ac

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jul 1, 2010

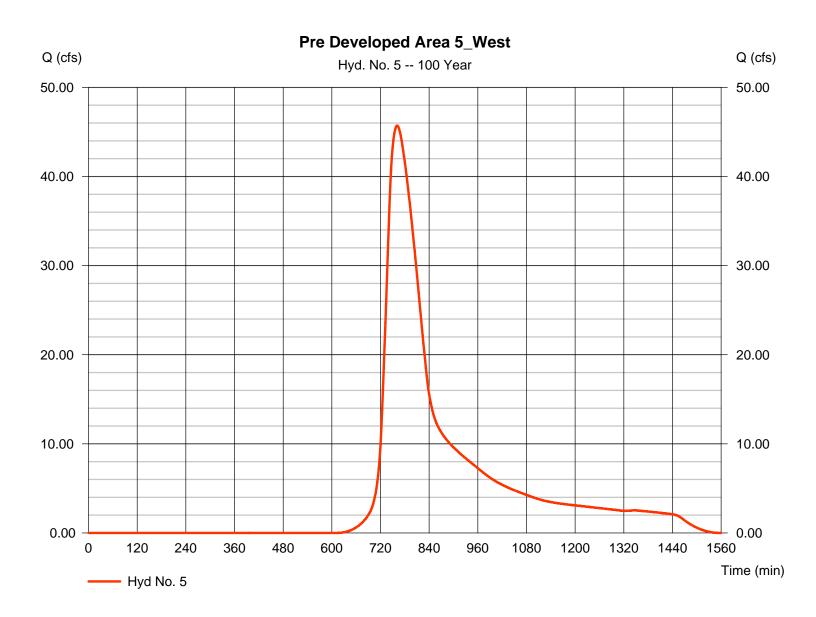
Hyd. No. 4

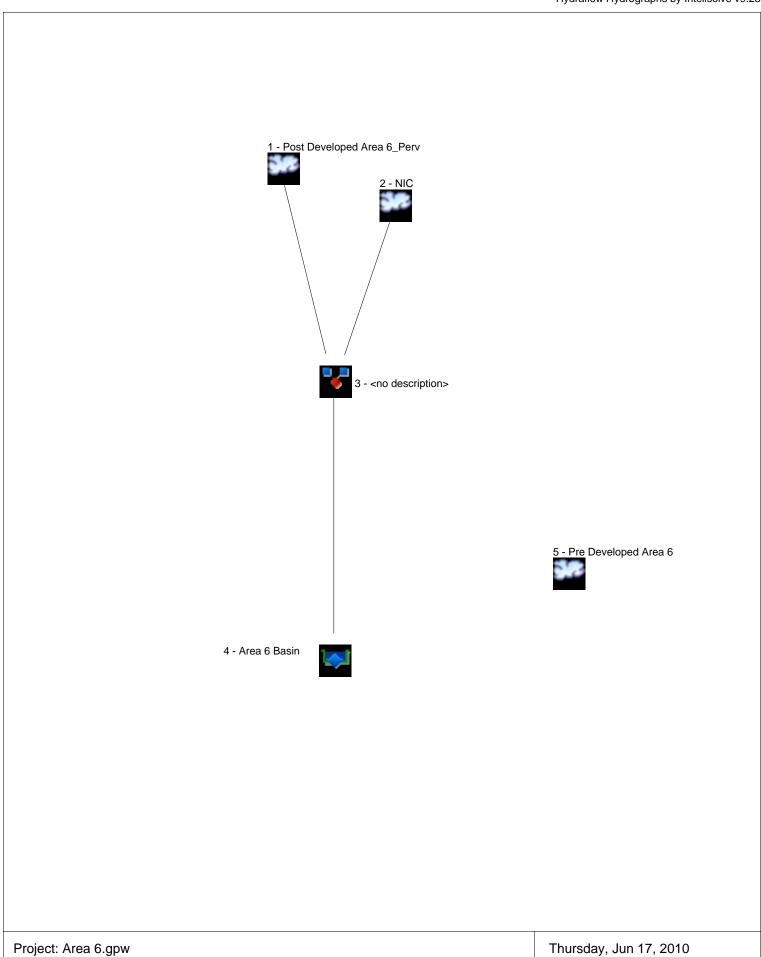
Area 5 West Basin

Hydrograph type = Reservoir Peak discharge = 35.85 cfsStorm frequency Time to peak = 100 yrs= 756 min Time interval = 2 minHyd. volume = 486,229 cuftInflow hyd. No. = 3 - <no description> Max. Elevation = 50.33 ftReservoir name = Area 5 West Max. Storage = 426,770 cuft

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jul 1, 2010


Hyd. No. 5

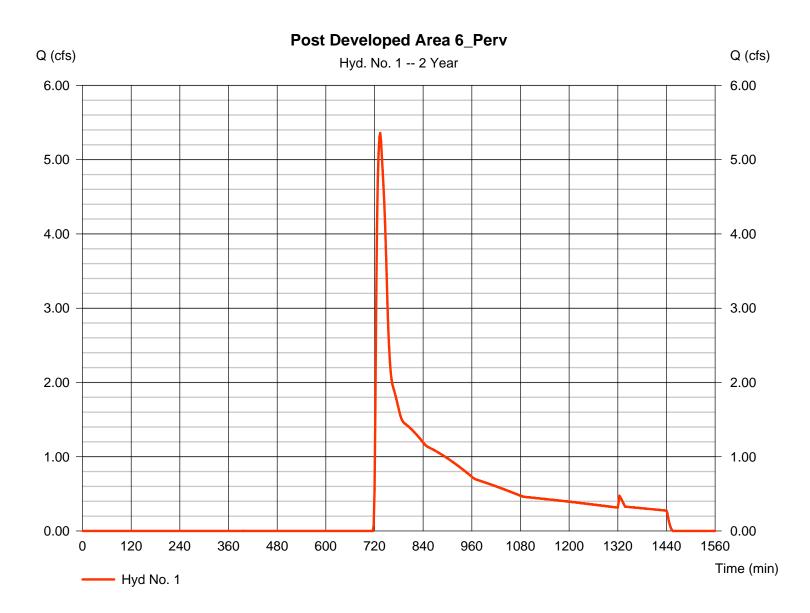
Pre Developed Area 5_West

Hydrograph type = SCS Runoff Peak discharge = 45.70 cfsStorm frequency = 100 yrsTime to peak = 762 min Time interval = 2 minHyd. volume = 423,903 cuftDrainage area = 35.360 acCurve number = 54*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 42.30 minTotal precip. = 8.90 inDistribution = Type III Shape factor Storm duration = 24 hrs = 285

^{*} Composite (Area/CN) = [(1.050 x 77) + (9.450 x 55) + (20.720 x 55) + (2.900 x 30) + (1.240 x 55)] / 35.360

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	5.358	2	734	35,744				Post Developed Area 6_Perv
2	SCS Runoff	59.92	2	726	242,506				NIC
3	Combine	63.98	2	726	278,250	1, 2			<no description=""></no>
4	Reservoir	0.000	2	n/a	0	3	52.43	278,250	Area 6 Basin
5	SCS Runoff	0.246	2	984	7,396				Pre Developed Area 6
Are	a 6.gpw				Return P	eriod: 2 Ye	ar	Thursday, J	Jun 17, 2010

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jun 17, 2010

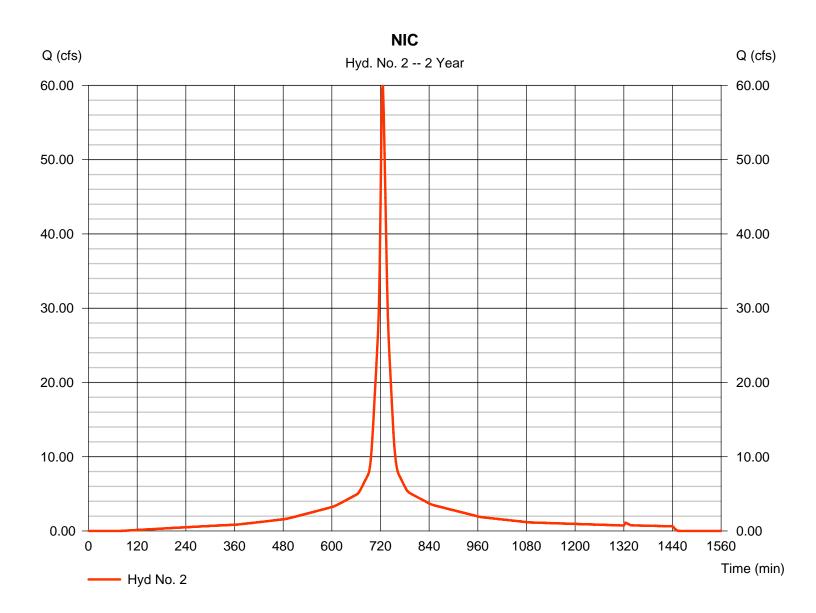
Hyd. No. 1

Post Developed Area 6_Perv

Hydrograph type = SCS Runoff Peak discharge = 5.358 cfsTime to peak Storm frequency = 2 yrs= 734 min Time interval = 2 minHyd. volume = 35,744 cuftDrainage area = 26.280 acCurve number = 58*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = USER Time of conc. (Tc) = 6.00 minTotal precip. = 3.30 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = $+ (6.150 \times 61) + (5.460 \times 39) + (2.600 \times 39) + (12.070 \times 70)] / 26.280$

Hydraflow Hydrographs by Intelisolve v9.23

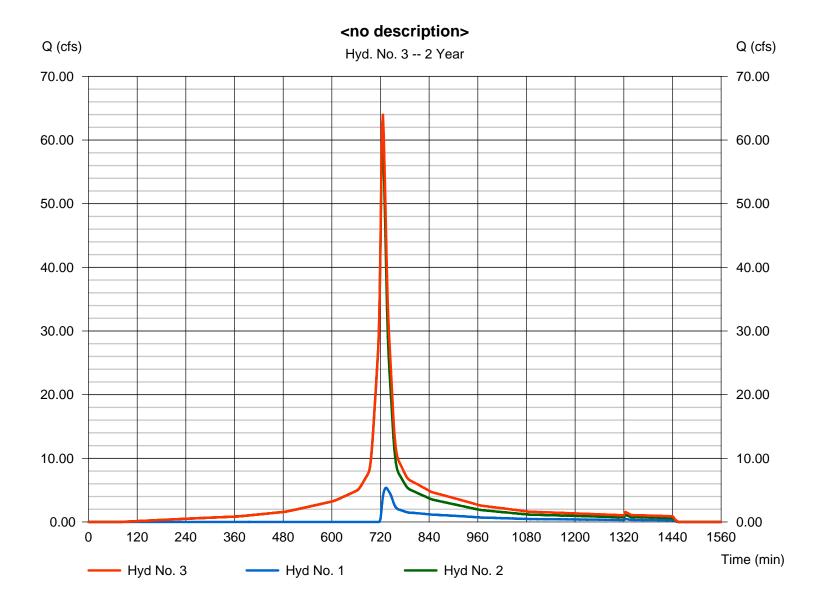

Thursday, Jun 17, 2010

Hyd. No. 2

NIC

Hydrograph type	= SCS Runoff	Peak discharge	= 59.92 cfs
Storm frequency	= 2 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 242,506 cuft
Drainage area	= 21.920 ac	Curve number	= 98*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.30 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 285
Storm duration	= 24 hrs	Shape factor	= 285

^{*} Composite (Area/CN) = [(21.920 x 98)] / 21.920


Hydraflow Hydrographs by Intelisolve v9.23

Thursday, Jun 17, 2010

Hyd. No. 3

<no description>

Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 2 min Inflow hyds. = 1, 2 Peak discharge = 63.98 cfs Time to peak = 726 min Hyd. volume = 278,250 cuft Contrib. drain. area = 48.200 ac

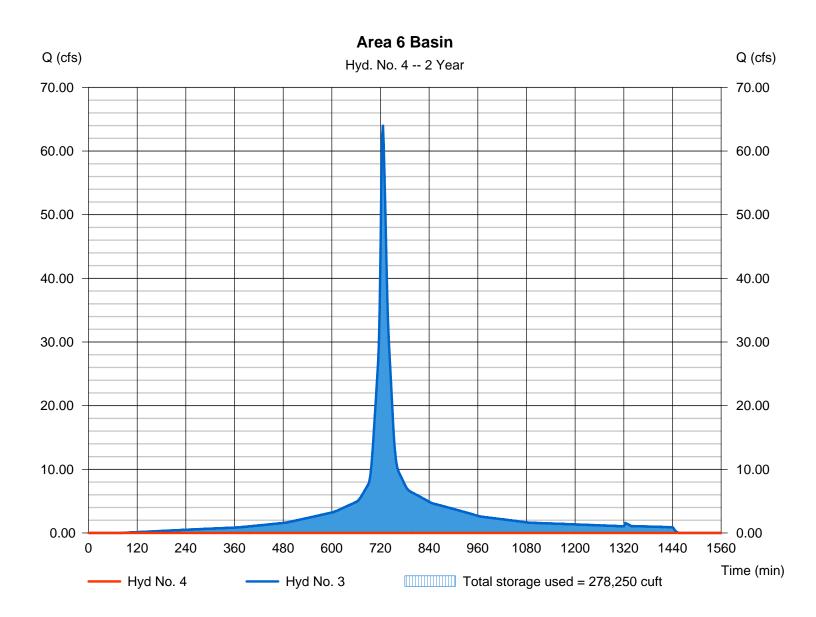
Hydraflow Hydrographs by Intelisolve v9.23

Thursday, Jun 17, 2010

= 0.000 cfs

= n/a

= 0 cuft


Hyd. No. 4

Area 6 Basin

Hydrograph type = Reservoir Peak discharge
Storm frequency = 2 yrs Time to peak
Time interval = 2 min Hyd. volume

Inflow hyd. No. = 3 - <no description> Max. Elevation = 52.43 ft
Reservoir name = Area 6 Max. Storage = 278,250 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs by Intelisolve v9.23

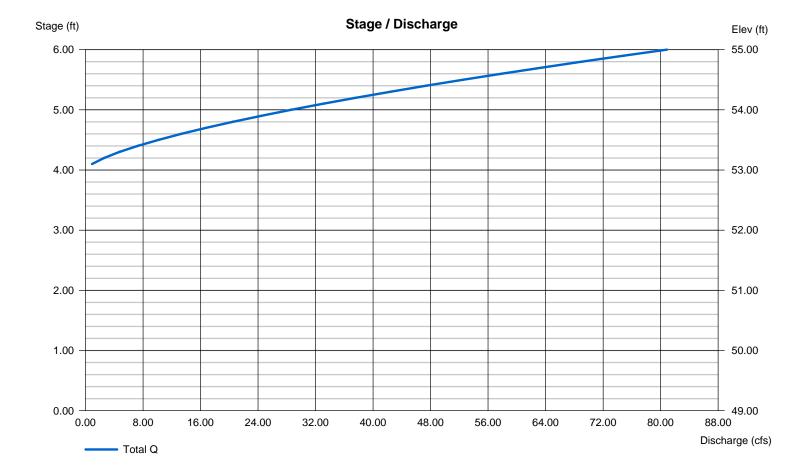
Thursday, Jun 17, 2010

Pond No. 1 - Area 6

Pond Data

Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 49.00 ft

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	49.00	00	0	0
1.00	50.00	16,039	8,020	8,020
2.00	51.00	90,200	53,120	61,139
3.00	52.00	163,467	126,834	187,973
4.00	53.00	252,550	208,009	395,981
5.00	54.00	301,338	276,944	672,925
6.00	55.00	345,659	323,499	996,424

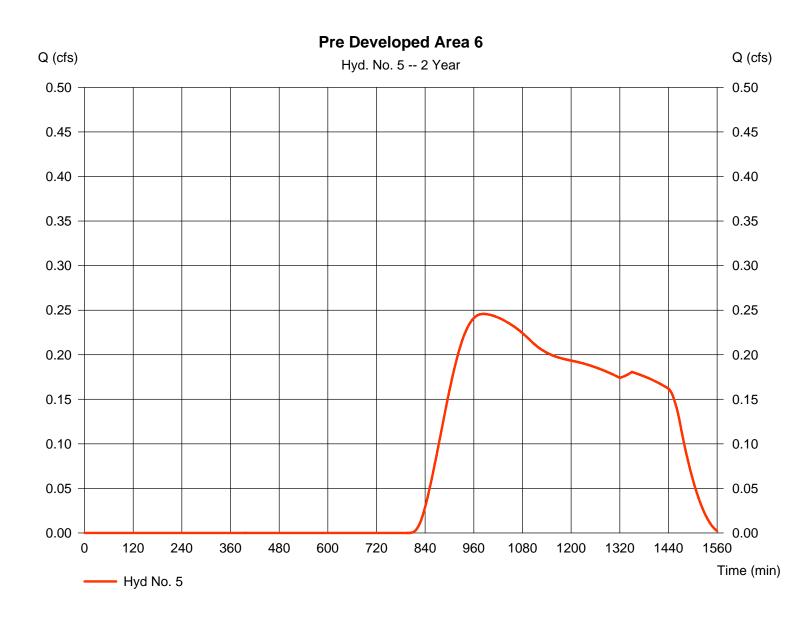
Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 11.00	0.00	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 53.00	0.00	0.00	0.00
No. Barrels	= 0	0	0	0	Weir Coeff.	= 2.60	3.33	3.33	3.33
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	= Broad			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jun 17, 2010

Hyd. No. 5

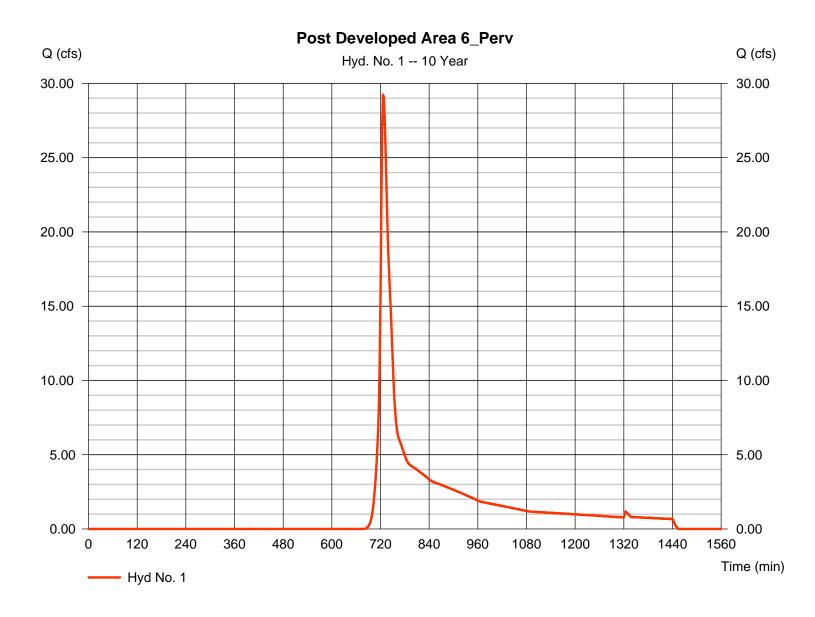
Pre Developed Area 6

Hydrograph type = SCS Runoff Peak discharge = 0.246 cfsTime to peak Storm frequency = 2 yrs= 984 min Time interval = 2 minHyd. volume = 7,396 cuftDrainage area = 48.200 acCurve number = 44*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) $= 49.60 \, \text{min}$ Total precip. = 3.30 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = [(6.150 x 55) + (5.460 x 30) + (23.470 x 30) + (13.120 x 70)] / 48.200

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	29.23	2	726	121,371				Post Developed Area 6_Perv
2	SCS Runoff	95.11	2	726	392,395				NIC
3	Combine	124.34	2	726	513,766	1, 2			<no description=""></no>
4	Reservoir	2.417	2	1216	117,754	3	53.19	449,008	Area 6 Basin
5	SCS Runoff	4.427	2	802	80,196				Pre Developed Area 6
\	a 6.gpw				Det	eriod: 10 Y	(20)	Thoras de	Jun 17, 2010

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jun 17, 2010

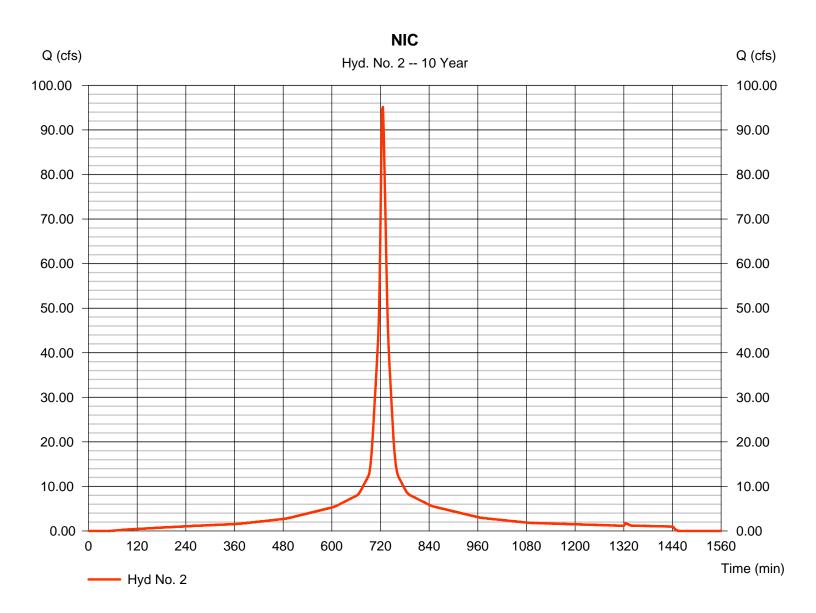
Hyd. No. 1

Post Developed Area 6_Perv

Hydrograph type = SCS Runoff Peak discharge = 29.23 cfsTime to peak Storm frequency = 10 yrs= 726 min Time interval = 2 minHyd. volume = 121,371 cuftDrainage area = 26.280 acCurve number = 58*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = USER Time of conc. (Tc) = 6.00 minTotal precip. = 5.20 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = $+ (6.150 \times 61) + (5.460 \times 39) + (2.600 \times 39) + (12.070 \times 70)] / 26.280$

Hydraflow Hydrographs by Intelisolve v9.23

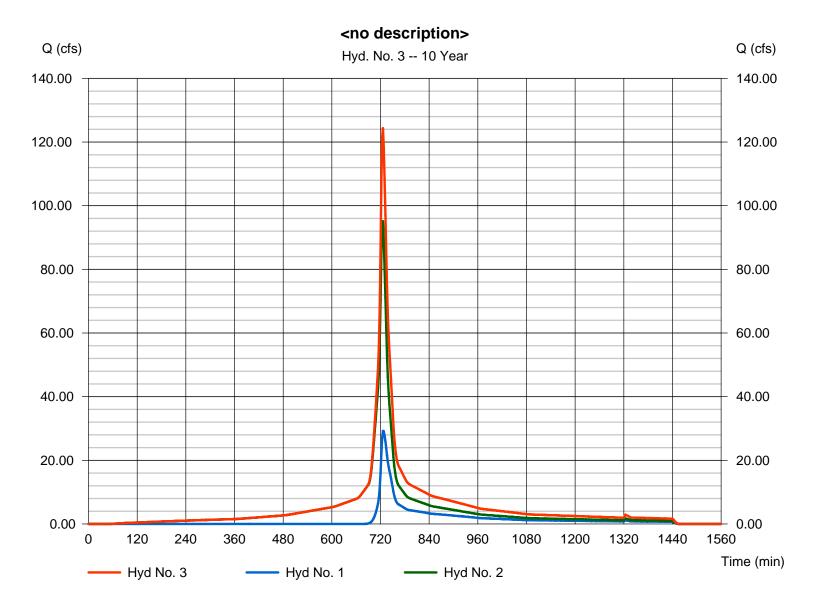

Thursday, Jun 17, 2010

Hyd. No. 2

NIC

Hydrograph type = SCS Runoff Peak discharge = 95.11 cfsStorm frequency Time to peak = 10 yrs= 726 min Time interval = 2 minHyd. volume = 392,395 cuftDrainage area = 21.920 acCurve number = 98*Basin Slope = 0.0 % Hydraulic length = 0 ftTime of conc. (Tc) = 6.00 minTc method = USER Distribution Total precip. = 5.20 in= Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = [(21.920 x 98)] / 21.920


Hydraflow Hydrographs by Intelisolve v9.23

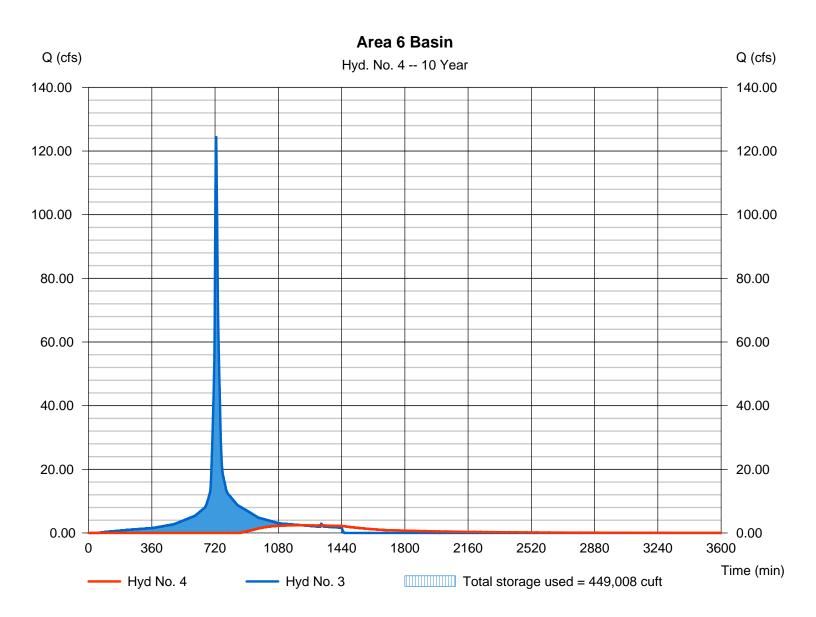
Thursday, Jun 17, 2010

Hyd. No. 3

<no description>

Hydrograph type = Combine Storm frequency = 10 yrs Time interval = 2 min Inflow hyds. = 1, 2 Peak discharge = 124.34 cfs Time to peak = 726 min Hyd. volume = 513,766 cuft Contrib. drain. area = 48.200 ac

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jun 17, 2010

Hyd. No. 4

Area 6 Basin

Hydrograph type = Reservoir Peak discharge = 2.417 cfsStorm frequency Time to peak = 10 yrs= 1216 min Time interval = 2 minHyd. volume = 117,754 cuft Max. Elevation Inflow hyd. No. = 3 - <no description> = 53.19 ftReservoir name = Area 6 Max. Storage = 449,008 cuft

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.23

Thursday, Jun 17, 2010

Hyd. No. 5

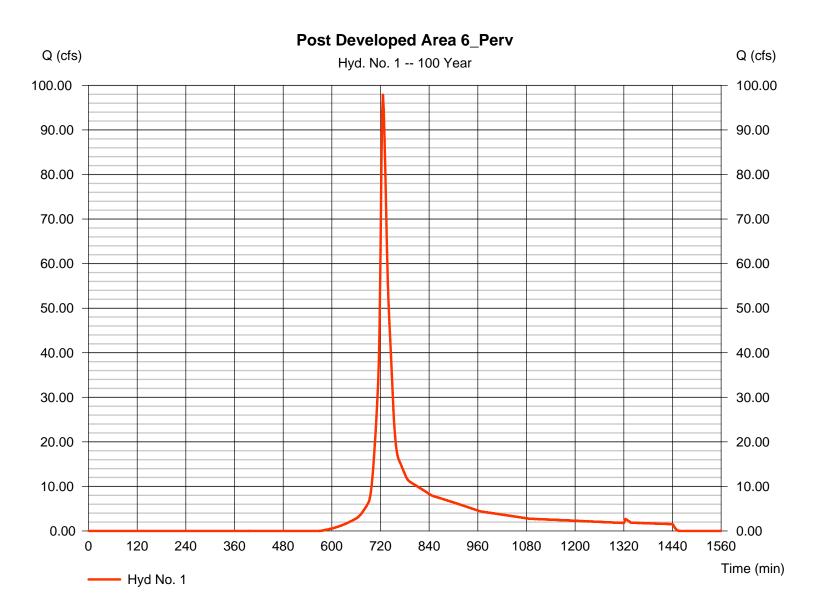
Pre Developed Area 6

Hydrograph type = SCS Runoff Peak discharge = 4.427 cfsStorm frequency = 10 yrsTime to peak = 802 min Time interval = 2 minHyd. volume = 80,196 cuftDrainage area = 48.200 acCurve number = 44*Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) = 49.60 minTc method = TR55 Total precip. = 5.20 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = [(6.150 x 55) + (5.460 x 30) + (23.470 x 30) + (13.120 x 70)] / 48.200

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	97.89	2	726	358,241				Post Developed Area 6_Perv
2	SCS Runoff	163.38	2	726	684,689				NIC
3	Combine	261.26	2	726	1,042,930	1, 2			<no description=""></no>
4	Reservoir	24.92	2	792	646,918	3	53.91	648,534	Area 6 Basin
5	SCS Runoff	32.13	2	772	370,639				Pre Developed Area 6
Are	a 6.gpw				Return P	eriod: 100	Year	Thursday,	Jun 17, 2010

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jun 17, 2010

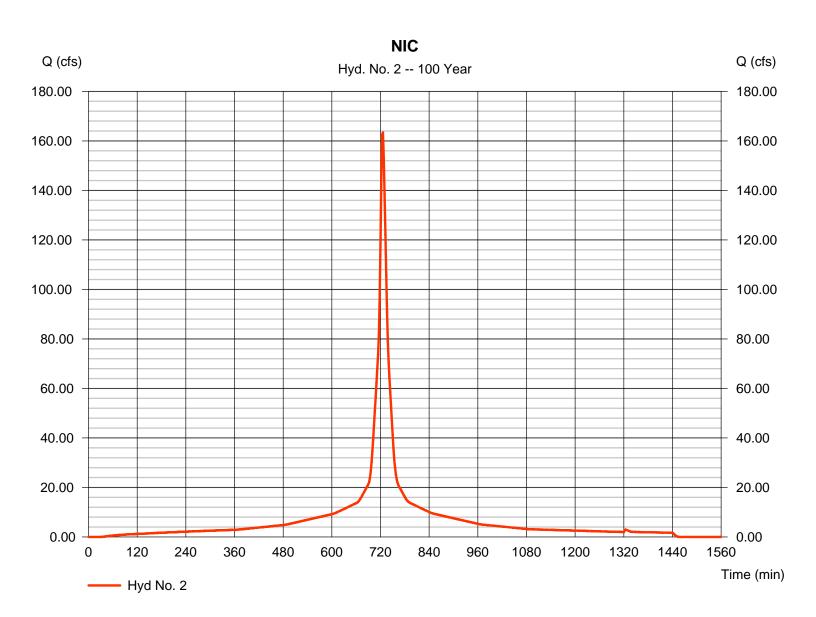
Hyd. No. 1

Post Developed Area 6_Perv

= SCS Runoff Hydrograph type Peak discharge = 97.89 cfsStorm frequency Time to peak = 100 yrs= 726 min Time interval = 2 minHyd. volume = 358,241 cuftDrainage area = 26.280 acCurve number = 58*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = USER Time of conc. (Tc) = 6.00 minDistribution Total precip. = 8.90 in= Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = + (6.150 x 61) + (5.460 x 39) + (2.600 x 39) + (12.070 x 70)] / 26.280

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jun 17, 2010

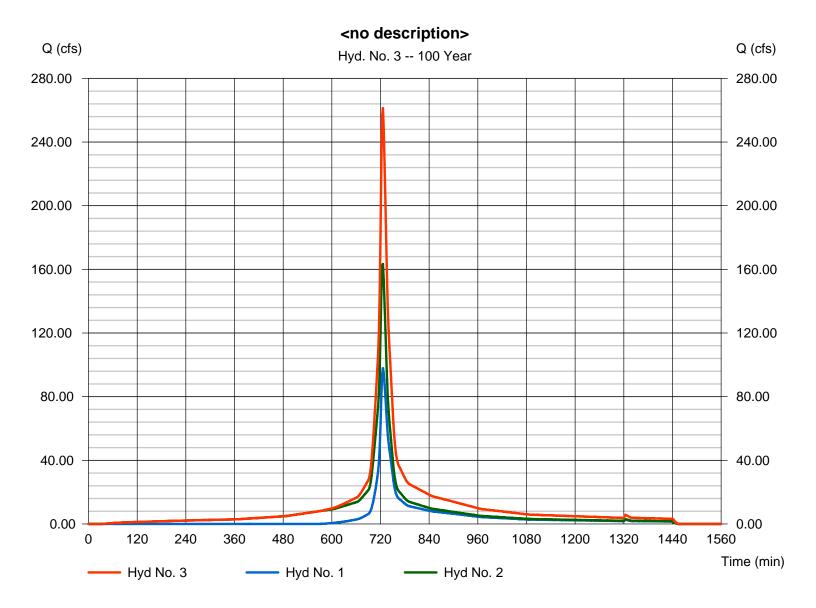
Hyd. No. 2

NIC

= SCS Runoff Hydrograph type Peak discharge = 163.38 cfsStorm frequency Time to peak = 100 yrs= 726 min Time interval = 2 minHyd. volume = 684,689 cuftDrainage area = 21.920 acCurve number = 98*Basin Slope = 0.0 % Hydraulic length = 0 ftTime of conc. (Tc) = 6.00 minTc method = USER Distribution Total precip. = 8.90 in= Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = [(21.920 x 98)] / 21.920

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jun 17, 2010

Hyd. No. 3

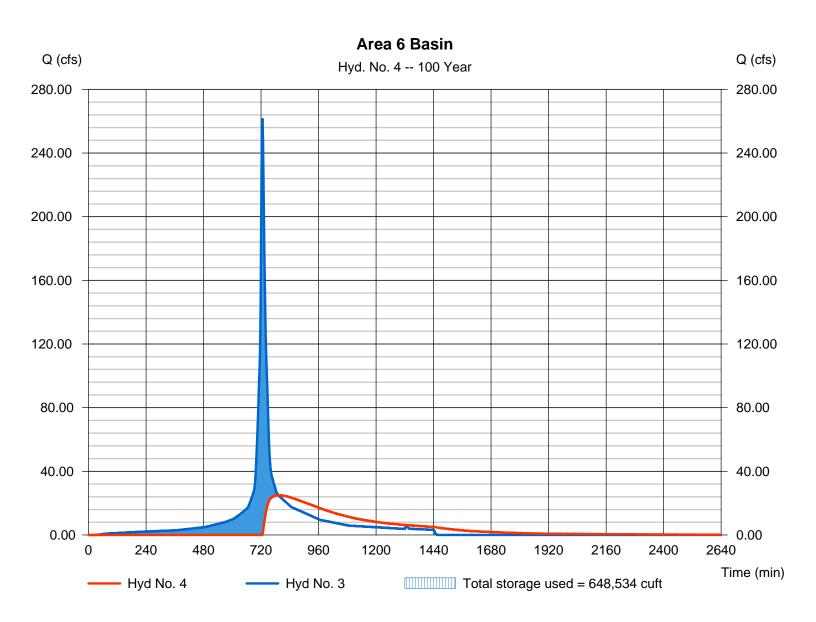
<no description>

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 2 min Inflow hyds. = 1, 2

Peak discharge = 261.26 cfs
Time to peak = 726 min
Hyd. volume = 1,042,930 cuft
Contrib. drain. area = 48.200 ac

Hydraflow Hydrographs by Intelisolve v9.23

Thursday, Jun 17, 2010


Hyd. No. 4

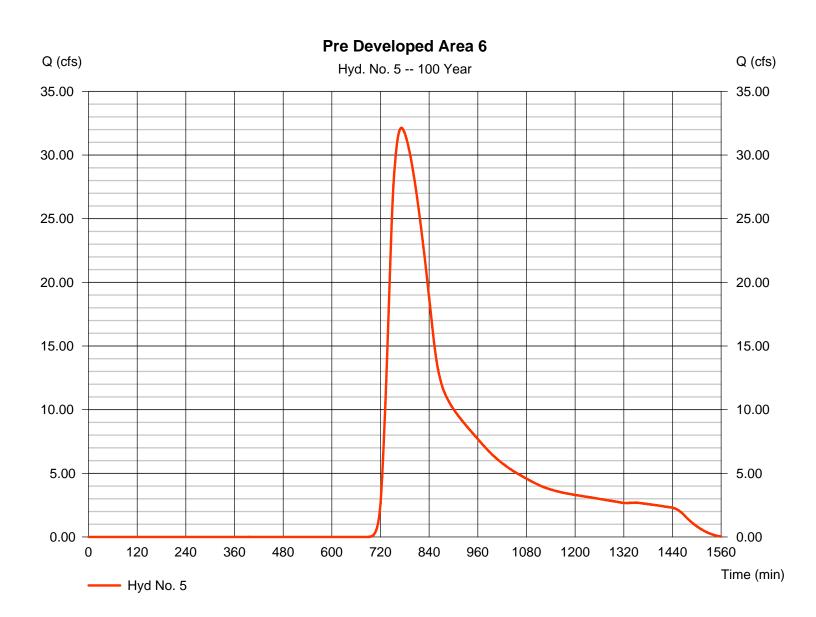
Area 6 Basin

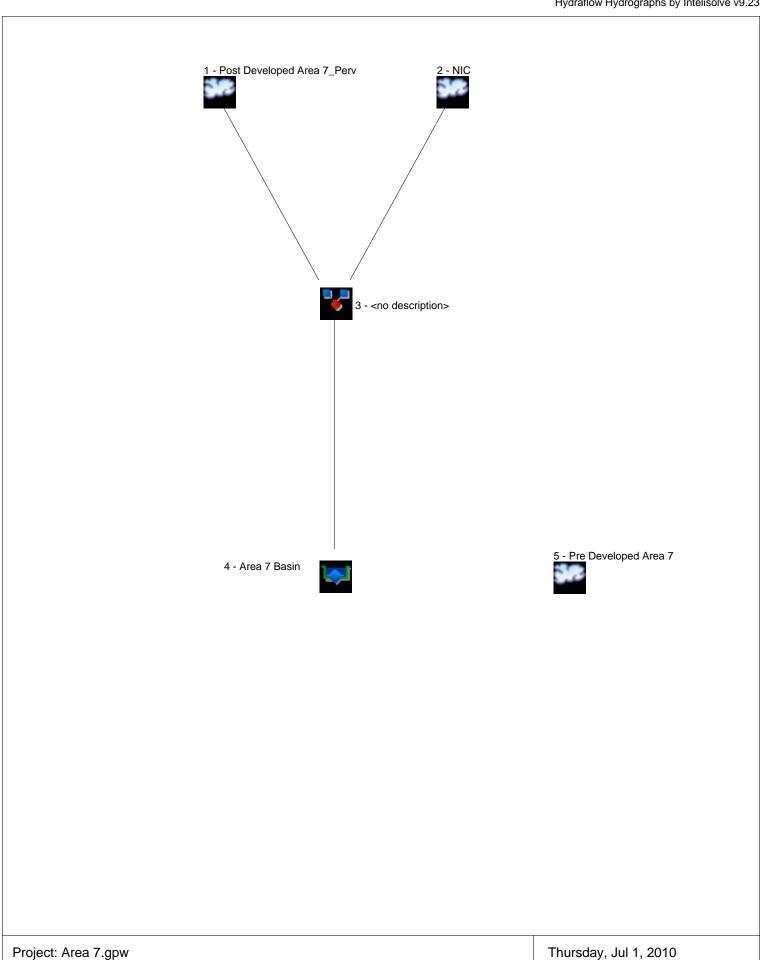
Hydrograph type = Reservoir Peak discharge = 24.92 cfsStorm frequency Time to peak = 100 yrs= 792 min Time interval = 2 minHyd. volume = 646,918 cuftMax. Elevation Inflow hyd. No. = 3 - <no description> = 53.91 ft

Reservoir name = Area 6 Max. Storage = 648,534 cuft

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jun 17, 2010


Hyd. No. 5

Pre Developed Area 6

Hydrograph type = SCS Runoff Peak discharge = 32.13 cfsStorm frequency Time to peak = 100 yrs= 772 min Time interval = 2 minHyd. volume = 370,639 cuft Drainage area = 48.200 acCurve number = 44*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 49.60 minDistribution Total precip. = 8.90 in= Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = $[(6.150 \times 55) + (5.460 \times 30) + (23.470 \times 30) + (13.120 \times 70)] / 48.200$

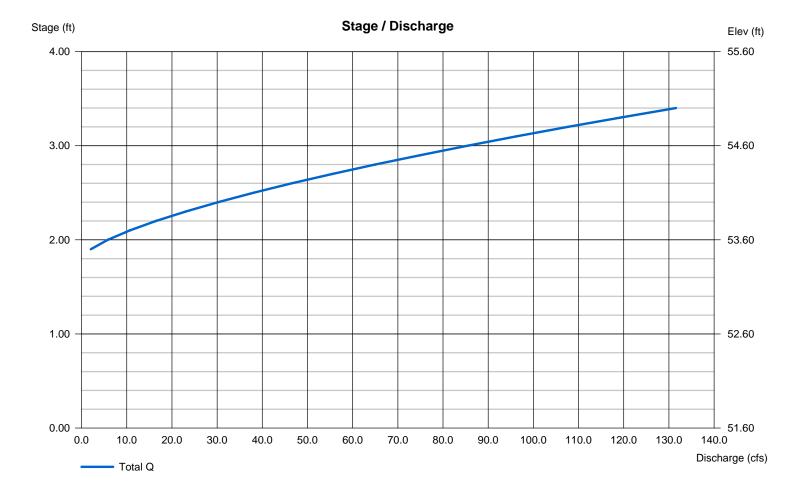
Pond Report

Hydraflow Hydrographs by Intelisolve v9.23

Thursday, Jul 1, 2010

Pond No. 1 - Area 7

Pond Data


Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 51.60 ft

Stage / Storage Table

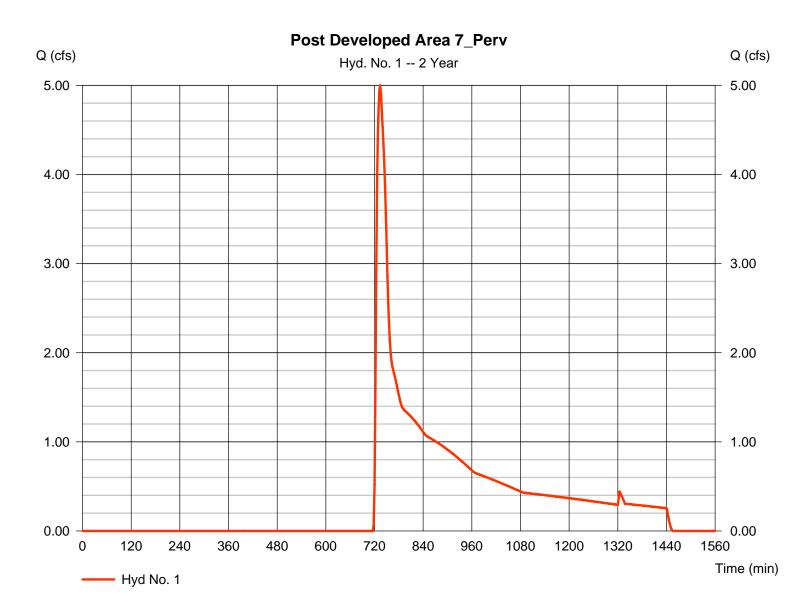
Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	51.60	00	0	0
0.40	52.00	53,912	10,782	10,782
1.40	53.00	178,444	116,178	126,960
2.40	54.00	263,172	220,808	347,768
3.40	55.00	271,849	267,511	615,279

Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] Rise (in) = 0.000.00 0.00 0.00 Crest Len (ft) = 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Span (in) = 0.00Crest El. (ft) = 53.400.00 = 0 Weir Coeff. No. Barrels 0 0 = 2.603.33 3.33 3.33 Invert El. (ft) = 0.000.00 0.00 0.00 Weir Type = Broad Length (ft) = 0.000.00 0.00 0.00 Multi-Stage = No No No No Slope (%) = 0.000.00 0.00 n/a N-Value = .013 .013 .013 n/a = 0.000 (by Wet area) Orifice Coeff. = 0.600.60 0.60 0.60 Exfil.(in/hr) Multi-Stage = n/aNo No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	4.999	2	734	33,350				Post Developed Area 7_Perv
2	SCS Runoff	53.34	2	716	124,941				NIC
3	Combine	53.34	2	716	158,291	1, 2			<no description=""></no>
4	Reservoir	0.000	2	n/a	0	3	53.14	158,291	Area 7 Basin
5	SCS Runoff	2.023	2	804	37,271				Pre Developed Area 7
Area 7.gpw			Return P	eriod: 2 Ye	or	Thursday,	Jul 1, 2010		

Hydraflow Hydrographs by Intelisolve v9.23

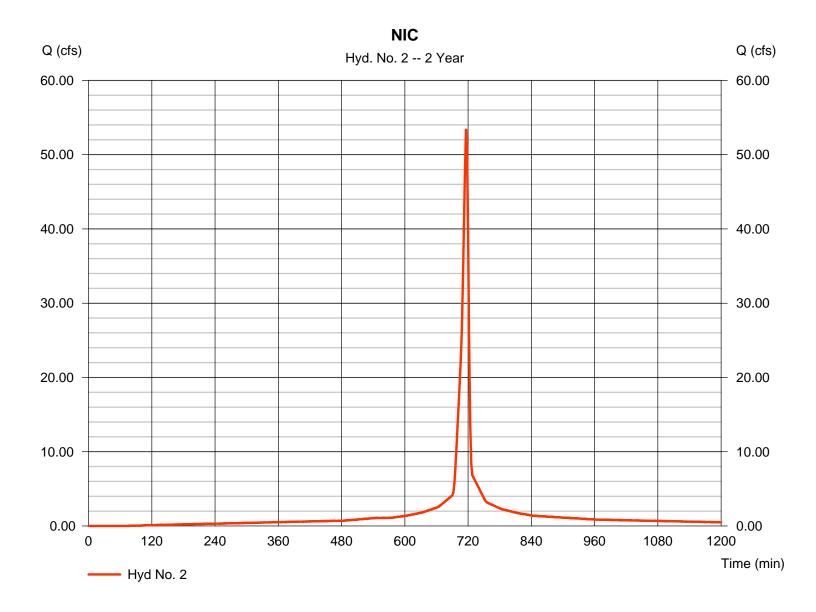

Thursday, Jul 1, 2010

Hyd. No. 1

Post Developed Area 7_Perv

Hydrograph type = SCS Runoff Peak discharge = 4.999 cfsStorm frequency = 2 yrsTime to peak = 734 min Time interval = 2 minHyd. volume = 33,350 cuftDrainage area = 24.520 acCurve number = 58*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = USER Time of conc. (Tc) = 6.00 minTotal precip. = 3.30 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = $+ (0.690 \times 77) + (10.000 \times 61) + (13.830 \times 55)] / 24.520$

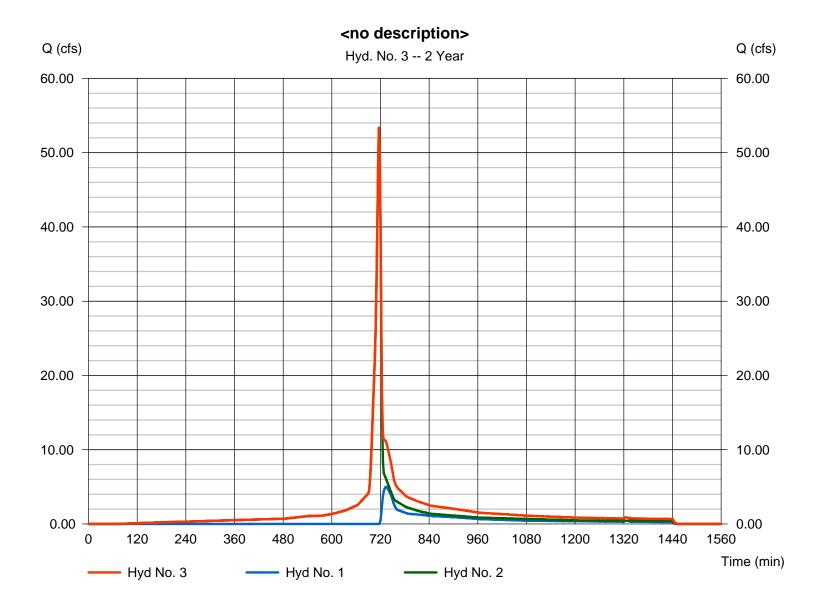

Hydraflow Hydrographs by Intelisolve v9.23

Thursday, Jul 1, 2010

Hyd. No. 2

NIC

Hydrograph type = SCS Runoff Peak discharge = 53.34 cfsStorm frequency Time to peak = 2 yrs $= 716 \, \text{min}$ Time interval = 2 minHyd. volume = 124,941 cuftDrainage area = 11.970 acCurve number = 98 Basin Slope = 0.0 % Hydraulic length = 0 ftTime of conc. (Tc) = 6.00 minTc method = USER Distribution Total precip. = 3.30 in= Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs by Intelisolve v9.23

Thursday, Jul 1, 2010

Hyd. No. 3

<no description>

Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 2 min Inflow hyds. = 1, 2 Peak discharge = 53.34 cfs Time to peak = 716 min Hyd. volume = 158,291 cuft Contrib. drain. area = 36.490 ac

Hydraflow Hydrographs by Intelisolve v9.23

Thursday, Jul 1, 2010

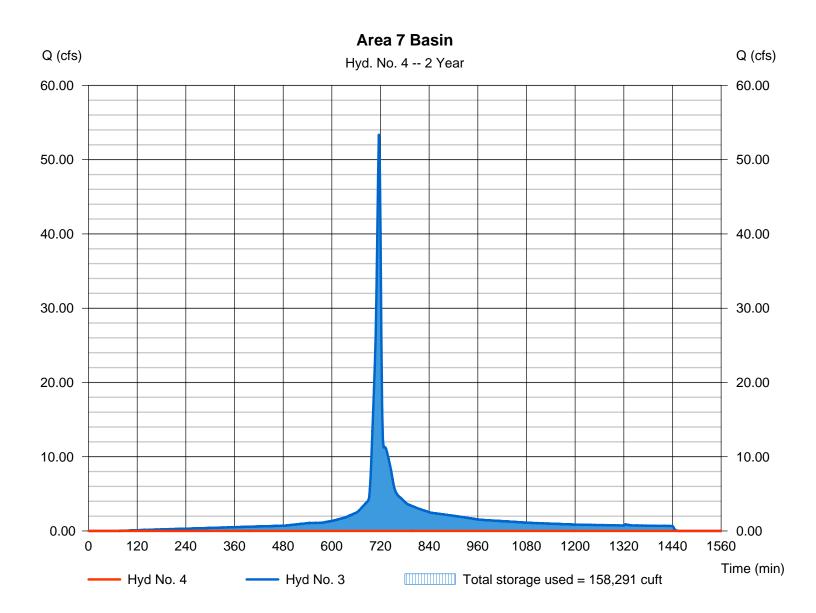
= 0.000 cfs

= n/a

= 0 cuft

Hyd. No. 4

Area 7 Basin


Hydrograph type = Reservoir
Storm frequency = 2 yrs
Time interval = 2 min

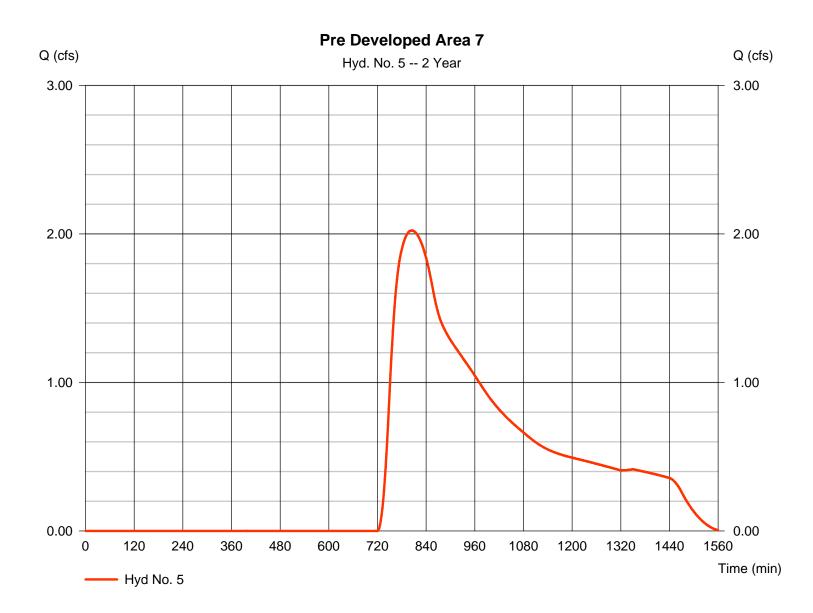
Inflow hyd. No. = 3 - <no description> Max. Elevation = 53.14 ft
Reservoir name = Area 7 Max. Storage = 158,291 cuft

Peak discharge

Time to peak

Hyd. volume

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jul 1, 2010

Hyd. No. 5

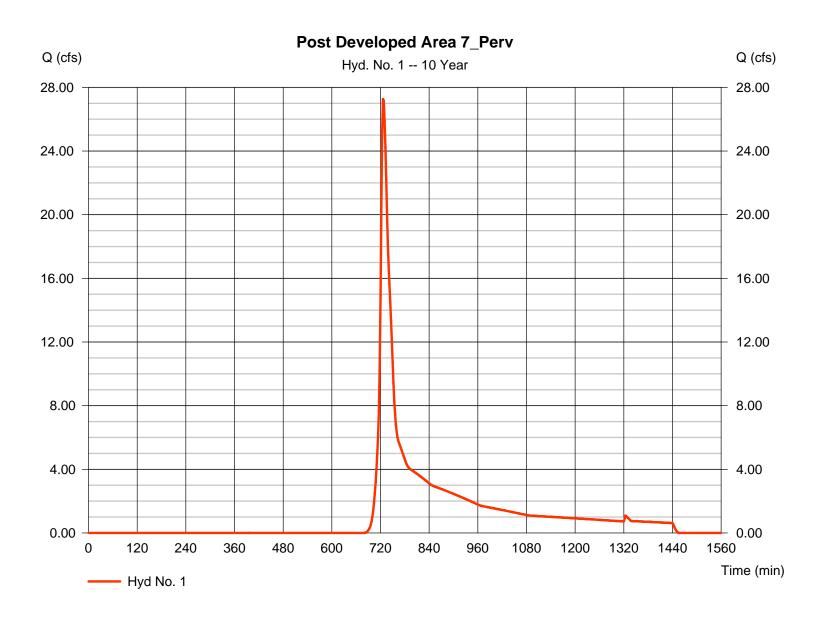
Pre Developed Area 7

Hydrograph type = SCS Runoff Peak discharge = 2.023 cfsStorm frequency = 2 yrsTime to peak = 804 min Time interval = 2 minHyd. volume = 37,271 cuftDrainage area = 36.490 acCurve number = 55*Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) = 50.00 minTc method = TR55 Total precip. = 3.30 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = $[(35.800 \times 55) + (0.690 \times 77)] / 36.490$

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description	
1	SCS Runoff	27.27	2	726	113,243				Post Developed Area 7_Perv	
2	SCS Runoff	84.62	2	716	202,165				NIC	
3	Combine	92.28	2	716	315,407	1, 2			<no description=""></no>	
4	Reservoir	2.972	2	978	100,113	3	53.52	242,751	Area 7 Basin	
5	SCS Runoff	11.83	2	774	143,366				Pre Developed Area 7	
Area 7.gpw				Return Period: 10 Year			Thursday	Thursday, Jul 1, 2010		

Hydraflow Hydrographs by Intelisolve v9.23

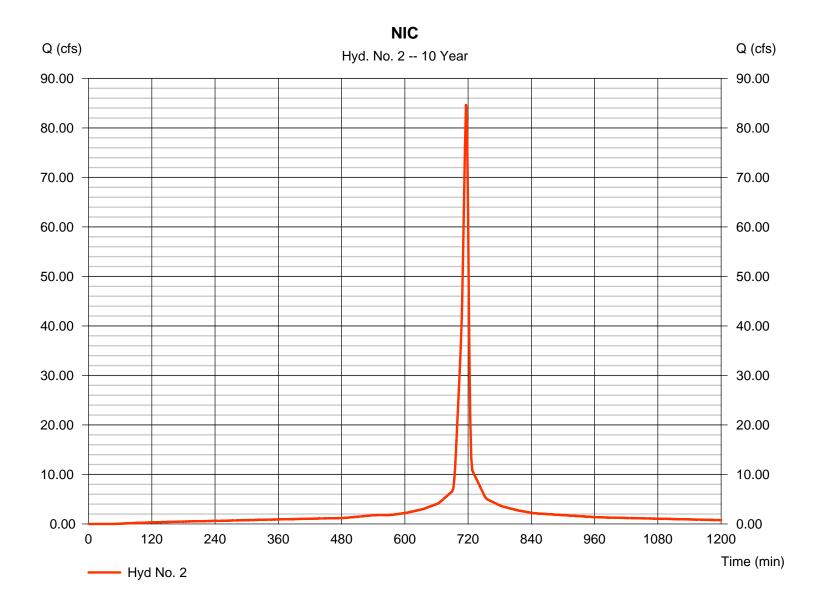

Thursday, Jul 1, 2010

Hyd. No. 1

Post Developed Area 7_Perv

Hydrograph type = SCS Runoff Peak discharge = 27.27 cfsTime to peak Storm frequency = 10 yrs= 726 min Time interval = 2 minHyd. volume = 113,243 cuft Drainage area = 24.520 acCurve number = 58*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = USER Time of conc. (Tc) = 6.00 minTotal precip. = 5.20 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = + (0.690 x 77) + (10.000 x 61) + (13.830 x 55)] / 24.520

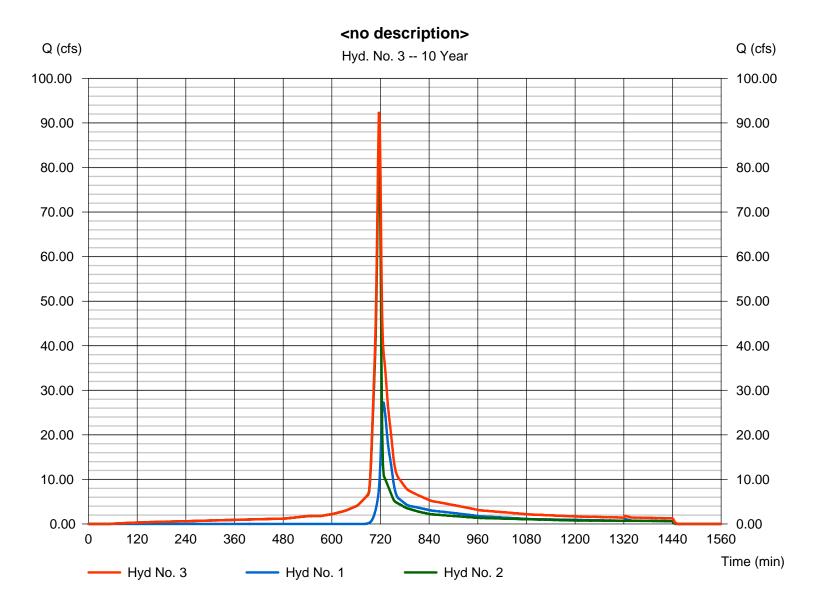

Hydraflow Hydrographs by Intelisolve v9.23

Thursday, Jul 1, 2010

Hyd. No. 2

NIC

= SCS Runoff Hydrograph type Peak discharge = 84.62 cfsStorm frequency Time to peak = 10 yrs $= 716 \, \text{min}$ Time interval = 2 minHyd. volume = 202,165 cuftCurve number Drainage area = 11.970 ac= 98 Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = USER Time of conc. (Tc) = 6.00 minDistribution Total precip. = 5.20 in= Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs by Intelisolve v9.23

Thursday, Jul 1, 2010

Hyd. No. 3

<no description>

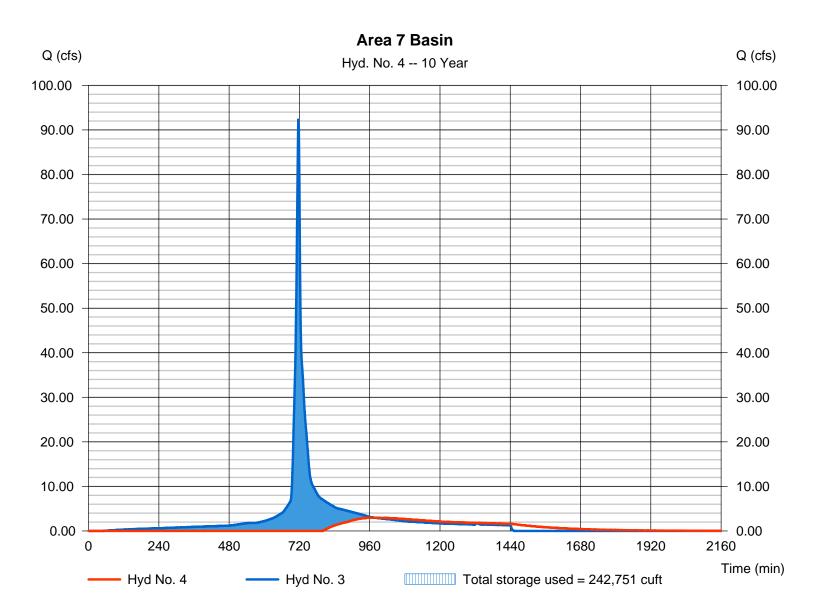
Hydrograph type = Combine Storm frequency = 10 yrs Time interval = 2 min Inflow hyds. = 1, 2 Peak discharge = 92.28 cfs Time to peak = 716 min Hyd. volume = 315,407 cuft Contrib. drain. area = 36.490 ac

Hydraflow Hydrographs by Intelisolve v9.23

Thursday, Jul 1, 2010

= 2.972 cfs

= 100,113 cuft


= 978 min

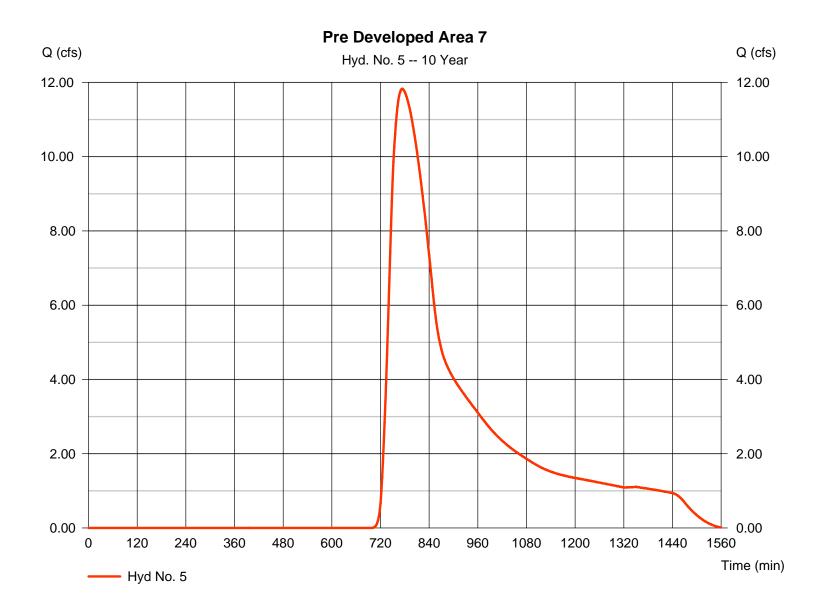
Hyd. No. 4

Area 7 Basin

Hydrograph type = Reservoir Peak discharge
Storm frequency = 10 yrs Time to peak
Time interval = 2 min Hyd. volume

Inflow hyd. No. = 3 - <no description> Max. Elevation = 53.52 ft
Reservoir name = Area 7 Max. Storage = 242,751 cuft

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jul 1, 2010

Hyd. No. 5

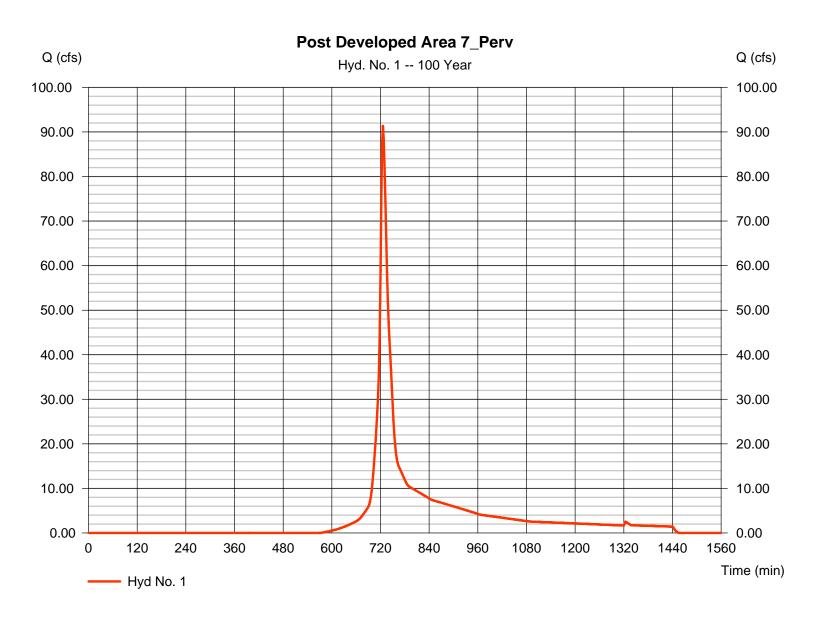
Pre Developed Area 7

Hydrograph type = SCS Runoff Peak discharge = 11.83 cfsStorm frequency = 10 yrsTime to peak = 774 min Time interval = 2 minHyd. volume = 143,366 cuft Drainage area = 36.490 acCurve number = 55*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 50.00 minTotal precip. = 5.20 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = $[(35.800 \times 55) + (0.690 \times 77)] / 36.490$

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	91.33	2	726	334,249				Post Developed Area 7_Perv
2	SCS Runoff	145.29	2	716	352,756				NIC
3	Combine	183.05	2	718	687,005	1, 2			<no description=""></no>
4	Reservoir	35.67	2	752	471,710	3	54.07	366,361	Area 7 Basin
5	SCS Runoff	44.68	2	766	452,935				Pre Developed Area 7
Area 7.gpw				Return Period: 100 Year			Thursday, Jul 1, 2010		

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jul 1, 2010

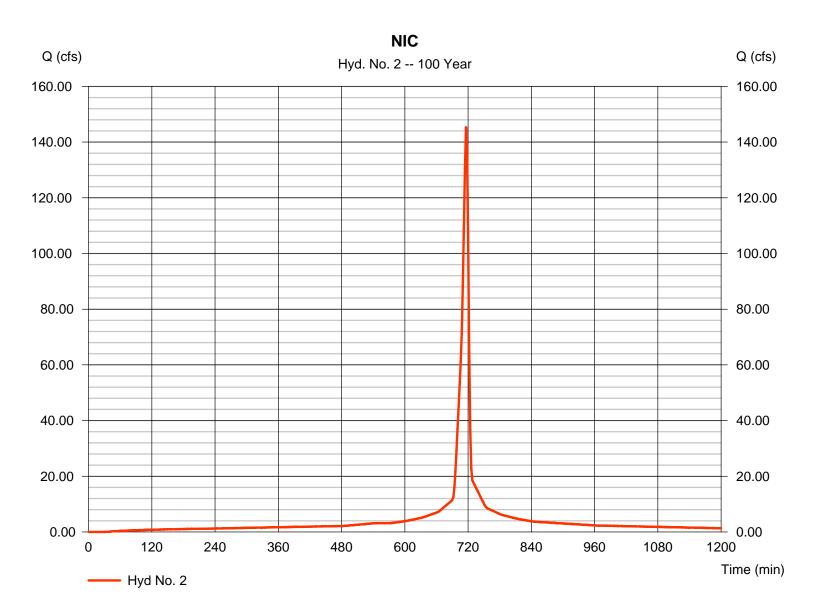
Hyd. No. 1

Post Developed Area 7_Perv

= SCS Runoff Hydrograph type Peak discharge = 91.33 cfsStorm frequency Time to peak = 100 yrs= 726 min Time interval = 2 minHyd. volume = 334,249 cuftDrainage area = 24.520 acCurve number = 58*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = USER Time of conc. (Tc) = 6.00 minDistribution Total precip. = 8.90 in= Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = $+(0.690 \times 77) + (10.000 \times 61) + (13.830 \times 55)] / 24.520$

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jul 1, 2010

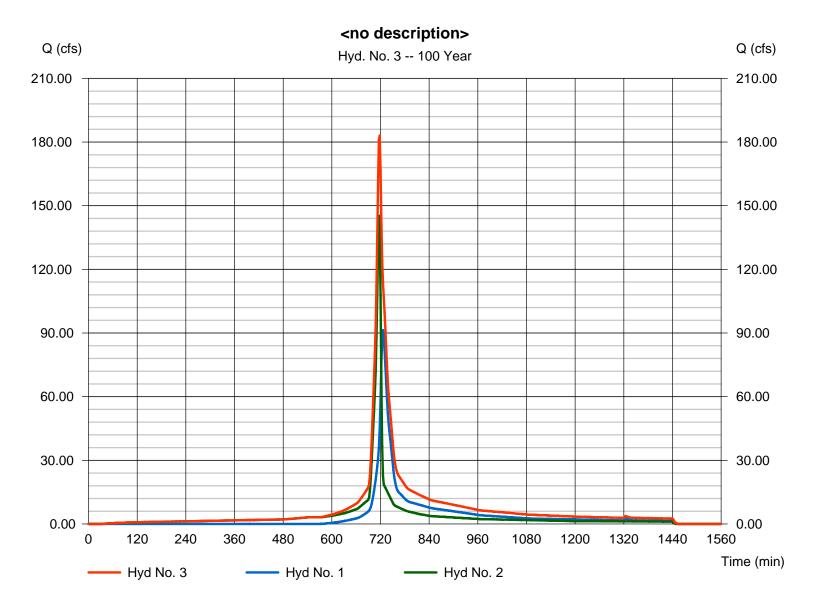
Hyd. No. 2

NIC

= SCS Runoff Hydrograph type Storm frequency = 100 yrsTime interval = 2 minDrainage area = 11.970 acBasin Slope = 0.0 % Tc method = USER Total precip. = 8.90 inStorm duration = 24 hrs

Peak discharge = 145.29 cfs
Time to peak = 716 min
Hyd. volume = 352,756 cuft
Curve number = 98
Hydraulic length = 0 ft
Time of conc. (Tc) = 6.00 min
Distribution = Type II
Shape factor = 484

Hydraflow Hydrographs by Intelisolve v9.23

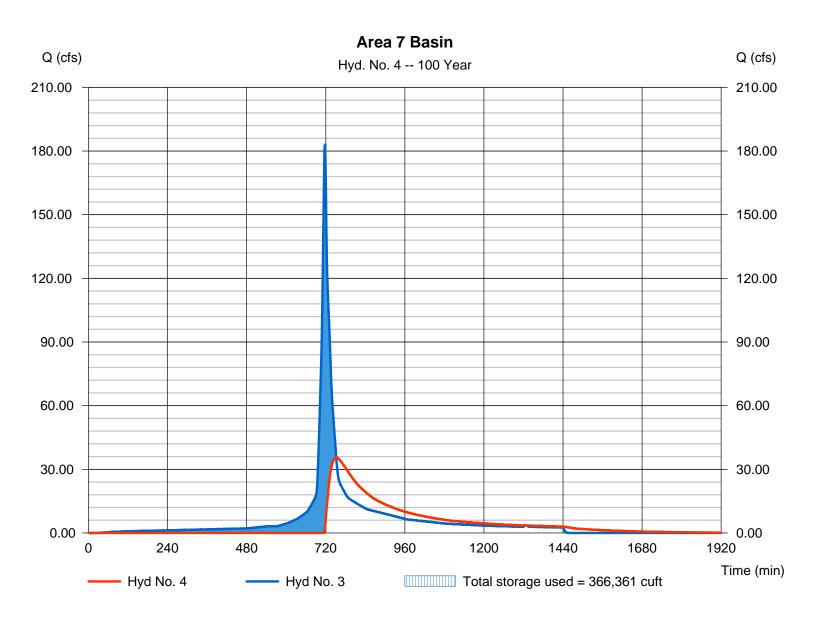

Thursday, Jul 1, 2010

Hyd. No. 3

<no description>

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 2 min Inflow hyds. = 1, 2

Peak discharge = 183.05 cfs Time to peak = 718 min Hyd. volume = 687,005 cuft Contrib. drain. area = 36.490 ac


Hydraflow Hydrographs by Intelisolve v9.23

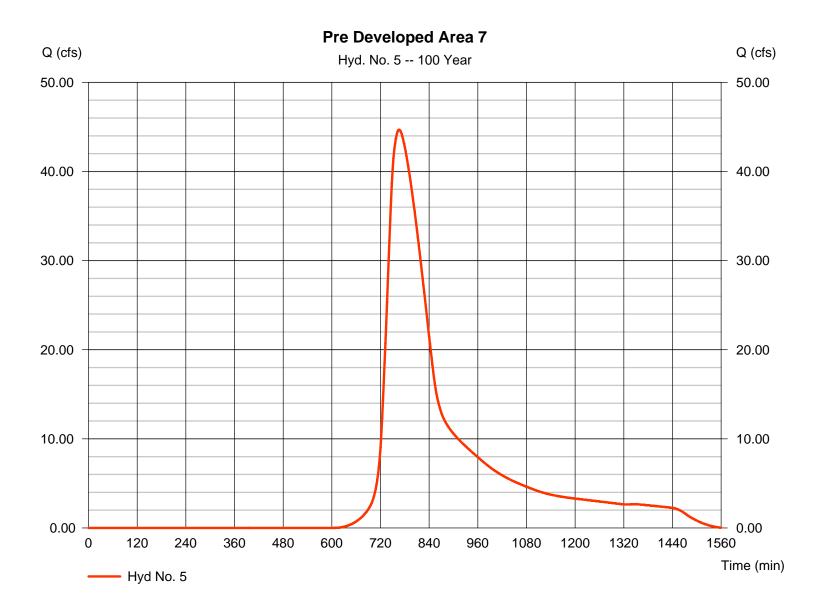
Thursday, Jul 1, 2010

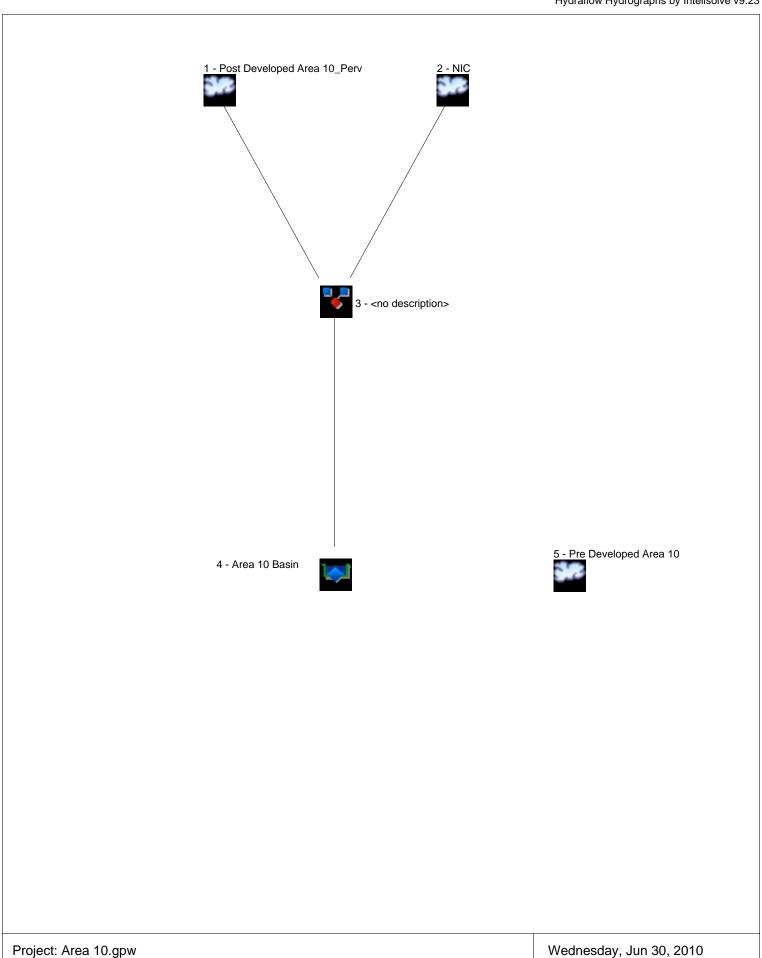
Hyd. No. 4

Area 7 Basin

Hydrograph type = Reservoir Peak discharge = 35.67 cfsStorm frequency Time to peak = 100 yrs= 752 min Time interval = 2 minHyd. volume = 471,710 cuftInflow hyd. No. = 3 - <no description> Max. Elevation = 54.07 ftReservoir name = Area 7 Max. Storage = 366,361 cuft

Hydraflow Hydrographs by Intelisolve v9.23


Thursday, Jul 1, 2010


Hyd. No. 5

Pre Developed Area 7

Hydrograph type = SCS Runoff Peak discharge = 44.68 cfsStorm frequency = 100 yrsTime to peak = 766 min Time interval = 2 minHyd. volume = 452,935 cuftDrainage area = 36.490 acCurve number = 55*Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 50.00 minTotal precip. = 8.90 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = $[(35.800 \times 55) + (0.690 \times 77)] / 36.490$

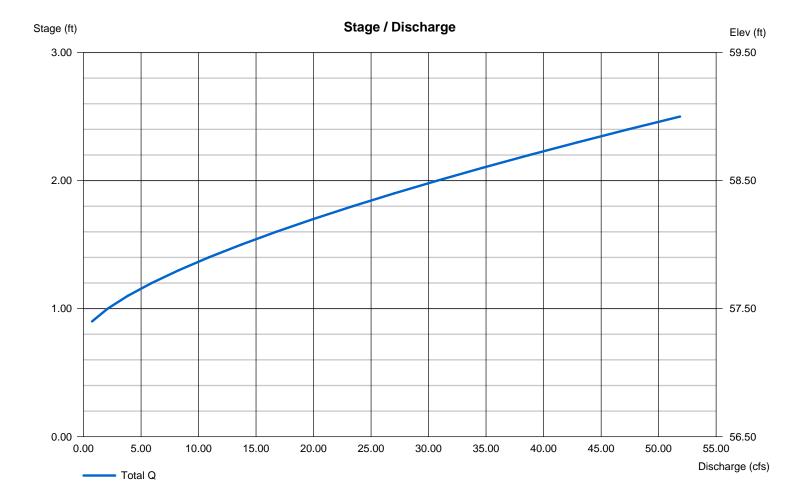
Pond Report

Hydraflow Hydrographs by Intelisolve v9.23

Wednesday, Jun 30, 2010

Pond No. 1 - Area 10

Pond Data


Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 56.50 ft

Stage / Storage Table

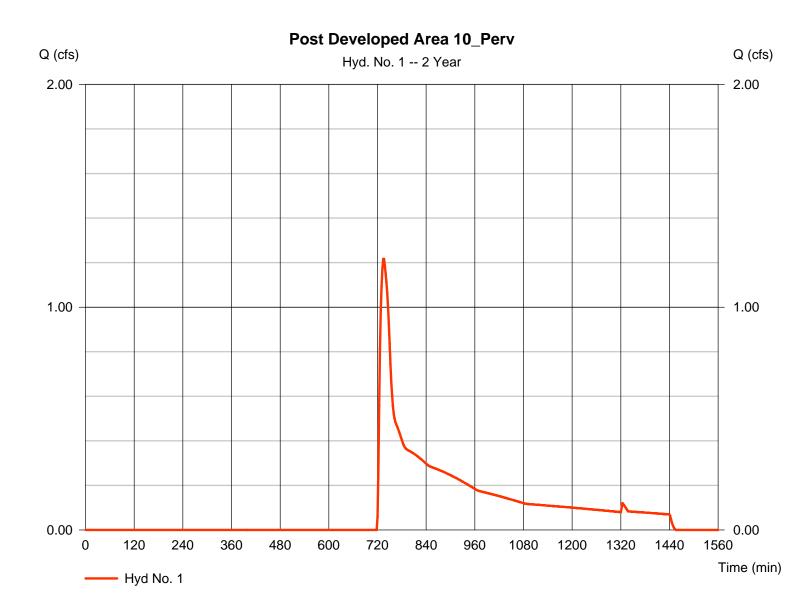
Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	56.50	110,805	0	0
0.50	57.00	176,293	71,775	71,775
1.50	58.00	182,035	179,164	250,939
2.50	59.00	187,833	184,934	435,873

Culvert / Orifice Structures Weir Structures [B] [C] [PrfRsr] [C] [D] [A] [A] [B] = 0.000.00 0.00 = 9.00 0.00 0.00 0.00 Rise (in) 0.00 Crest Len (ft) Span (in) = 0.000.00 0.00 0.00 Crest El. (ft) = 57.300.00 0.00 0.00 No. Barrels = 00 0 Weir Coeff. = 2.603.33 3.33 3.33 Invert El. (ft) = 0.000.00 0.00 0.00 Weir Type = Broad Length (ft) = 0.000.00 0.00 0.00 Multi-Stage No No No = No Slope (%) = 0.000.00 0.00 n/a **N-Value** = .013.013 .013 n/a Orifice Coeff. = 0.600.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area) No No = 0.00Multi-Stage = n/aNo TW Elev. (ft)

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description	
1	SCS Runoff	1.216	2	734	8,763				Post Developed Area 10_Perv	
2	SCS Runoff	17.88	2	726	72,354				NIC	
3	Combine	25.92	2	726	111,315	1, 2			<no description=""></no>	
4	Reservoir	0.000	2	n/a	0	3	57.22	111,315	Area 10 Basin	
5	SCS Runoff	1.873	2	774	24,040				Pre Developed Area 10	
Area 10.gpw					Return Period: 2 Year			Wednesday, Jun 30, 2010		

Hydraflow Hydrographs by Intelisolve v9.23


Wednesday, Jun 30, 2010

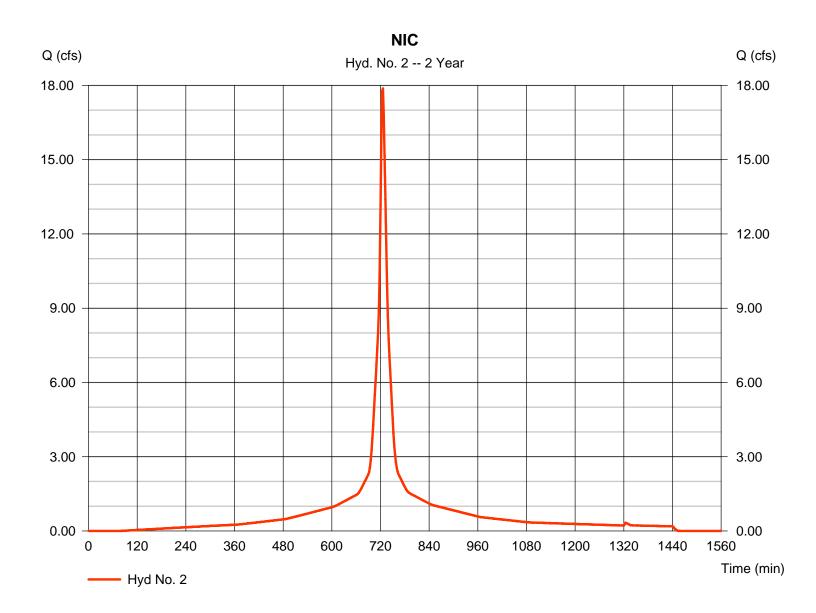
Hyd. No. 1

Post Developed Area 10_Perv

Hydrograph type = SCS Runoff Peak discharge = 1.216 cfsStorm frequency Time to peak = 2 yrs $= 734 \, \text{min}$ Time interval = 2 minHyd. volume = 8,763 cuftDrainage area = 7.070 acCurve number = 57* Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) = 6.00 minTc method = USER Total precip. = 3.30 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = + (4.850 x 55) + (2.220 x 61)] / 7.070

Hydraflow Hydrographs by Intelisolve v9.23

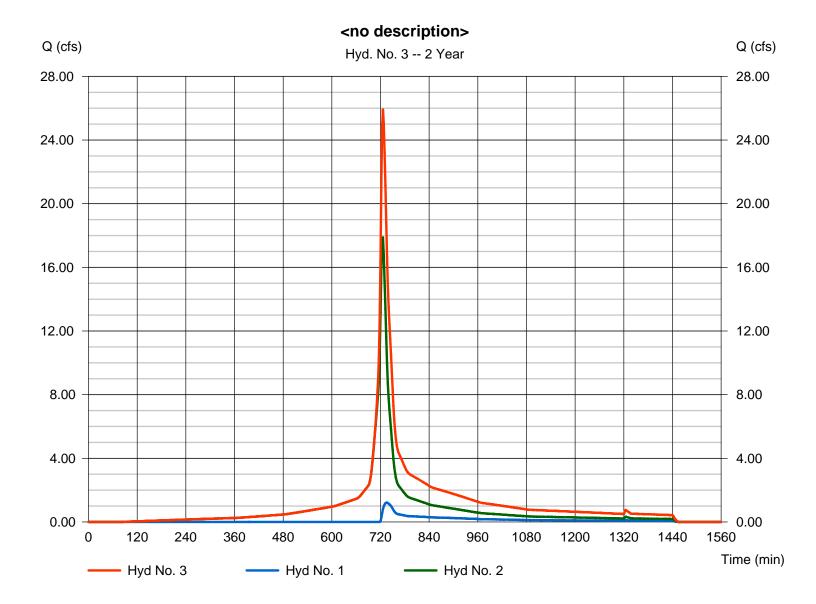

Wednesday, Jun 30, 2010

Hyd. No. 2

NIC

Hydrograph type = SCS Runoff Peak discharge = 17.88 cfsStorm frequency Time to peak = 2 yrs= 726 min Time interval = 2 minHyd. volume = 72,354 cuft Drainage area = 6.540 acCurve number = 98*Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) = 6.00 minTc method = USER Distribution Total precip. = 3.30 in= Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = [(6.540 x 98)] / 6.540


Hydraflow Hydrographs by Intelisolve v9.23

Wednesday, Jun 30, 2010

Hyd. No. 3

<no description>

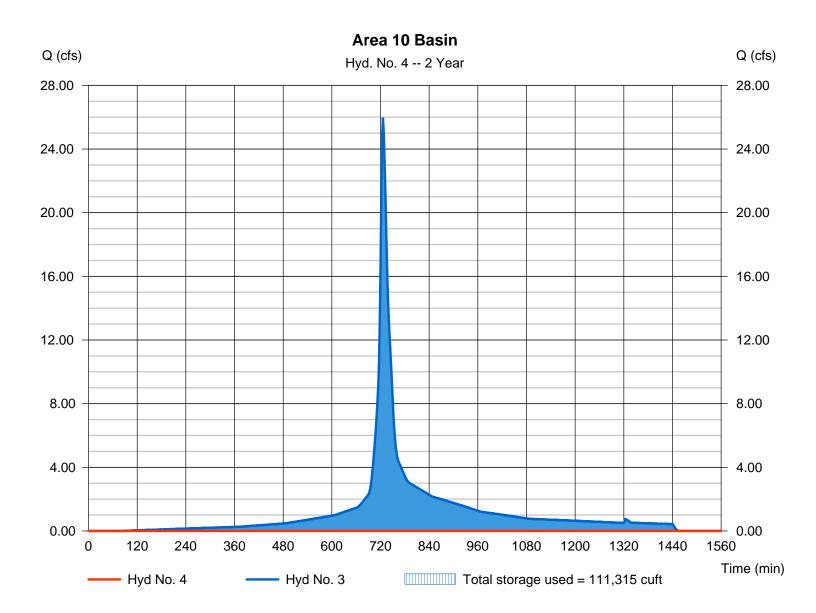
Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 2 min Inflow hyds. = 1, 2 Peak discharge = 25.92 cfs Time to peak = 726 min Hyd. volume = 111,315 cuft Contrib. drain. area = 13.610 ac

Hydraflow Hydrographs by Intelisolve v9.23

Wednesday, Jun 30, 2010

= 0.000 cfs

= n/a


= 0 cuft

Hyd. No. 4

Area 10 Basin

Hydrograph type= ReservoirPeak dischargeStorm frequency= 2 yrsTime to peakTime interval= 2 minHyd. volume

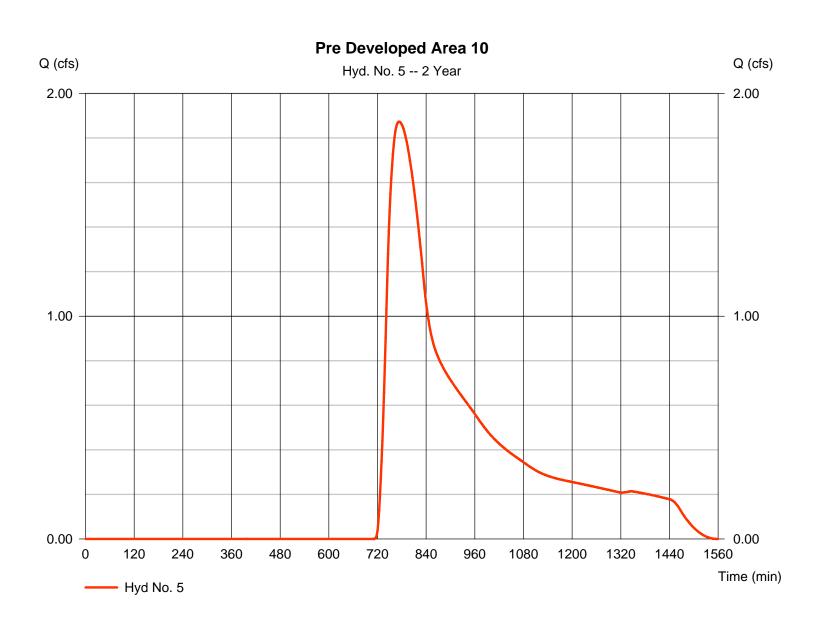
Inflow hyd. No. = 3 - <no description> Max. Elevation = 57.22 ft
Reservoir name = Area 10 Max. Storage = 111,315 cuft

Hydraflow Hydrographs by Intelisolve v9.23

Wednesday, Jun 30, 2010

Hyd. No. 5

Pre Developed Area 10


Hydrograph type = SCS Runoff Storm frequency = 2 yrsTime interval = 2 minDrainage area = 13.610 acBasin Slope = 0.0 %Tc method = TR55 Total precip. = 3.30 inStorm duration = 24 hrs

Peak discharge = 1.873 cfsTime to peak = 774 min Hyd. volume = 24,040 cuftCurve number = 61*

Hydraulic length = 0 ft

Time of conc. (Tc) = 42.00 minDistribution = Type III Shape factor = 285

^{*} Composite (Area/CN) = [(8.120 x 55) + (5.490 x 70)] / 13.610

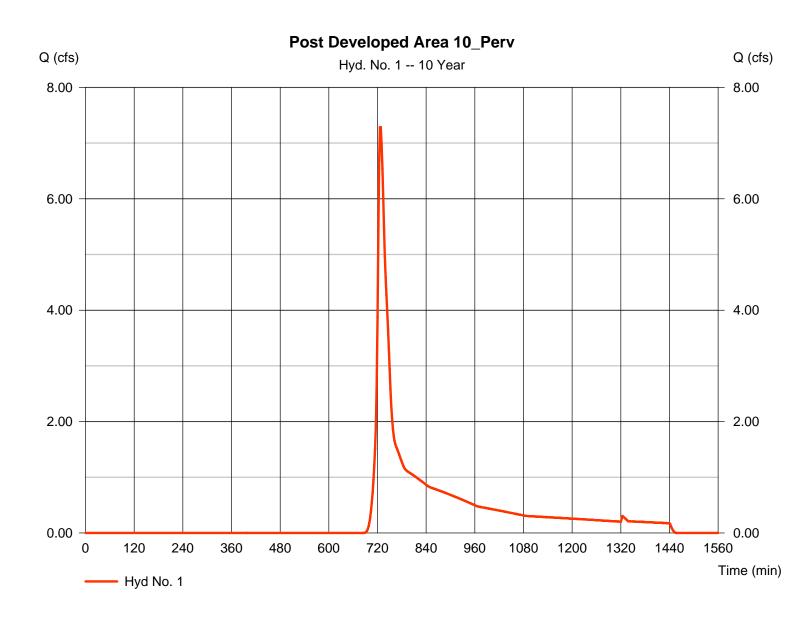
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	7.287	2	728	30,927				Post Developed Area 10_Perv
2	SCS Runoff	28.38	2	726	117,074				NIC
3	Combine	57.23	2	726	227,050	1, 2			<no description=""></no>
4	Reservoir	2.537	2	956	101,502	3	57.53	165,897	Area 10 Basin
5	SCS Runoff	7.498	2	764	73,809				Pre Developed Area 10
Area 10.gpw					Return Period: 10 Year			Wednesday	y, Jun 30, 2010

Hydraflow Hydrographs by Intelisolve v9.23

Wednesday, Jun 30, 2010

Hyd. No. 1

Post Developed Area 10_Perv


Hydrograph type = SCS Runoff Storm frequency = 10 yrsTime interval = 2 minDrainage area = 7.070 acBasin Slope = 0.0 %Tc method = USER Total precip. = 5.20 inStorm duration = 24 hrs

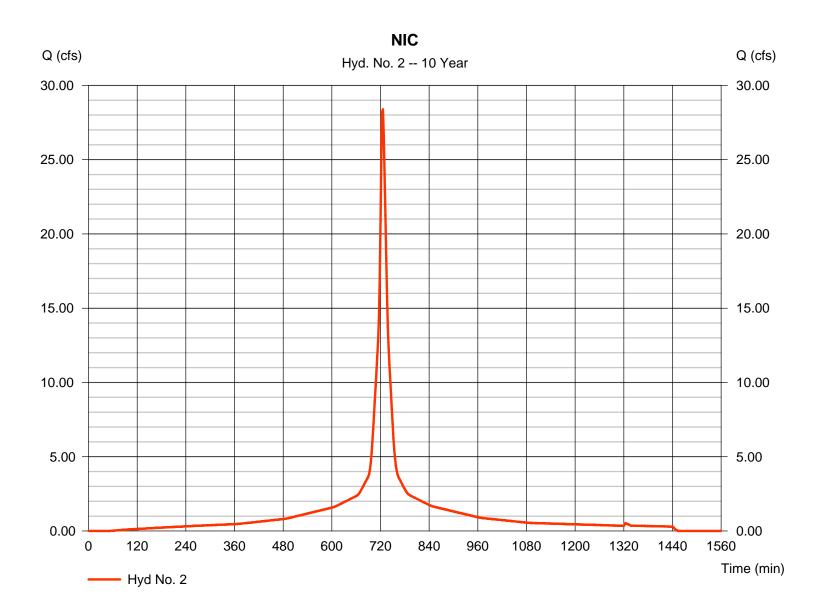
Peak discharge = 7.287 cfs
Time to peak = 728 min
Hyd. volume = 30,927 cuft
Curve number = 57*
Hydraulic length = 0 ft
Time of conc. (Tc) = 6.00 min
Distribution = Type III

= 285

Shape factor

^{*} Composite (Area/CN) = $+ (4.850 \times 55) + (2.220 \times 61)] / 7.070$

Hydraflow Hydrographs by Intelisolve v9.23

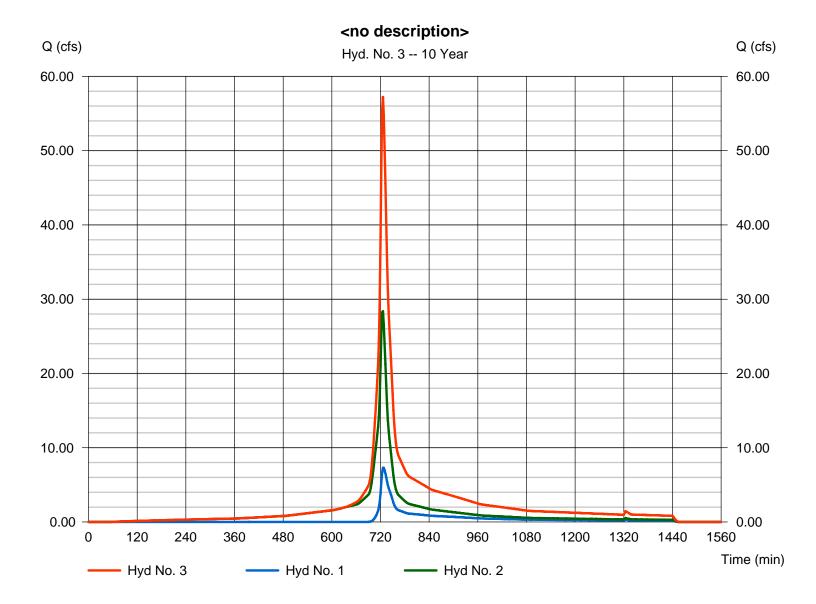

Wednesday, Jun 30, 2010

Hyd. No. 2

NIC

= SCS Runoff Hydrograph type Peak discharge = 28.38 cfsStorm frequency Time to peak = 10 yrs= 726 min Time interval = 2 minHyd. volume = 117,074 cuftDrainage area = 6.540 acCurve number = 98*Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) = 6.00 minTc method = USER Distribution Total precip. = 5.20 in= Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = [(6.540 x 98)] / 6.540

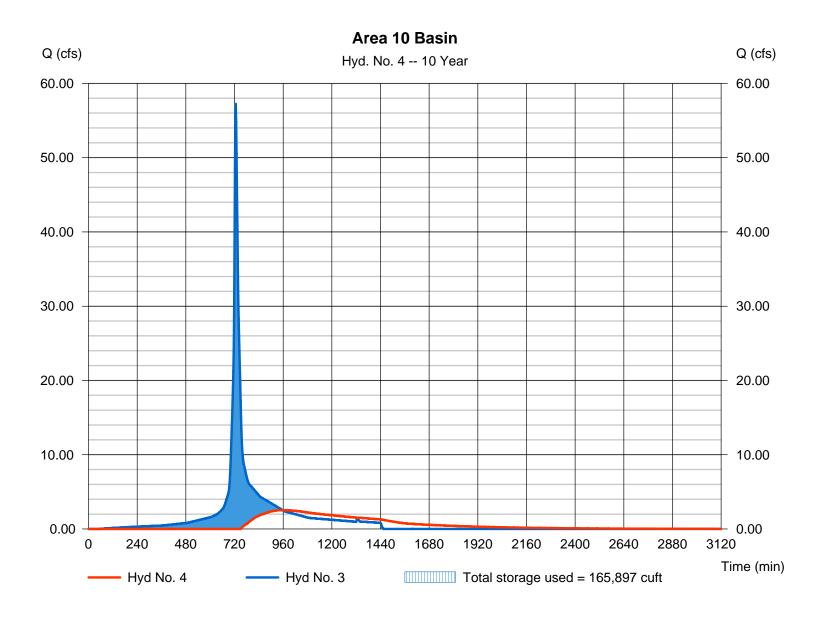

Hydraflow Hydrographs by Intelisolve v9.23

Wednesday, Jun 30, 2010

Hyd. No. 3

<no description>

Hydrograph type = Combine Storm frequency = 10 yrs Time interval = 2 min Inflow hyds. = 1, 2 Peak discharge = 57.23 cfs
Time to peak = 726 min
Hyd. volume = 227,050 cuft
Contrib. drain. area = 13.610 ac


Hydraflow Hydrographs by Intelisolve v9.23

Wednesday, Jun 30, 2010

Hyd. No. 4

Area 10 Basin

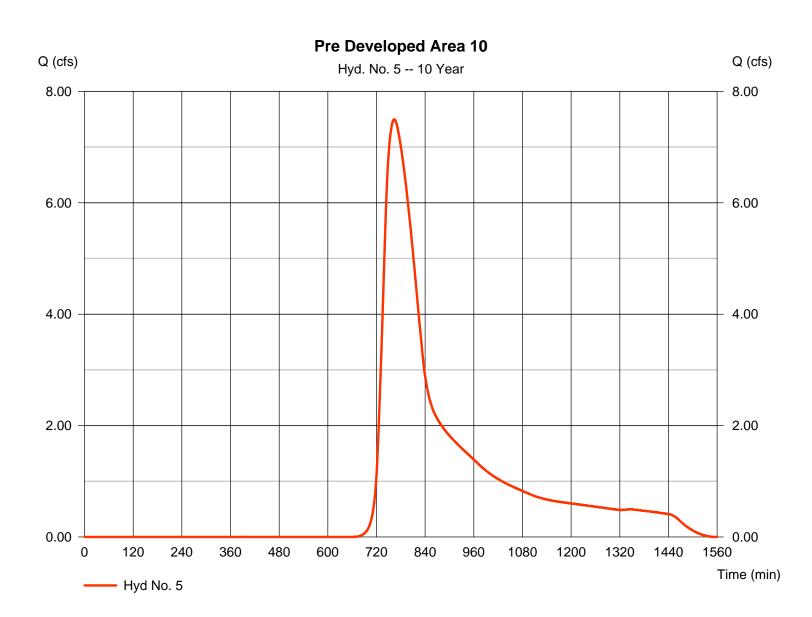
Hydrograph type = Reservoir Peak discharge = 2.537 cfsStorm frequency Time to peak = 10 yrs= 956 min Time interval = 2 minHyd. volume = 101,502 cuftInflow hyd. No. = 3 - <no description> Max. Elevation = 57.53 ftReservoir name = Area 10 Max. Storage = 165,897 cuft

Hydraflow Hydrographs by Intelisolve v9.23

Wednesday, Jun 30, 2010

Hyd. No. 5

Pre Developed Area 10


Hydrograph type = SCS Runoff Storm frequency = 10 yrsTime interval = 2 minDrainage area = 13.610 acBasin Slope = 0.0 %Tc method = TR55 Total precip. = 5.20 inStorm duration = 24 hrs

Peak discharge = 7.498 cfs
Time to peak = 764 min
Hyd. volume = 73,809 cuft

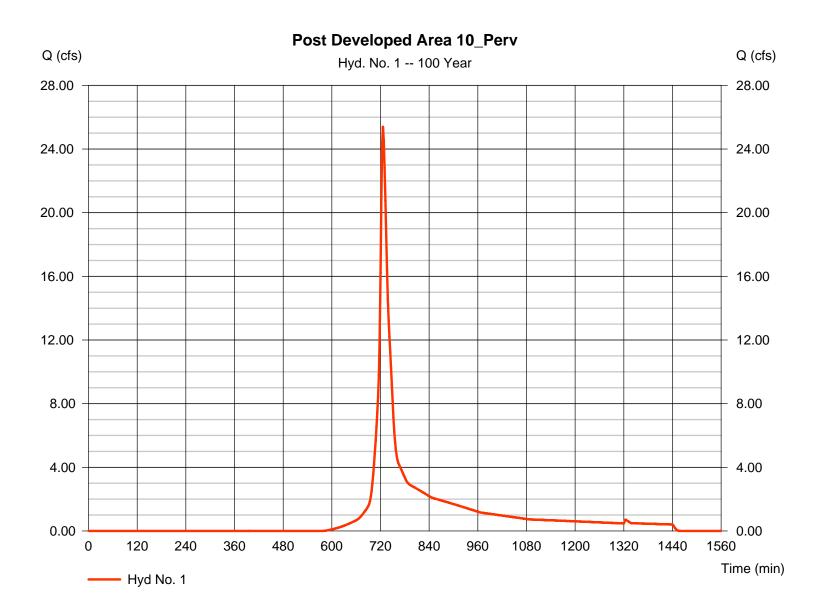
Curve number $= 61^*$ Hydraulic length = 0 ft

Time of conc. (Tc) = 42.00 min Distribution = Type III Shape factor = 285

^{*} Composite (Area/CN) = [(8.120 x 55) + (5.490 x 70)] / 13.610

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	25.39	2	726	93,281				Post Developed Area 10_Perv
2	SCS Runoff	48.74	2	726	204,282				NIC
3	Combine	128.99	2	726	494,090	1, 2			<no description=""></no>
4	Reservoir	17.81	2	768	368,542	3	58.13	275,554	Area 10 Basin
5	SCS Runoff	22.87	2	760	205,200				Pre Developed Area 10
Area 10.gpw				Return Period: 100 Year			Wednesday, Jun 30, 2010		

Hydraflow Hydrographs by Intelisolve v9.23


Wednesday, Jun 30, 2010

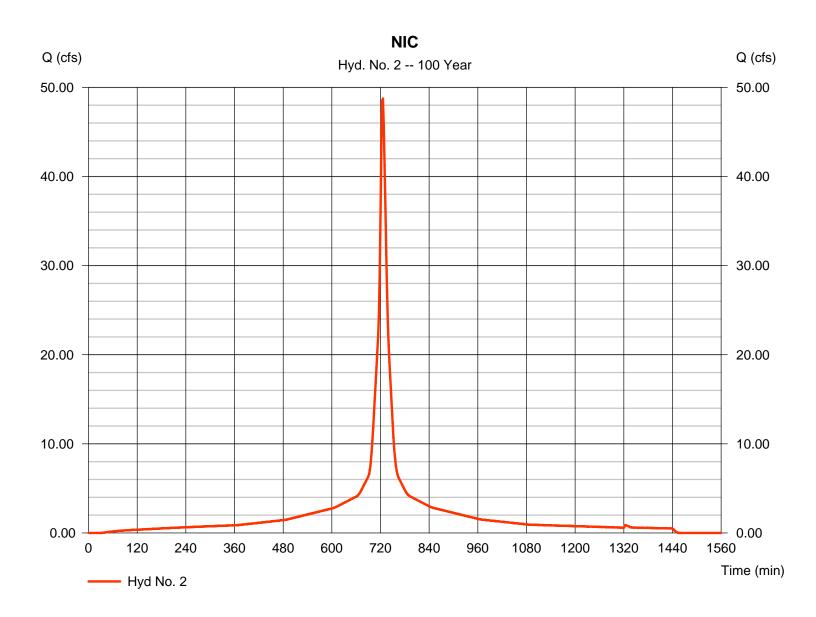
Hyd. No. 1

Post Developed Area 10_Perv

Hydrograph type = SCS Runoff Peak discharge = 25.39 cfsStorm frequency Time to peak = 100 yrs= 726 min Time interval = 2 minHyd. volume = 93,281 cuft Drainage area = 7.070 acCurve number = 57* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = USER Time of conc. (Tc) = 6.00 minTotal precip. = 8.90 inDistribution = Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = + (4.850 x 55) + (2.220 x 61)] / 7.070

Hydraflow Hydrographs by Intelisolve v9.23

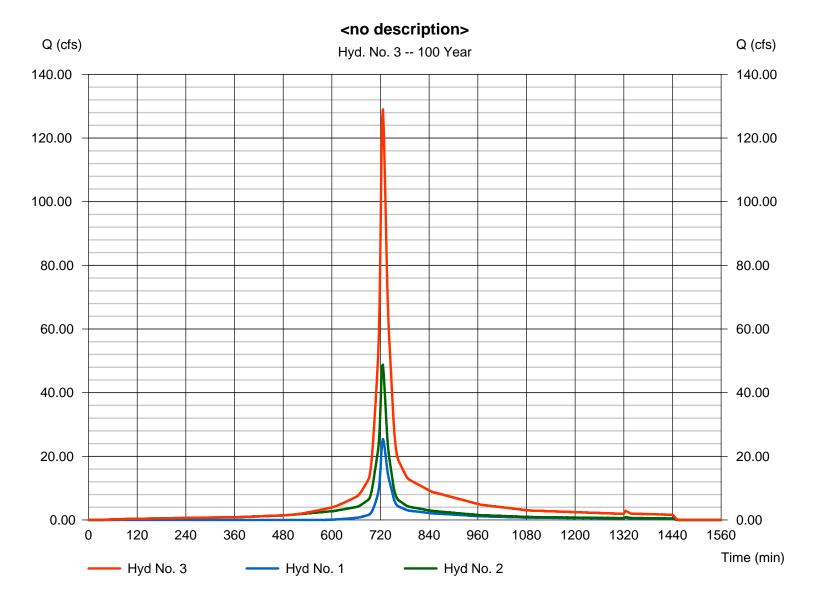

Wednesday, Jun 30, 2010

Hyd. No. 2

NIC

Hydrograph type Storm frequency	= SCS Runoff = 100 yrs	Peak discharge Time to peak	= 48.74 cfs = 726 min
Time interval Drainage area	= 2 min = 6.540 ac	Hyd. volume Curve number	= 204,282 cuft = 98*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	
Total precip.	= 8.90 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 285

^{*} Composite (Area/CN) = [(6.540 x 98)] / 6.540

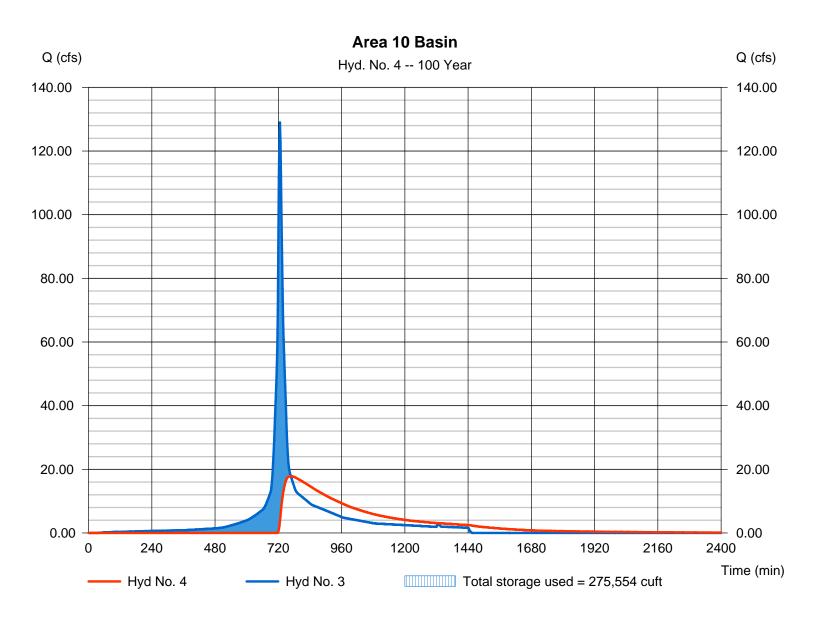

Hydraflow Hydrographs by Intelisolve v9.23

Wednesday, Jun 30, 2010

Hyd. No. 3

<no description>

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 2 min Inflow hyds. = 1, 2 Peak discharge = 128.99 cfs Time to peak = 726 min Hyd. volume = 494,090 cuft Contrib. drain. area = 13.610 ac


Hydraflow Hydrographs by Intelisolve v9.23

Wednesday, Jun 30, 2010

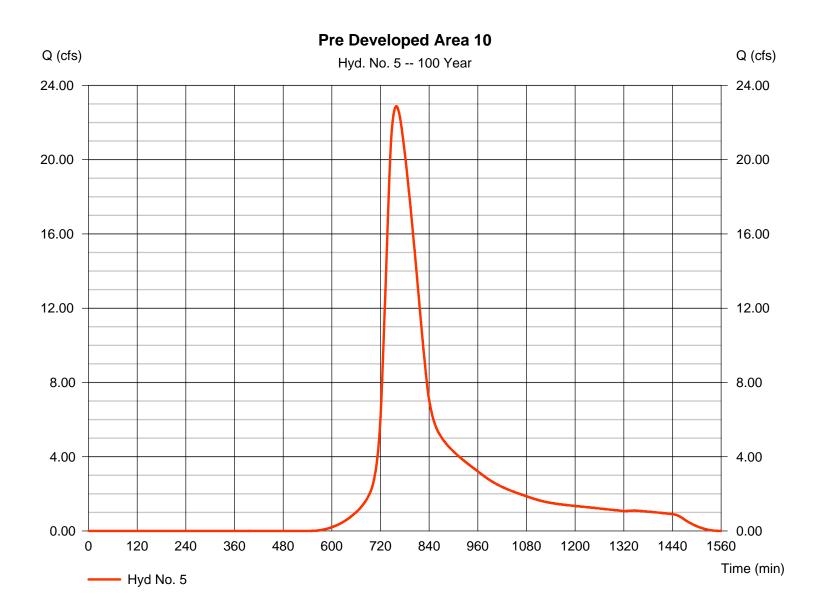
Hyd. No. 4

Area 10 Basin

Hydrograph type = Reservoir Peak discharge = 17.81 cfsStorm frequency Time to peak = 100 yrs= 768 min Time interval = 2 minHyd. volume = 368,542 cuftMax. Elevation Inflow hyd. No. = 3 - <no description> = 58.13 ftReservoir name = Area 10 Max. Storage = 275,554 cuft

Hydrograph Report

Hydraflow Hydrographs by Intelisolve v9.23


Wednesday, Jun 30, 2010

Hyd. No. 5

Pre Developed Area 10

Hydrograph type = SCS Runoff Peak discharge = 22.87 cfsStorm frequency Time to peak = 100 yrs= 760 min Time interval = 2 minHyd. volume = 205,200 cuftDrainage area = 13.610 acCurve number = 61*Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) = 42.00 minTc method = TR55 Distribution Total precip. = 8.90 in= Type III Storm duration = 24 hrs Shape factor = 285

^{*} Composite (Area/CN) = $[(8.120 \times 55) + (5.490 \times 70)] / 13.610$

APPENDIX D

Soil Investigation

Groundwater Mounding Analysis

RSC 011.01	Depth to Seasonal High Gound Water		und Water	Dep	oth to Ground W	Depth to Ground Water			
		Frieties Oserned	Duanasad Dasia	la chee hele	Fact balance		leabaa bala	Faat balann	
Test Pit ID	Date	Existing Ground Elevation (ft)	Proposed Basin		Feet below Existing Grade	Elevation (ft)	Inches below	Feet below Existing Grade	Elevation (ft)
TP-2A	6/14/2010	47.2	47.2	35	2.92	44.3	69	5.75	41.5
TP-2B	6/14/2010	49.9	48.9	44	3.67	46.2	78	6.50	43.4
TP-2C	5/5/2010	49.9	49.4	42	3.50	46.4	42	3.50	45.4 46.4
TP-2D	6/14/2010	50.0	49.8	34	2.83	47.2	78	6.50	43.5
TP-2E	6/14/2010	50.0	49.9	41	3.42	46.6	76	6.30	43.8
1P-2E	6/14/2010	50.0	49.9	41	3.42	40.0	74	0.17	43.0
TP-5A	6/22/2010	53.5	52.5	46	3.83	49.7	93	7.75	45.8
TP-5B	6/22/2010	58.5	53.2	98	8.17	50.3	132	11.00	47.5
TP-5C	5/5/2010	52.9	52.6	28	2.33	50.6	28	2.33	50.6
TP-5D	6/22/2010	51.6	51.6	25	2.08	49.5	62	5.17	46.4
TP-5E	6/22/2010	58.6	53.8	Perched - 54	4.50	54.1	124	10.33	48.3
TP-5F	6/22/2010	47.6	46.9	35	2.02	44.7	46	3.83	42.0
	6/22/2010	47.6			2.92	44.7			43.8
TP-5G	6/15/2010	52.8	48.0	Perched - 45	3.75	49.1	124	10.33	42.5
TP-5H TP-5I	5/5/2010	49.5	46.8	56	4.67	44.8	56 47	4.67	44.8
	6/15/2010	45.6	45.3	34	2.83	42.8		3.92	41.7
TP-5J	6/15/2010	52.0	49.2	62	5.17	46.8	90	7.50	44.5
TP-6A	6/15/2010	50.6	50.6	24	2.00	48.6	36	3.00	47.6
TP-6B	5/5/2010	54.0	54.0	40	3.33	50.7	40	3.33	50.7
TP-6C	6/15/2010	52.0	52.0	24	2.00	50.0	42	3.50	48.5
TP-6D	6/15/2010	50.3	50.3	35	2.92	47.4	47	3.92	46.4
TP-6E	6/15/2010	54.1	54.1	42	3.50	50.6	84	7.00	47.1
TP-7A	6/14/2010	52.5	51.6	41	3.42	49.1	63	5.25	47.3
TP-7B	6/14/2010	53.0	52.3	40	3.33	49.7	63	5.25	47.8
TP-7C	6/15/2010	54.0	53.5	52	4.33	49.7	61	5.08	48.9
TP-7D	5/5/2010	53.0	53.0	24	2.00	51.0	24	2.00	51.0
TP-7E	6/14/2010	54.1	53.9	34	2.83	51.3	66	5.50	48.6
	0.12010	U	00.0	<u> </u>		0.10		0.00	
TP-10A	6/14/2010	56.5	56.5	28	2.33	54.2	51	4.25	52.3
TP-10B	6/15/2010	57.5	57.2	43	3.58	53.9	66	5.50	52.0
TP-10C	5/5/2010	57.6	57.2	40	3.33	54.3	40	3.33	54.3
TP-10D	6/15/2010	56.5	56.5	40	3.33	53.2	70	5.83	50.7
TP-10E	6/15/2010	56.5	56.5	42	3.50	53.0		5.83	50.7

Date: Performed by: Method: Surroundings:	06/14/10 Don Brickner Test pit Woodland		
Depth (in) below existing grade	_		Sample Depth (in)
6		YR 5/1) loamy sand; weak subangular blocky cucture; friable; abrupt, wavy boundary	у
23		owish-brown (10YR 6/4) loamy sand; granula ucture; friable; gradual, wavy boundary	ar
35	blocky to	rown (10YR 5/6) loamy sand; weak subangu granular structure; friable; weak clay bridging veen sand grains; clear, wavy boundary	
56	(2.5Y 7/6) an	2.5Y 7/3) sand; common medium, distinct, yed d strong brown (7.5YR 5/6) mottles; single g % fine to medium rounded quartzose gravel; abrupt, wavy boundary	rain;
84	structure; fr clay with co (10YR 6	brown (10YR 7/4) sandy clay loam; granula iable; moist; common peds of white (10YR 8 mmon coarse, prominent, light yellowish-bro/4) and yellowish-brown (10YR 5/6) mottles; locky structure; plastic; clear, wavy boundary	72 (UD)
114+	Light gray saturated;	v (10YR 7/2) coarse sand; single grain; loose 40% fine to medium rounded quartzose grav	e; /el
		Seasonal High Water Ta Ground W	
Sample codes: G =	grab sample, l	JD = undisturbed sample	
MARATHON ENGI ENVIRONMENTAL S 2922 ATLANTIC AV ATLANTIC CITY	ERVICES, INC. 'E., SUITE 3A	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey	SOIL LOG TP-2A Job No.: RSC 011.01

.00		Date: 6/14/2010 Performed by: Ryan Healey Method: Test Pit Surroundings: Wooded Upland
+2"	O-horizan (organic layer)	
0	Dark grayish-brown (10YR 4/2) loamy sand; weak subangular blocky structure; friable; many medium roots	
2**	Light brownish-gray (10YR 6/2) loamy sand; subangular blocky structure; friable; few medium roots	
6"	Brown (10YR 5/3) loamy sand; subangular blocky	
10 ⁴	structure; friable Olive yellow (2.5Y 6/6) loamy	
24**	sand; subangular blocky structure; friable; 30% rounded quartzose gravel, < 0.5" diameter	
	Brownish-yellow (10YR 6/6) loamy sand; subangular blocky structure; friable; 30% rounded quartzose gravel, < 0.5" diameter	
36"	Pale yellow (2.5Y 7/4) sandy loam; subangular blocky structure; friable	
44"	Variegated yellow (10YR 7/6), pale yellow	
62"	(2.5Y 8/2), and yellowish-brown (10YR 5/4) loamy sand; common, medium, prominent, yellow (2.5Y 7/6) mottles; subangular blocky structure; friable	
64"	Thin bands of brownish-yellow (10YR 6/6), pale yellow (2.5Y 8/3), and yellow (10YR 7/6) silty clay; subangular blocky structure; firm-in-place	
	Light yellowish-brown (2.5Y 6/4) sandy clay loam; subangular blocky structure; slightly plastic; and white (2.5Y 8/1) sit loam; subangular blocky structure; friable; saturated	Two undisturbed samples taken at 68"
82"		
108"+	Variegated pale yellow (2.5Y 7/4) and yellow (10YR 7/6) loamy sand; subangular blocky structure; friable; saturated and Gray (10YR 6/1) sandy clay; subangular blocky structure; plastic saturated	
100 +	Estimated Seas] onal High Water Table Observed at: 44 inches below existing grade
		Ground Water Observed at: 78 inches below existing grade
MARATHON ENGINEERING & ENVIRONMENTAL SERVICES, INC. 2922 ATLANTIC AVE., SUITE 3A ATLANTIC CITY, N.J. 08401	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey	SOIL LOG TP-2B (Area 2 and 3 Basin) Job No: RSC 011.01

Date: 5/5/2010

Performed by: Christopher Andes

and Ryan Healey

Method: Test Pit

Surroundings: Wooded Upland

	Maria de la companya	
+"2"	O-horizon (organic layer)	
Surface		
8"	Grayish-brown (10YR 5/2) loamy sand; subangular blocky structure; friable	
4411	Olive yellow (2.5Y 6/6) loamy sand; subangular blocky structure; friable	
11"		
17"	Yellow (2.5Y 7/6) loamy sand; subangular blocky structure; friable	
29"	Light olive brown (2.5Y 5/6) loamy sand; subangular blocky structure; friable	Two (2) undisturbed sample taken at 22" Disturbed sample taken at 22"
42"	Yellow (2.5Y 7/6) sand; single grain; loose; 20% rounded quartzose pebbles < 0.5" diameter	
72"	Pale yellow (2.5Y 8/4) coarse sand; single grain; loose; saturated	
	Mixed layers of: Pale yellow (2.5Y 8/4) coarse sand; single grain; loose; saturated; and White (8/N) silt loam; many, coarse, prominent, olive yellow (2.5Y 6/6)	
102"+	mottles; slightly plastic; saturated	
	bearing the second seco	

Estimated Seasonal High Water Table Observed at:

Notes: Test pit left open for approximately 30 minutes.

Test pit began collapsing at
approximately 60" due to groundwater saturation.

Estimated Ground Water Observed at:

42 inches below existing grade

42 inches below existing grade

MARATHON ENGINEERING & ENVIRONMENTAL SERVICES, INC. 2922 ATLANTIC AVE., SUITE 3A ATLANTIC CITY, N.J. 08401

Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey

SOIL LOG TP-2C (Area 2 and 3 Basin) Job No: RSC 011.01

Date: Performed by: Method: Surroundings:	06/14/10 Don Brickner Test pit Woodland				
Depth (in) below existing grade				Sample Depth (in)	
9		YR 5/1) loamy sand; weak subangular blocky cture; friable; abrupt, irregular boundary	/		
24		-yellow (10YR 6/6) sand; single grain; loose; rounded quartzose gravel; clear, wavy boun			
34	blocky st	rown (10YR 5/6) loamy sand; weak subangu ructure; friable; 20% fine to medium rounded irtzose gravel; clear, irregular boundary			
60	(2.5Y 7/6) an	2.5Y 7/3) sand; common medium, distinct, yed d strong brown (7.5YR 5/6) mottles; single g % fine to medium rounded quartzose gravel; abrupt, wavy boundary	rain;		
82	Gray (10YF brownish-yel struct	84 (UD, G)			
120+	Light gray (2.5Y 7/2) gravelly clay (90% fine rounded quartzose gravel); subangular blocky structure; firm; common peds of variegated light gray (10YR 7/1) and dark gray (10YR 4/1) clay with common medium, distinct, very pale brown (10YR 7/3) mottles; angular blocky structure; plastic; saturated				
		Seasonal High Water Ta Ground W		Depth (in) below existing grade 34 78	
Sample codes: G =	grab sample, I	JD = undisturbed sample			
MARATHON ENG ENVIRONMENTAL S 2922 ATLANTIC AV ATLANTIC CITY	ERVICES, INC. /E., SUITE 3A	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey	Job 1	SOIL LOG TP-2D No.: RSC 011.01	

		Date: 6/14/2010 Performed by: Ryan Healey Method: Test Pit Surroundings: Wooded Upland
÷2"		i
0	O-horizon (organic layer)	
2 ⁿ	Dark grayish-brown (10YR 4/2) loamy sand; weak subangular blocky structure; friable; many medium roots	
10"	Light brownish-gray (10YR 6/2) loamy sand; subangular blocky structure; friable; few medium roots	
10%	Brown (10YR 5/3) loamy sand; subangular blocky structure; friable	
12"	Olive yellow (2.5Y 6/6) loamy sand; subangular blocky structure; friable	
26"	Yellow (2.5Y 7/6) loamy sand;	
41"	subangular blocky structure; friable	
52"	Pale yellow (2.5Y 8/2) loamy sand; common, medium, prominent, yellow (2.5Y 7/6) mottles (increasing size and density with depth); subangular blocky structure; friable	
	Mixed layers of: Light brownish-gray (10YR 6/2) sand; many, coarse, prominent, brownish-yellow (10YR 6/6) mottles; single grain; loose; moist; 20% rounded quartzose gravel, 0.5 to 1" diameter;	
	and Pale yellow (2.5Y 7/4) loamy sand; many, medium, distinct, olive yellow (2.5Y 6/6) mottles; subangular blocky structure; friable; moist; 20% rounded quartzose gravel, 0.5 to 1" diameter and	
72"	Pale yellow (2.5Y 7/3) sandy clay; subangular blocky structure; plastic	
	Pale yellow (2.5Y 7/3) coarse sand; single grain; loose; saturated	Two undisturbed samples taken at 72"
96 ^ν +	Estimated Seas	I ional High Water Table Observed at: 41 inches below existing grade
		Ground Water Observed at: 74 inches below existing grade

Stormwater Master Plan

The Richard Stockton College of NJ

Township of Galloway, Atlantic County, New Jersey SOIL LOG

TP-2E (Area 2 and 3 Basin) Job No: RSC 011.01

MARATHON ENGINEERING &

ENVIRONMENTAL SERVICES, INC.

2922 ATLANTIC AVE., SUITE 3A ATLANTIC CITY, N.J. 08401

Date: Performed by: Method: Surroundings:	06/22/10 Don Brickner Test pit Woodland		600	
Depth (in) below existing grade			,	Sample Depth (in)
10		'R 5/1) loamy sand; weak subangular blocky ture; friable; abrupt, irregular boundary	′	
34		n-brown (2.5Y 6/4) loamy sand; weak suban- y structure; friable; clear, wavy boundary	gular	
46		ellow (10YR 6/6) loamy sand; weak subangu structure; friable; clear, smooth boundary	ılar	36 (UD)
58	(10YR 5/6)	d pale yellow (2.5Y 7/3) and yellowish-brown sandy clay loam; subangular blocky structur ntly plastic; gradual, irregular boundary		
71	olive yellow	2.5Y 7/3) sandy loam; common medium, dist (2.5Y 6/6) mottles; subangular blocky structori riable; moist; clear, wavy boundary		
102	prominent, br	(10YR 7/2) silty clay loam; common coarse ownish-yellow (10YR 6/6) and yellow (10YR ngular blocky structure; slightly plastic; mois gradual, wavy boundary	7/6)	
138+		.5Y 7/2) sand; common medium (0.5 to 1.0 i of brownish-yellow (10YR 6/6) sand; single g saturated		
				Depth (in) below existing grade
		Seasonal High Water T Ground W		46 93
Sample codes: G =	grab sample, l	JD = undisturbed sample		
MARATHON ENG ENVIRONMENTAL S 2922 ATLANTIC AV ATLANTIC CITY	SERVICES, INC. VE., SUITE 3A	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey	Joh M	SOIL LOG TP-5A No.: RSC 011.01

Date: Performed by: Method: Surroundings:	06/22/10 Don Brickner Test pit Woodland	**************************************	NOT THE REAL PROPERTY.
Depth (in) below existing grade			Sample Depth (in)
6		/R 5/1) loamy sand; weak subangular blocky cture; friable; abrupt, irregular boundary	
24		vish-brown (2.5Y 6/4) loamy sand; subangula tructure; friable; gradual, irregular boundary	ar
46	(10YR 6/6)	ted pale yellow (2.5Y 7/4), brownish-yellow , and yellowish-brown (10YR 5/4) sandy loar ak subangular blocky structure; friable; clear, wavy boundary	n;
84	Yellowish	-brown (10YR 5/8) sand; single grain; loose; clear, wavy boundary	
98		-yellow (10YR 6/6) sand; single grain; loose; on flecks of mica; gradual, wavy boundary	84 (UD)
156+		(2.5Y 7/2) sand; common fine, distinct, yello 5Y 7/6) mottles; single grain; saturated	w 144 (G)
			Depth (in) below existing grade
		Seasonal High Water Ta Ground W	
Sample codes: G =	grab sample, l	JD = undisturbed sample	
MARATHON ENG ENVIRONMENTAL S 2922 ATLANTIC AT ATLANTIC CITY	SERVICES, INC. VE., SUITE 3A	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey	SOIL LOG TP-5B Job No.: RSC 011.01

Date: 5/5/2010 Performed by: Christopher Andes and Ryan Healey Method: Test Pit Surroundings: Wooded Upland +"2" O-horizon (organic layer) Surface Gray (10YR 6/1) fine sand; single grain; loose 4" Yellow (2.5Y 7/6) loamy sand; Undisturbed sample taken at 11" subangular blocky structure; friable Disturbed sample taken at 11" 28" Yellow (2.5Y 7/6) loamy sand; subangular blocky structure; friable structure; friable; 20% rounded quartzose pebbles < 0.5" diam.; saturated 56" Brownish-yellow (10YR 6/6) clay; subangular blocky structure; plastic 66" Mixed layers of: brownish-yellow (10YR 6/6) coarse sand; single grain; loose; saturated; Undisturbed sample taken at 78" White (10YR 8/1) coarse sand; single grain; loose; saturated; and reddish-yellow (5YR 6/6) coarse sand; single grain; loose; saturated; 76" Pale yellow (2.5Y 7/4) loamy sand; subangular blocky structure; friable; saturated 86" Pale yellow (2.5Y 8/2) coarse sand; pale yellow (2.5Y 7/4) and brownish-yellow (10YR 6/8) striations; single grain; loose; saturated 96" Light gray (2.5Y 7/2) coarse sand; single grain; loose; saturated 102"+ Seasonal High Water Table: Notes: Test pit left open for approximately 30 minutes. 28 inches below existing grade Test pit began collapsing at approximately 66" due to groundwater saturation. **Ground Water:** 28 inches below existing grade MARATHON ENGINEERING & Stormwater Master Plan **SOIL LOG** TP-5C The Richard Stockton College of NJ ENVIRONMENTAL SERVICES, INC. 2922 ATLANTIC AVE., SUITE 3A Township of Galloway, (Area 5 East Basin)

Atlantic County, New Jersey

ATLANTIC CITY, N.J. 08401

Job No: RSC 011.01

Date: Performed by: Method: Surroundings:	06/22/10 Don Brickner Test pit Woodland	744 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		
Depth (in) below existing grade			39	Sample Depth (in)
5		/R 5/1) loamy sand; weak subangular block cture; friable; abrupt, irregular boundary	y	
25		ow (2.5Y 7/3) sandy loam; subangular blocky ructure; friable; clear, wavy boundary	<i>,</i>	18 (UD)
99	loam); co (10YR 5/	IOYR 7/2) clay (gradual transition to sandy of common coarse, prominent, yellowish-brown (6) and brownish-yellow (10YR 6/6) mottles; locky structure; plastic; clear, wavy boundary		
120+		.5Y 7/2) sand; common medium (0.5 to 1.0 i of brownish-yellow (10YR 6/6) sand; single g saturated		
				Depth (in) below existing grade
		Seasonal High Water T Ground W		25 62
Sample codes: G =	grab sample, l	JD = undisturbed sample		
MARATHON ENG ENVIRONMENTAL S 2922 ATLANTIC A' ATLANTIC CITY	SERVICES, INC. VE., SUITE 3A	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey	Job N	SOIL LOG TP-5D No.: RSC 011.01

ENVIRONMENTAL: 2922 ATLANTIC A ATLANTIC CIT	SERVICES, INC. VE., SUITE 3A		Richard S Townsl	Stockton hip of Ga	College		lob !	TP-5E No.: RSC 011.01
Sample codes: G =		UD = und				Vater T ound W		existing grade 54 (perched) 124 SOIL LOG
162+	Light gray (2.5				ine, distin n; saturate		vv	Depth (in) below
120		ab	rupt, wav	y bounda				
112	Light yellowi	ab	rupt, wav	y bounda	ıry		se;	
91	Variegatec (10YR 6/6) s friable; commo brownish-ye sli	sandy loa on peds ellow (10)	am; weak of varlega YR 6/6) c	subangu ated pale lay; angu	ilar blocky yellow (2	structu 5Y 7/4) structu	re; and	84 (UD)
63	prominent, red	ddish-yel	low (7.5)	/R 6/6) m	n fine to m ottles; an ar bounda	gular blo	ocky	
54	Olive yellow prominent, yel structure, f remov	llowish-re firm in-pl ved; 20%	ed (5YR (ace; gran fine rour	5/6) mottl nular struc	es; suban cture, friat rtzose gra	gular bloole where	ocky	
35	Variegated y brown (2.5Y 6	6/4) sand	ly clay lo		ular struct			
24	Light yellow blocky s				y sand; su gular bou		ar -	
8	Gray (10Y struc				subangula ar bounda			
Depth (in) below existing grade	N.						88	Sample Depth (in)
Performed by: Method: Surroundings:	Don Brickner Test pit Woodland							
Date:	06/22/10							

SERVICES, INC.	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey	SOIL LOG TP-5F Job No.: RSC 011.01
grab sample, t		
	Seasonal High Water Ta Ground Wa	
		Denth (in) hal
yellowish	-brown (10YR 5/6) and light yellowish-brown	
distinct, ye	llowish-brown (10YR 5/6) mottles; subangular	
// 	gradual, wavy boundary	
structure; fr	iable; 40% medium rounded quartzose grave clear, smooth boundary	
		18 (UD)
		ary
		Sample Depth (in)
Woodland		Cample
Don Brickner Test pit		
	Gray (10) struct Light yellow of structure; from Light olive Light gray (distinct, ye blocky structure, struc	Gray (10YR 5/1) loamy sand; weak subangular blocky structure; friable; abrupt, irregular boundary Light yellowish-brown (10YR 6/4) loamy sand; weak subangular blocky structure; friable; gradual, wavy boundary Pale yellow (2.5Y 7/3) loamy sand; weak subangular blocky structure; friable; gradual, smooth boundary Pale yellow (2.5Y 7/4) loamy sand; weak subangular blocky structure; friable; 40% medium rounded quartzose graves clear, smooth boundary Light olive brown (2.5Y 5/6) sand; single grain; loose; gradual, wavy boundary Light gray (10YR 7/2) sandy clay loam; common medium distinct, yellowish-brown (10YR 5/6) mottles; subangular blocky structure; saturated; clear, irregular boundary White (N 8/) sandy clay loam; common medium, promine yellowish-brown (10YR 5/6) and light yellowish-brown (10YR 6/4) mottles; subangular blocky structure; friable saturated Seasonal High Water Ta Ground Water Ground

Date: Performed by: Method: Surroundings:	06/15/10 Don Brickner Test pit Woodland		22	
Depth (in) below existing grade	5		14	Sample Depth (in)
6		/R 5/1) loamy sand; weak subangular blocky ucture; friable; abrupt, wavy boundary	′	
21		vish-brown (2.5Y 6/4) loamy sand; subangula y structure; friable; clear, wavy boundary	ar	
34		rown (10YR 5/6) sandy clay; granular structu friable; gradual, irregular boundary	re;	
45	distinct, yell blocky stru	ellow (10YR 6/6) sandy clay; common coars owish-red (5YR 5/6) mottles; weak subangul cture, slightly firm in-place; granular structure when removed; gradual, wavy boundary	lar	
57	(2.5Y 7/3), a	d light yellowish-brown (2.5Y 6/4), pale yellow nd light reddish-brown (5YR 6/4) silty clay loo angular blocky structure; slightly plastic; gradual, irregular boundary		
65		d pale yellow (2.5Y 7/3) and brownish-yellow andy loam; subangular blocky structure; frial clear, wavy boundary		
96	Light gray (10YR 7/1) silty clay loam; common fine, prominent, brownish-yellow (10YR 6/6) mottles; subangular blocky structure; slightly plastic; gradual, irregular boundary			76 (UD)
122		hite (10YR 8/1) and olive yellow (2.5Y 6/6) c cky structure; plastic; clear, irregular bounda		
156+		hite (10YR 8/1) and pale yellow (2.5Y 7/3) se se, distinct, light gray (N 6/) mottles; single g saturated		150 (G)
				Depth (in) below existing grade
Sample codes: G =	arab sample 1	Seasonal High Water Ta Ground W JD = undisturbed sample		45 (perched) 124
MARATHON ENG ENVIRONMENTAL S 2922 ATLANTIC A ATLANTIC CITY	INEERING & SERVICES, INC. VE., SUITE 3A	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey	lah 1	SOIL LOG TP-5G No.: RSC 011.01

THE STATE OF THE S		
		Date: 5/5/2010 Performed by: Christopher Andes and Ryan Healey Method: Test Pit Surroundings: Wooded Upland
+"2"		
Surface	O-horizon (organic layer)	
4"	Pale yellow (2.5Y 8/2) loamy sand; subangular blocky structure; friable	
	Olive yellow (2.5Y 6/6) loamy sand; subangular blocky structure; friable; 20% rounded quartzose pebbles 0.5" - 1" diameter	Undisturbed sample taken at 11" Disturbed sample taken at 36"
48"	was the same and an arranged a second and a	
56"	Yellow (2.5Y 7/6) loamy sand; subangular blocky structure; friable	Disturbed sample taken at 50"
93"	Variegated Light gray (2.5Y 7/1) and pale yellow (2.5Y 7/4) loamy sand; subangular blocky structure; friable; and rounded quartoze pebbles 0.5" - 1" diameter; saturated	Undisturbed sample taken at 78"
112"	Yellow (2.5Y 8/6) sandy loam; subangular blocky structure; friable; saturated	
	White (2.5Y 8/1) fine sand; common, medium, prominent, yellow (10YR 7/6) mottles; single grain; loose; saturated	
120"+	L	-
Notes: Test pit left open for approximately 30 Test pit began collapsing at) minutes.	Seasonal High Water Table: 56 inches below existing grade
approximately 90" due to groundwate	er saturation.	Ground Water: 56 inches below existing grade
MARATHON ENGINEERING & ENVIRONMENTAL SERVICES, INC. 2922 ATLANTIC AVE., SUITE 3A ATLANTIC CITY, N.J. 08401	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey	SOIL LOG TP-5H (Area 5 West Basin) Job No: RSC 011.01

Date: Performed by: Method: Surroundings:	06/15/10 Don Brickner Test pit Woodland			
Depth (in) below existing grade			:=	Sample Depth (in)
4		R 5/1) loamy sand; weak subangular blocky cture; friable; abrupt, wavy boundary	,	
17		rish-brown (2.5Y 6/4) loamy sand; subangular structure; friable; clear, wavy boundary	ar	2
34		own (10YR 5/6) loamy sand; subangular bloo ure; friable; gradual, irregular boundary	cky	30 (UD)
78	prominent, l	OYR 8/1) sandy clay loam; common coarse, brownish-yellow (10YR 6/6) and strong brow mottles; subangular blocky structure; friable saturated; clear, wavy boundary		
92	(2.5Y 7/4) m	8/1) clay; many coarse, prominent, pale yel nottles; many fine, prominent, brownish-yello 6) mottles; angular blocky structure; plastic; clear, smooth boundary		
108+	Variegate (10YR 6/6	ed light gray (2.5Y 7/2) and brownish-yellow coarse sand; single grain; loose; saturated		
				Depth (in) below existing grade
		Seasonal High Water Ta Ground W		34 47
Sample codes: G =	= grab sample, l	JD = undisturbed sample		
MARATHON ENG ENVIRONMENTAL: 2922 ATLANTIC A ATLANTIC CIT	SERVICES, INC. VE., SUITE 3A	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey	Job N	SOIL LOG TP-5I o.: RSC 011.01

Date: Performed by: Method: Surroundings:	06/15/10 Don Brickner Test pit Woodland		
Depth (in) below existing grade			Sample Depth (in)
0		R 5/1) loamy sand; weak subangular blocky acture; friable; abrupt, wavy boundary	,
22	Light yellow blocky	rish-brown (2.5Y 6/4) loamy sand; subangula r structure; friable; clear, wavy boundary	ar
49	Yellowish-br	own (10YR 5/6) sandy clay; granular structu friable; gradual, wavy boundary	ıre;
62		low (10YR 6/6) coarse sand; subangular blo nmon clay bridging between sand grains; fria clear, wavy boundary	
84	single grain;	ellow (2.5Y 7/6) and pale yellow (2.5Y 7/3) sa loose; common thin (< 0.25 inch thick) band ray (N 4/) sand; gradual, wavy boundary	and; s of 72 (UD)
120+	Variegate (10YR 6/6	d light gray (10YR 7/2) and brownish-yellow) coarse sand; single grain; loose; saturated	/ d
		Seasonal High Water Ta	Depth (in) below existing grade
Sample codes: G =	= grab sample, t	JD = undisturbed sample	
MARATHON ENG ENVIRONMENTAL 2922 ATLANTIC A ATLANTIC CIT	SERVICES, INC. VE., SUITE 3A	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey	SOIL LOG TP-5J Job No.: RSC 011.01

		Date: 6/15/2010 Performed by: Ryan Healey Method: Test Pit Surroundings: Wooded Upland
+2"		2
0	O-horizon (organic layer)	
10"	Gray (10YR 5/1) loamy sand; weak subangular blocky structure; friable; many fine to medium roots	
12"	Brown (10YR 4/3) loamy sand; subangular blocky structure; firm-in-place	
24"	Pale yellow (2.5Y 7/3) loamy sand; subangular blocky structure; friable	Two undisturbed samples taken at 20"
39"	Brownish-yellow (10YR 6/6) sand; common, medium, distinct, yellowish-brown (10YR 5/8) mottles; single grain; loose; saturated at 36"	
96"	White (10YR 8/1) sandy clay; many, medium, prominent, pale yellow (2.5Y 7/4) mottles; subangular blocky structure; slightly plastic; saturated	
108"+	Very pale brown (10YR 7/3) sand; many, coarse, prominent, yellowish-brown (10YR 5/6) mottles; single grain; loose; saturated	
100 +		1
	Estimated Seas	onal High Water Table Observed at: 24 inches below existing grade
		Ground Water Observed at: 36 inches below existing grade
MARATHON ENGINEERING & ENVIRONMENTAL SERVICES, INC. 2922 ATLANTIC AVE., SUITE 3A ATLANTIC CITY, N.J. 08401	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey	SOIL LOG TP-6A (Area 6 Basin) Job No: RSC 011.01

Date: 5/5/2010 Performed by: Christopher Andes and Ryan Healey Method: Test Pit Surroundings: Wooded Upland +"2" O-horizon (organic layer) Surface Gray (10YR 6/1) fine sand; single grain; loose Pale yellow (2.5Y 7/4) Two (2) unisturbed sample taken at 12" loamy sand; subangular blocky structure; friable; Disturbed sample taken at 12" saturated at 22" 33" Light yellowish-brown (2.5Y 6/4) loamy sand; subangular blocky structure; friable 40" Variegated Light yellowish-brown (2.5Y 6/4) and yellow (2.5Y 7/6) loamy sand; few, medium, distinct, yellowish-brown (10YR 5/6) mottles; subangular blocky structure; friable; and 20% rounded quartzose pebbles 0.5" - 1" diameter; saturated 72" Variegated light gray (2.5Y 7/1) clay loam and pale yellow (2.5Y 8/2) clay loam and white (2.5Y 8/1) coarse sand; many, coarse, prominent, yellow (10YR 7/8) mottles; subangular blocky structure; slightly plastic; saturated 90" White (2.5Y 8/1) silty clay; common, coarse, prominent, reddish-yellow (5YR 7/8) mottles; subangular blocky structure; plastic; saturated 96"+ Seasonal High Water Table: 40 inches below existing grade Notes: Test pit left open for approximately 30 minutes. Test pit began collapsing at

approximately 60" due to groundwater saturation.

Ground Water: 40 inches below existing grade

MARATHON ENGINEERING & ENVIRONMENTAL SERVICES, INC. 2922 ATLANTIC AVE., SUITE 3A ATLANTIC CITY, N.J. 08401

Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey SOIL LOG TP-6B (Area 6 Basin) Job No: RSC 011.01

		Date: 6/15/2010 Performed by: Ryan Healey Method: Test Pit Surroundings: Wooded Upland
+2"		
0	O-horizon (organic layer)	
4**	Gray (10YR 5/1) loamy sand; weak subangular blocky structure; friable; many fine to medium roots	,
24"	Light yellowish-brown (2.5Y 6/4) loamy sand; subangular blocky structure; friable; common fine to medium roots	
34"	Pale yellow (2.5Y 7/4) sand; common, medium, prominent, brownish-yellow (10YR 6/8) mottles; single grain; loose; 60% rounded quartzose gravel, 0.5" to 1" diameter	
40"	Light gray (10YR 7/2) sand; many, coarse, prominent, yellowish-brown (10YR 5/6) mottles; and many, coarse, distinct, light gray (2.5Y 7/2) mottles; single grain; loose	
102"	Variegated white (10YR 8/1) and brownish-yellow (10YR 6/6) sandy clay loam; subangular blocky structure; slightly plastic; 40% rounded quartzose gravel, 0.5" to 1" diameter; few white (2.5Y 8/1) sandy clay peds with many, coarse, prominent, yellow (2.5Y 7/6) mottles; slightly plastic	Two undisturbed samples taken at 44"
108"+	Very pale brown (10YR 8/2) sand; many, coarse, distinct, pale yellow (2.5Y 7/3) mottles; single grain; loose; saturated; few white (2.5Y 8/1) sandy clay peds with many, coarse, prominent, yellow (2.5Y 7/6) mottles; slightly plastic	
	Estimated Seas	onal High Water Table Observed at: 24 inches below existing grade
		Ground Water Observed at:

Stormwater Master Plan

The Richard Stockton College of NJ

Township of Galloway, Atlantic County, New Jersey

MARATHON ENGINEERING & ENVIRONMENTAL SERVICES, INC. 2922 ATLANTIC AVE., SUITE 3A ATLANTIC CITY, N.J. 08401

42 inches below existing grade

TP-6C

(Area 6 Basin)

Job No: RSC 011.01

Date: Performed by:	06/15/10 Don Brickner		000:200 ×11/2:200	HILESCHIE
Method: Surroundings:	Test pit Woodland			
Depth (in) below	71000			Sample
existing grade	i)		7.	Depth (in)
12		R 5/1) loamy sand; weak subangular blocky icture; friable; abrupt, wavy boundary	1	
15		n (10YR 3/3) loamy sand; subangular blocky ucture; friable; abrupt, wavy boundary	y	
35		w (2.5Y 7/4) loamy sand; subangular blocky cure; friable; gradual, irregular boundary	1	27 (UD)
48	yellowish-bro	ght gray (2.5Y 7/2), pale yellow (2.5Y 7/4), a wn (10YR 5/6) sand; single grain; loose; mo dium to coarse rounded quartzose gravel; abrupt, wavy boundary		
102	yellowish-bro dark yellowis	R 8/1) sandy clay; common coarse, promine vn (10YR 5/6) mottles; common fine, promir h-brown (10YR 4/4) mottles; subangular blo plastic; saturated; gradual, broken boundary	nent, icky	
114+	(10YR 6/6	d light gray (10YR 7/1) and brownish-yellow) coarse sand; single grain; loose; saturated)% coarse rounded quartzose gravel		
		Seasonal High Water T	able:	Depth (in) below existing grade 35
		Ground W		47
Sample codes: G	= grab sample, l	JD = undisturbed sample		
MARATHON ENG ENVIRONMENTAL 2922 ATLANTIC A	SERVICES, INC.	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway,		SOIL LOG TP-6D
ATLANTIC CIT	Y, N.J. 08401	Atlantic County, New Jersey	Job N	No.: RSC 011.01

Date: Performed by: Method: Surroundings:	06/15/10 Don Brickner Test pit Woodland		
Depth (in) below existing grade	•		Sample Depth (in)
7		(R 5/1) loamy sand; weak subangular blocky acture; friable; abrupt, wavy boundary	
17		owish-brown (10YR 6/4) loamy sand; weak locky structure; friable; gradual, wavy bound	ary
42		own (10YR 5/6) sand; granular structure; we bridging between sand grains; friable; clear, wavy boundary	eak
90	Light gray (2 yellowish-		
114	of variegat (10YR	.5Y 7/3) sand; single grain; loose; common ped light gray (10YR 7/1) and brownish-yellov 6/6) sandy clay; angular blocky structure; plastic; moist; gradual, irregular boundary	peds N
126+		d pale yellow (2.5Y 7/3) and brownish-yellow t 6/6) sand; single grain; loose; saturated	v .
			Depth (in) below existing grade
		Seasonal High Water Ta Ground W	
Sample codes: G	= grab sample, l	JD = undisturbed sample	
MARATHON ENG ENVIRONMENTAL 2922 ATLANTIC A ATLANTIC CIT	SERVICES, INC. VE., SUITE 3A	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey	SOIL LOG TP-6E Job No.: RSC 011.01

Date: Performed by: Method: Surroundings:	06/14/10 Don Brickner Test pit Woodland			
Depth (in) below existing grade	V.			Sample Depth (in)
18	structure; fria	(10YR 4/1) sandy loam; subangular blocky able; mixed with trash (e.g., clam shells, bond dishware, etc.); abrupt, irregular boundary	es,	12 (G)
30	Light yell subangular b	owish-brown (10YR 6/4) loamy sand; weak locky structure; friable; gradual, wavy bound	lary	
41	Brownish-yellow (10YR 6/6) loamy sand; weak subangular blocky structure; friable; clear, wavy boundary 30		30 (UD)	
78	medium, o	wish-brown (2.5Y 6/3) loamy sand; common distinct, olive yellow (2.5Y 6/6) mottles; weak blocky structure; moist; clear, wavy bounda		
120+	quartzose gra peds of varies 4/1) clay wi	y (2.5Y 7/2) gravelly clay (90% fine rounded livel); subangular blocky structure; firm; comingated light gray (10YR 7/1) and dark gray (10YR the common medium, distinct, very pale brown bittles; angular blocky structure; plastic; satur	mon 0YR /n	
	⊑ αrab sample. ∪	Seasonal High Water Ta Ground W JD = undisturbed sample	able:	Depth (in) below existing grade 41 63
MARATHON ENG ENVIRONMENTAL S 2922 ATLANTIC A ATLANTIC CITY	INEERING & SERVICES, INC. VE., SUITE 3A	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey		SOIL LOG TP-7A o.: RSC 011.01

Date: Performed by: Method: Surroundings:	06/14/10 Don Brickner Test pit Woodland			
Depth (in) below existing grade	vvoodiand		-	Sample Depth (in)
5 5		R 5/1) loamy sand; weak subangular blocky ture; friable; abrupt, irregular boundary		
28		owish-brown (10YR 6/4) loamy sand; weak locky structure; friable; gradual, wavy bound	lary	
37		illow (2.5Y 7/6) and pale yellow (2.5Y 7/3) sa gle grain; loose; clear, wavy boundary	and;	
40		ish-brown (2.5Y 6/4) sand; single grain; loos dium to coarse rounded quartzose gravel; clear, wavy boundary	se;	
54	Light yellowish-brown (2.5Y 6/4) loamy sand; common fine, prominent, brown (7.5YR 4/4) mottles; weak subangular blocky to granular structure; friable; 20% medium rounded quartzose gravel; clear, irregular boundary		44 (UD)	
75	gray (10YR 6 (60% fine to r	ight yellowish-brown (2.5Y 6/4), light brownis /2), and strong brown (7.5YR 4/6) gravelly s nedium rounded quartzose gravel); single gr pose; moist; abrupt, wavy boundary	and	
108+	quartzose gra peds of varies 4/1) clay wi	y (2.5Y 7/2) gravelly clay (90% fine rounded livel); subangular blocky structure; firm; comi gated light gray (10YR 7/1) and dark gray (1 lith common medium, distinct, very pale brow ottles; angular blocky structure; plastic; satur	mon 0YR vn	
				Depth (in) belo existing grade
		Seasonal High Water T Ground W		40 63
Sample codes: G	= grab sample, l	JD = undisturbed sample		
MARATHON ENG ENVIRONMENTAL 2922 ATLANTIC A ATLANTIC CIT	SERVICES, INC. VE., SUITE 3A	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey		SOIL LOG TP-7B

		Date: 6/14/2010 Performed by: Ryan Healey Method: Test Pit Surroundings: Wooded Upland
+2"		Í
0	O-horizon (organic layer)	
4*	Gray (2.5Y 6/1) loamy sand; weak subangular blocky structure; friable	
	Light yellowish-brown (2.5Y 6/4) loamy sand; subangular blocky structure; friable; many fine to medium roots	
22"	Yellowish-brown (10YR 5/6) loamy sand; subangular blocky structure; friable; 30% rounded quartzose gravel, 0.5" to 1" diameter starting at 30"	Two undisturbed samples laken at 30"
42"	Olive yellow (2.5Y 6/6) coarse sand; single grain; loose; 30% rounded quartzose gravel,	
50"	0.5" to 1" diameter; moist	
52"	Reddish-yellow (7.5YR 6/6) coarse sand; single grain; loose; moist	
58 ''	Pale yellow (2.5Y 7/4) coarse sand; few, medium, prominent, brownish-yellow (10YR 6/6) mottles; single grain, loose; saturated; few, light gray (2.5Y 7/1) sandy clay peds with common, medium, prominent, brownish-yellow (10YR 6/6) mottles; slightly plastic	
	Variegated light gray (2.5Y 7/1) and light yellowish-brown (2.5Y 6/3) sand; single grain; loose; saturated; and gray (N 8/) silty clay; subangular blocky structure; plastic;	
84"+	saturated	
	Estimated Seas	onal High Water Table Observed at: 52 inches below existing grade
		Ground Water Observed at: 61 inches below existing grade
MARATHON ENGINEERING & ENVIRONMENTAL SERVICES, INC. 2922 ATLANTIC AVE., SUITE 3A ATLANTIC CITY, N.J. 08401	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey	SOIL LOG TP-7C (Area 7 Basin) Job No: RSC 011.01

Date: 5/5/2010 Performed by: Christopher Andes and Ryan Healey Method: Test Pit Surroundings: Wooded Upland +"2" O-horizon (organic layer) Surface Gray (10YR 6/1) fine sand; single grain; loose 8" Olive yellow (2.5Y 6/6) loamy sand; subangular blocky Disturbed sample taken at 12" structure; friable 17" Two (2) undisturbed sample taken at 12" Pale yellow (2.5Y 7/4) Disturbed sample taken at 20" loamy sand; subangular blocky structure; friable 24" Olive yellow (2.5Y 6/6) loamy sand; loamy sand; subangular blocky structure; friable; saturated 40" Mixed layers of: Light gray (2.5Y 7/1) coarse sand; single grain; loose; 20% rounded quartzose pebbles 0.5"- 1" diameter; saturated: and Pale yellow (2.5Y 8/2) coarse sand; single grain; loose; saturated; few, white (2.5YR 8/1) clay peds; slightly plastic; saturated; and Brownish-yellow (10YR 6/6) striations 96"+ Seasonal High Water Table: 24 inches below existing grade Notes: Test pit left open for approximately 30 minutes. Test pit began collapsing at **Ground Water:** approximately 40" due to groundwater saturation. 24 inches below existing grade SOIL LOG MARATHON ENGINEERING & Stormwater Master Plan

MARATHON ENGINEERING &
ENVIRONMENTAL SERVICES, INC.
2922 ATLANTIC AVE., SUITE 3A
ATLANTIC CITY, N.J. 08401

The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey SOIL LOG TP-7D (Area 7 Basin) Job No: RSC 011.01

		Date: 6/14/2010 Performed by: Ryan Healey Method: Test Pit Surroundings: Wooded Upland
+2*		1
0	O-horizon (organic layer)	
3"	Gray (2.5Y 6/1) loamy sand; weak subangular blocky structure; friable	
12"	Light yellowish-brown (2.5Y 6/4) loamy sand; subangular blocky structure; friable	
24"	Yellowish-brown (10YR 5/6) loamy sand; subangular blocky structure; friable	
34"	Yellow (2.5Y 7/6) loamy sand; subangular blocky structure; friable	
40"	Pale yellow (2.5Y 7/4) loamy sand; few, medium, faint, yellow (2.5Y 7/6) mottles; subangular blocky structure; friable	Two undisturbed samples taken at 36"
60"	Light gray (2.5Y 7/2) silt loam; common, coarse, prominent, yellow (2.5Y 7/6) mottles; subangular blocky structure; friable; saturated	
	Variegated light gray (2.5Y 7/1) and light yellowish-brown (2.5Y 6/3) sand; single grain; loose; saturated; and gray (N 8/) silty clay; subangular blocky structure; plastic; saturated	
90"+	Estimated Seas	conal High Water Table Observed at: 34 inches below existing grade

Stormwater Master Plan

The Richard Stockton College of NJ

Township of Galloway, Atlantic County, New Jersey

MARATHON ENGINEERING &

ENVIRONMENTAL SERVICES, INC.

2922 ATLANTIC AVE., SUITE 3A ATLANTIC CITY, N.J. 08401 Ground Water Observed at: 66 inches below existing grade

SOIL LOG

TP-7E

(Area 7 Basin) Job No: RSC 011.01

		Date: 6/14/2010 Performed by: Ryan Healey Method: Test Pit Surroundings: Wooded Upland
+2"		
0	O-horizon (organic layer)	
12"	Gray (2.5Y 5/1) loamy sand; weak subangular blocky structure; friable	
28"	Light yellowish-brown (10YR 6/4) loamy sand; subangular blocky structure; friable; many fine to medium roots	
39"	Variegated light brownish-gray (10YR 6/2) and pale yellow (2.5Y 7/3) loamy sand; weak, subangular blocky structure	
45"	Pale brown (10YR 6/3) gravelly sand; single grain; loose; 90% medium to coarse rounded quartzose gravel	
	Variegated white (10YR 8/1), light yellowish-brown (2.5Y 6/4), and yellowish-brown (10YR 5/6) sandy clay loam; subangular blocky structure; firm-in-place; 40% medium to coarse rounded	Grab sample taken at 61"
120"+	quartzose gravel	
	Estimated Seas	sonal High Water Table Observed at: 28 inches below existing grade Ground Water Observed at:
MARATHON ENGINEERING & ENVIRONMENTAL SERVICES, INC. 2922 ATLANTIC AVE., SUITE 3A ATLANTIC CITY, N.J. 08401	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey	51 inches below existing grade SOIL LOG TP-10A (Area 10 Basin) Job No: RSC 011.01

MARATHON ENG ENVIRONMENTAL 2922 ATLANTIC A ATLANTIC CIT	SERVICES, INC. VE., SUITE 3A	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey	loh t	SOIL LOG TP-10B No.: RSC 011.01
Sample codes: G	= grab sample, l	JD = undisturbed sample		
Seasonal High Water Table: 43 Ground Water: 66				
				Depth (in) below existing grade
120+	(1011(170)11)	orange and an analysis of the state of the s	u.o.	Ĺ
	peds of varie 4/1) clay w	avel); subangular blocky structure; firm; comigated light gray (10YR 7/1) and dark gray (10 ith common medium, distinct, very pale brow ottles; angular blocky structure; plastic; satur	OYR m	
75	Light gra	y (2.5Y 7/2) gravelly clay (90% fine rounded		
76	faint, light ye	nish-gray (2.5Y 6/2) coarse sand; few mediur ellowish-brown (2.5Y 6/4) mottles; single gra ; 40% fine to coarse rounded quartzose grav abrupt, wavy boundary	in;	
57		light yellowish-brown (2.5Y 6/3) and light gra bamy sand; weak subangular blocky structur friable; clear, wavy boundary		50 (UD)
43	Brownish	-yellow (10YR 6/6) sand; single grain; loose; clear, irregular boundary		
31	Light yel subangular b	lowish-brown (10YR 6/4) loamy sand; weak locky structure; friable; gradual, wavy bound	ary	
7.		'R 5/1) loamy sand; weak subangular blocky ucture; friable; abrupt, wavy boundary		
Depth (in) below existing grade	£			Sample Depth (in)
Method: Surroundings:	Test pit Woodland			
Date: Performed by:	06/15/10 Don Brickner	eens alless elija see eest W. see		

		Date: 5/5/2010 Performed by: Christopher Andes and Ryan Healey Method: Test Pit Surroundings: Wooded Upland
+"2" Surface	O-horizon (organic layer)	
10"	Gray (10YR 6/1) fine sand; single grain; loose	
17"	Yellow (2.5Y 7/6) loamy sand; subangular blocky structure; friable	Two (2) unisturbed sample taken at 10" Disturbed sample taken at 14"
	Pale yellow (2.5Y 7/4) loamy sand; subangular blocky structure; friable	Unisturbed sample taken at 16"
38"		
72"	Brownish-yellow (10YR 6/8) coarse sand; single grain; loose; saturated at 40"	
82"	Variegated Light gray (2.5Y 7/1) and pale yellow (2.5Y 8/2) clay loam; many, coarse, prominent, yellow (10YR 7/8) mottles; subangular blocky structure; slightly plastic; saturated	
UZ	Pale yellow (2.5Y 7/4) sandy clay loam; subangular blocky structure; slightly plastly; saturated	
90"	White (2.5Y 8/1) silty clay; common, coarse, prominent, reddish-yellow (5YR 7/8) mottles; subangular blocky structure; plastic; saturated	Disturbed sample taken at 90"
96"+	and the state of t	
Notes: Test pit left open for approximately 30 Test pit began collapsing at approximately 50" due to groundwate		Seasonal High Water Table: 40 inches below existing grade Ground Water: 40 inches below existing grade
MARATHON ENGINEERING & ENVIRONMENTAL SERVICES, INC. 2922 ATLANTIC AVE., SUITE 3A ATLANTIC CITY, N.J. 08401	Stormwater Master Plan The Richard Stockton College of NJ Township of Galloway, Atlantic County, New Jersey	SOIL LOG TP-10C (Area 10 Basin) Job No: RSC 011.01

		Date: 6/15/2010 Performed by: Ryan Healey Method: Test Pit Surroundings: Wooded Upland
+2"	O havings (assessis layer)	
0	O-horizon (organic layer)	
6**	Gray (2.5Y 5/1) loamy sand; weak subangular blocky structure; friable	
	Light yellowish-brown (2.5Y 6/4) loamy sand; subangular blocky structure; friable; many fine to medium roots	
15"	Yellowish-brown (10YR 5/4) loamy sand; subangular blocky structure; friable; many fine to medium roots; 10% fine lo medium rounded quartzose gravel	
27*	Pale yellow (2,5Y 7/4) sand;	
40"	single grain; loose	
51"	Light yellowish-brown (2.5Y 6/3) sand; common, medium, distinct, light gray (10YR 7/1) mottles; single grain; loose	
58"	Pale yellow (2.5Y 7/3) sandy clay loam; many, medium, distinct, yellowish-brown (10YR 5/6) and common, coarse, prominent, white (2,5Y 8/1) moltles; subangular blocky structure; frlable	
94"	Gray (10YR 6/1) sandy clay loam; common, medium, faint, gray (10YR 5/1) mottles; subangular blocky structure; friable; few, white (10YR 8/1) clay peds; subangular blocky structure; plastic	Two undisturbed samples taken at 60"
	White (10YR 8/1) silty clay; common, medium, prominent, pale yellow (2.5Y 7/4) and yellowish-brown (10YR 5/6) mottles; subangular blocky structure; plastic; saturated	
116"	Light yellowish-brown (2.5Y 6/4) sand; many, medium, distinct, yellow (10YR 7/6) mottles; single grain; loose; saturated; common, white (10YR 8/1) silty clay peds; common, medium, prominent, pale yellow (2.5Y 7/4) and yellowish-brown (10YR 5/6) mottles; subangular blocky structure; plastic; saturated	
130"+	Estimated Seas	onal High Water Table Observed at:
	asimatos osas	40 inches below existing grade Ground Water Observed at: 70 inches below existing grade
MARATHON ENGINEERING & ENVIRONMENTAL SERVICES, INC. 2922 ATLANTIC AVE., SUITE 3A ATLANTIC CITY, N.J. 08401	Stormwater Master Plan The Richard Stockton College of N. Township of Galloway, Atlantic County, New Jersey	SOIL LOG TP-10D (Area 10 Basin) Job No: RSC 011 01

		Date: 6/15/2010 Performed by: Ryan Healey Method: Test Pit Surroundings: Wooded Upland
+2"		
0	O-horizon (organic layer)	
, i	Gray (2.5Y 5/1) loamy	1
	sand; weak subangular blocky structure; friable	
4"	Structure, made	
27"	Light yellowish-brown (10YR 6/4) loamy sand; subangular blocky structure; friable; many fine to medium roots	
	Variegated light yellowish-brown (2.5Y 6/4) and pale yellow (2.5Y 7/3) gravelly sand; single grain; loose; 80% medium to coarse rounded quartzose gravel	
34"	Brownish-yellow (10YR 6/6) gravelly sand; single grain; loose; 70% medium to coarse rounded quartzose gravel	Two undisturbed samples taken at 36"
42"		
46"	Pale yellow (2.5Y 7/4) sand; few, medium, distinct, brownish-yellow (10YR 6/6) mottles; single grain; loose	
64"	Light gray (2.5Y 7/2) sand; few, coarse, faint, white (10YR 8/1) mottles; single grain; loose; saturated	
o,	White (10YR 8/1) coarse sand; many, medium, prominent, brownish-yellow (10YR 6/6) mottles; single grain; loose; saturated; discontinuous white (10YR 8/1)	
90"	clay peds; plastic; saturated	
120"+	Light yellowish-brown (2.5Y 6/4) sand; many, medium, distinct, yellow (10YR 7/6) mottles; single grain; loose; saturated; common, white (10YR 8/1) silty clay peds; common, medium, prominent, pale yellow (2.5Y 7/4) and yellowish-brown (10YR 5/6) mottles; subangular blocky structure; plastic; saturated	
120	Fetimated Sease	」 onal High Water Table Observed at:
	Latinated agas	42 inches below existing grade
		Ground Water Observed at: 51 Inches below existing grade
MARATHON ENGINEERING &	Stormwater Master Plan	SOIL LOG
ENVIRONMENTAL SERVICES, INC. 2922 ATLANTIC AVE., SUITE 3A	The Richard Stockton College of NJ Township of Galloway,	(Area 10 Basin)
ATLANTIC CITY, N.J. 08401	Atlantic County, New Jersey	Job No: RSC 011.01

		Date: 05/22/2009 Performed by: Ryan Healey Method: hand auger Surroundings: wooded
Surface		i i
6**	Brown (10 YR 4/3) loamy sand; subangular blocky structure; friable	
34"	Yellowish-brown (10YR 5/6) loamy sand; subangular blocky structure; friable	
26	Light yellowish-brown (2.5Y 6/4) sand; single grain; loose; with 10% medium rounded quartzose gravel	
42"	Light yellowish-brown (2.5Y 6/4) sand; single grain; loose; common, coarse,	
62"	distinct, brownish-yellow (10YR 6/6) mottles; saturated	
68"	Light gray (10YR 7/2) sand; single grain; loose; saturated	
76"	White (2.5Y 8/1) sand; single grain; loose; saturated	
80"	Very pale brown (10YR 7/3) sandy clay; very fine granular structure, massive, firm, subangular blocky structure	
88"+	Variegated white (2.5Y 8/1) and light yellowish-brown (2.5Y 6/4) coarse sand; single grain; loose; saturated	
Note 1: The clay layer at 76" created a		Seasonal High Water Table: 80 inches below existing grade
perched condition.		Ground Water:
Note 2: Boring abandoned, could not overcome moist soil collapse.	>	than 88 inches below existing grade
MARATHON ENGINEERING & ENVIRONMENTAL SERVICES, INC. 2922 ATLANTIC AVENUE SUITE 3A	Richard Stockton College of NJ Development Area 1 (Academic Core) Block 875.04, Lot 1.01 Galloway Township,	SOIL LOG Boring 1
ATLANTIC CITY, NJ 08401	Atlantic County, New Jersey	Job No: RSC 011.01

Date: 05/22/2009 Performed by: Ryan Healey Method: hand auger Surroundings: wooded Surface Brown (10 YR 4/3) loamy sand; subangular blocky structure; friable 6" Yellowish-brown (10YR 5/6) loamy sand; subangular blocky structure; friable 40" Very pale brown (10YR 7/3) sand; single grain; loose 48" Light yellowish-brown (2.5Y 5/2) sand; single grain; loose; with 20% organic root matter until 68 inches; with 10% medium rounded quartzose gravel starting at 68 inches; saturated 76" Light yellowish-brown (2.5Y 5/2) sandy clay; very fine granular structure, massive, firm, subangular blocky structure; saturated 80" Pale yellow (2.5Y 7/3) coarse sand; single grain; loose; saturated 90"+ Seasonal High Water Table: > than 90 inches below existing grade Note 1: The clay layer at 80" created a perched condition. **Ground Water:** > than 90 inches below existing grade Note 2: Boring abandoned, could not overcome moist soil collapse. Richard Stockton College of NJ **SOIL LOG** MARATHON ENGINEERING & **Development Area 1 (Academic Core)** Boring 2 ENVIRONMENTAL SERVICES, INC. Block 875.04, Lot 1.01 2922 ATLANTIC AVENUE Galloway Township, **SUITE 3A**

Atlantic County, New Jersey

ATLANTIC CITY, NJ 08401

Job No: RSC 011.01

PERMEABILITY TEST RESULTS

PROJECT NAME Stockton C MUNICIPALITY _	College Stormwater Master Plan NO. RSC 011.01 Township of Galloway, Atlantic County, New Jersey BLOCK			
SAMPLE AND EQUIPMENT DATA				
Radius of Permeameter Tube Radius of Thin Walled Sample Tube Height of Tube Before Sample is Added Height of Tube After Sample is Added Length of Sample	= 0.40 cm = 1.78 cm = 15.2 cm or 5.984 in = 3.1 cm or 1.22 in = 12.1 cm = 4.764 in			
TUBE PERMEAMETER TEST DATA				
1. TEST# REPLICATE (letter)	A DATE COLLECTED 6/14/2010			
2. MATERIAL TESTED FILL NATIVE SOIL - (indicate depth) x 30 in				
3. TYPE OF SAMPLE: UNDISTURBED	DISTURBED X			
4. BULK DENSITY DETERMINATION (Disturbed Samples Only):				
Sample Density Used: x No Yes				
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BASI	N IN INCHES:			
At the beginning of each test interval, At the end of each test interval,	$H_1 = 20.80$ cm cm			
6. RATE OF WATER LEVEL DROP:				
TIME T_1 TIME T_2	TIME T ₃ AVERAGE T			
(start of test interval) (end of test inte				
0.00 43.27 0.00 44.39	0.721			
0.00 44.49	0.742			
0.00 44.70	0.745			
0.00 44.58	0.743 0.74			
7. CALCULATION OF PERMEABILITY:				
K, $(in/hr) = 60 \text{ min / } hr \times r^2 / R^2 \times L (in) / T (min) \times ln (H_1/H_2)$ = 60 min / $hr \times 0.16$ / 3.17 x 4.8 / 0.74 x $ln (20.8 / 11.8)$ K = 11.08 in/hr Soil Permeability Class = K4				
8. DEFECTS IN THE SAMPLE (Check the appropriate items)				
x None Cracks	Worm Channels Dry Soil			
Root Channels Large G	ravel Large Roots Soil / Tube Contacts			
Smearing Compac	ction Other (Specify)			
SIGNATURE OF SOIL EVALUATOR	DATE 7/12/2010			

	n College Stormwater Master Plan NO. RSC 011.01
MUNICIPALITY	
	BLOCK
SAMPLE AND EQUIPMENT DATA	
Radius of Permeameter Tube	= 0.40 cm
Radius of Thin Walled Sample Tube	= 1.78 cm
Height of Tube Before Sample is Added	= 15.2 cm or 5.984 in = 3.2 cm or 1.26 in
Height of Tube After Sample is Added Length of Sample	= 3.2 cm or 1.26 in = 12.0 cm = 4.724 in
Length of Sample	12.0 3111
TUBE PERMEAMETER TEST DATA	
1. TEST # REPLICATE (letter)	B DATE COLLECTED6/14/2010
2. MATERIAL TESTED FILL NATIVE SOIL	- (indicate depth) X 30 in
3. TYPE OF SAMPLE: UNDISTURBED	DISTURBED X
4. BULK DENSITY DETERMINATION (Disturbed Sa	amples Only):
Sample Density Used:	x No Yes
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	ASIN IN INCHES:
At the beginning of each test interval,	$H_1 = 21.10$ cm
At the end of each test interval,	$H_2 = _{\underline{\hspace{1cm}}} 12.10 $ cm
6. RATE OF WATER LEVEL DROP:	
TIME T ₁ TIME T	TIME T ₃ AVERAGE T
(start of test interval) (end of test in	
0.00 40.02	
0.00 40.55	
0.00 40.46	
0.00 40.83 0.00 40.52	
7. CALCULATION OF PERMEABILITY:	
K, $(in/hr) = 60 min / hr x r^2 / R^2 x L$	
K = 11.79 in/hr	3011 Fernieability Class - 144
8. DEFECTS IN THE SAMPLE (Check the appropri	iate items)
x None Crack	ks Worm Channels Dry Soil
Root Channels Large	e Gravel Large Roots Soil / Tube Contacts
Smearing Comp	oaction Other (Specify)
	DATE 7/12/2010
SIGNATURE OF SOIL EVALUATOR	DATE7/12/2010

PROJECT NAME <u>Stockton</u> MUNICIPALITY	n College Stormwater Master Plan NO. RSC 011.01 Township of Galloway, Atlantic County, New Jersey BLOCK
SAMPLE AND EQUIPMENT DATA	
Radius of Permeameter Tube Radius of Thin Walled Sample Tube Height of Tube Before Sample is Added Height of Tube After Sample is Added Length of Sample	= 0.40 cm = 2.40 cm = 15.2 cm or 6.00 in = 6.0 cm or 2.362 in = 9.2 cm = 3.638 in
TUBE PERMEAMETER TEST DATA	
1. TEST# 2B REPLICATE (letter)	B DATE COLLECTED6/14/2010
2. MATERIAL TESTED FILL NATIVE SOIL	- (indicate depth) X 66 in
3. TYPE OF SAMPLE: UNDISTURBED	X DISTURBED
4. BULK DENSITY DETERMINATION (Disturbed Sa	amples Only):
Sample Density Used:	x No Yes
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BAS	SIN IN INCHES:
At the beginning of each test interval, At the end of each test interval,	$H_1 = 19.50$ cm $H_2 = 10.70$ cm
6. RATE OF WATER LEVEL DROP:	
TIME T_1 TIME T_2 (start of test interval) (end of test in	-
0.00 17.66 0.00 17.53	0.294
0.00 17.50	0.292
0.00 17.63 0.00 17.41	
7. CALCULATION OF PERMEABILITY:	
K, $(in/hr) = 60 \text{ min / hr x } r^2 / R^2 \text{ x L } (in/hr) = 60 \text{ min / hr x} 0.16$ K = 12.44 in/hr	6 / <u>5.76 x 3.6 / 0.29 x ln (</u> 19.5 / 10.7)
8. DEFECTS IN THE SAMPLE (Check the appropria	iate items)
	Worm Channels Dry Soil Gravel Large Roots Soil / Tube Contacts Daction Other (Specify)
SIGNATURE OF SOIL EVALUATOR	DATE 7/12/2010

PROJECT NA			mwater Maste			RSC 011.01
N	UNICIPALITY		o of Galloway,	Atlantic	County,	New Jersey
		BLOCK _		-		
SAMPLE AND EQUIPMENT DATA						
Radius of Permeameter Tube		= 0.40	cm			
Radius of Thin Walled Sample Tube		= 2.40	cm			
Height of Tube Before Sample is Adde	ed	= 15.2	cm or	6.00	in	
Height of Tube After Sample is Added		= 4.5	cm or	1.772	in	
Length of Sample		= 10.7	cm =	4.228	in	
TUBE PERMEAMETER TEST DATA						
1. TEST# <u>2C</u> REPLIC	CATE (letter)	Α	_ DATE CO	OLLECTE	.D	5/5/2010
2. MATERIAL TESTED FILL	NATIVE SOIL -	(indicate de	pth) x	22 i	n	
3. TYPE OF SAMPLE: UND	ISTURBED [x DISTU	JRBED			
4. BULK DENSITY DETERMINATION	N (Disturbed Sar	nples Only):				
Sample Density Used;		x No		Yes		
5. HEIGHT OF WATER LEVEL ABOY	VE RIM OF BAS	IN IN INCHE	ES:			
At the beginning of each	ch test interval,	H_1	= 20.0	0 0	m	
At the end of each test	interval,	H_2	= 10.8	0 0	m	
6. RATE OF WATER LEVEL DROP:						
TIME T	TIME T ₂		TIM	IE T ₃		AVERAGE T
TIME T_1 (start of test interval)	(end of test inte	enval)	(interval i	_	:)	(minutes)
•	•	Si vai)	•		• /	(11111111111111111111111111111111111111
0.00	96.49 96.39			608 607		
0.00	98.42			640		
0.00	96.36			606		
0.00	97.15			619		1.62
7. CALCULATION OF PERMEABILIT						
K, (in/hr) = 60 min / h) / T (min) v	In (H /H)			
K, (in/nr) = 60 min / r = 60 min /			x = 4.2 /	1.62	x In (20 / 10.8)
K = 2.69			ermeability			1
K - 2.03	111/111	30111	ermeability	Viass	- 110	ļ.
8. DEFECTS IN THE SAMPLE (Che	ck the appropria	te items)				
x None	Cracks		Worm Cha	nnels		Dry Soil
Root Channels	Large C	3ravel [Large Root	s		Soil / Tube Contacts
Smearing	Compa	=	Other (Spe	cify) _		
		K	2/2		D 4 T C	7/40/0040
SIGNATURE OF SOIL EVALUATOR			0	•	DATE	7/12/2010

		Stockton College			NO.	RSC 011.01
	MUNICIF	BLOC	iship of Gallow K	ay, Atlantic	County,	New Jersey
SAMPLE AND EQUIPM	MENT DATA					
		_ 0	40			
Radius of Permeamete Radius of Thin Walled			40 cm 78 cm			
Height of Tube Before				5.984 5.772	in in	
Height of Tube After Sa Length of Sample	imple is Added			or 1.772 = 4.213	in in	
TUBE PERMEAMETEI	R TEST DATA					
1. TEST# 2C	REPLICATE (le	etter) A	DATE	COLLECT	FD	5/5/2010
1. 1231# 20	NEI LIOATE (R	- N		OOLLLOT		0/0/2010
2. MATERIAL TESTER FILL		E SOIL - (indicate	e depth)	22	in	
3. TYPE OF SAMPLE:	UNDISTUR	BED D	STURBED [K.		
4. BULK DENSITY DE	TERMINATION (Distui	rbed Samples O	nly):			
Sample	Density Used:	X N		Yes		
5. HEIGHT OF WATER	R LEVEL ABOVE RIM	OF BASIN IN IN	CHES:			
At the b	eginning of each test ir	nterval,	H ₁ =20	.60	cm	
At the e	nd of each test interval	l,	$H_2 = 11$.40	cm	
6. RATE OF WATER I	EVEL DROP:					
TIME T₁	7	ΓIME T ₂	Т	IME T₃		AVERAGE T
(start of test inte	rval) (end o	f test interval)	(interva	al in minute	s)	(minutes)
0.00	(R.	97.11		1.619		
0.00	93	97.93 96.54		1.632 1.609		
0.00		98.31		1.639		4.04
0.00		101.24		1.687		1.64
7. CALCULATION OF	PERMEABILITY:					
K, (in/h	$(r) = 60 \text{ min / hr x } r^2 / F$					
	= 60 min/hrx	0.16 / 3.1	′ x 4.2 il Permeabil			20.6 / 11.4) 1
	K = 4.61	in/hr So	Permeabli	ity Class	- K3	1
8. DEFECTS IN THE S	SAMPLE (Check the ap	ppropriate items)				
x None]Cracks	☐Worm C	nannels		Dry Soil
Root Ch		Large Gravel	Large Ro			Soil / Tube Contacts
Smeari	ng	Compaction	Other (S	pecify)		
2.20.72.02.03.03.00		2	5-3/-5		B	7400000
SIGNATURE OF SOIL	EVALUATOR				DATE	7/12/2010

NUNICIPALITY Township of Galloway, Atlantic County, New Jersey
Radius of Permeameter Tube
Radius of Permeameter Tube
Radius of Thin Walled Sample Tube
Height of Tube Before Sample is Added
Height of Tube After Sample is Added
TUBE PERMEAMETER TEST DATA
1. TEST #
2. MATERIAL TESTED FILL NATIVE SOIL - (indicate depth) x 22 in 3. TYPE OF SAMPLE: UNDISTURBED DISTURBED x 4. BULK DENSITY DETERMINATION (Disturbed Samples Only): Sample Density Used: X No Yes 5. HEIGHT OF WATER LEVEL ABOVE RIM OF BASIN IN INCHES: At the beginning of each test interval, H ₁ = 20.80 cm At the end of each test interval, H ₂ = 11.60 cm 6. RATE OF WATER LEVEL DROP: TIME T ₁ TIME T ₂ TIME T ₃ AVERAGE T (interval in minutes) 0.00 58.30 0.972 0.00 58.36 0.973 0.00 59.58 0.993
STILL
STILL
4. BULK DENSITY DETERMINATION (Disturbed Samples Only): Sample Density Used:
Sample Density Used: x No Yes 5. HEIGHT OF WATER LEVEL ABOVE RIM OF BASIN IN INCHES: At the beginning of each test interval, At the end of ea
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BASIN IN INCHES: At the beginning of each test interval, At the end of each test interval, H ₁ = 20.80 cm At the end of each test interval, H ₂ = 11.60 cm 6. RATE OF WATER LEVEL DROP: TIME T ₁ TIME T ₂ TIME T ₃ AVERAGE T (interval in minutes) (end of test interval) (interval in minutes) 0.00 58.30 0.972 0.00 58.36 0.973 0.00 59.58 0.993
At the beginning of each test interval, At the end of each test interval, $H_2 = \frac{20.80}{11.60}$ cm 6. RATE OF WATER LEVEL DROP: TIME T ₁ TIME T ₂ TIME T ₃ AVERAGE T (interval in minutes) (end of test interval) 0.00 58.30 0.972 0.00 58.36 0.973 0.00 59.58 0.993
At the end of each test interval, $H_2 = 11.60$ cm 6. RATE OF WATER LEVEL DROP: TIME T_1 TIME T_2 TIME T_3 AVERAGE T (start of test interval) (end of test interval) (interval in minutes) (minutes) 0.00 58.30 0.972 0.00 58.36 0.973 0.00 59.58 0.993
6. RATE OF WATER LEVEL DROP: TIME T ₁ TIME T ₂ TIME T ₃ AVERAGE T (start of test interval) (end of test interval) (interval in minutes) (minutes) 0.00 58.30 0.972 0.00 58.36 0.973 0.00 59.58 0.993
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(start of test interval) (end of test interval) (interval in minutes) (minutes) 0.00 58.30 0.972 0.00 58.36 0.973 0.00 59.58 0.993
(start of test interval) (end of test interval) (interval in minutes) (minutes) 0.00 58.30 0.972 0.00 58.36 0.973 0.00 59.58 0.993
0.00 58.36 0.973 0.00 59.58 0.993
0.00 59.58 0.993
0.00
0.00 60.15 1.003 0.99
7. CALCULATION OF PERMEABILITY:
K. (in/hr) = 60 min / hr x r^2 / R^2 x L (in) / T (min) x ln (H ₁ /H ₂)
(H_1/H_2) = 60 min / hr x 0.16 / 3.17 x 4.2 / 0.99 x ln (20.8 / 11.6)
K = 7.52 in/hr Soil Permeability Class = K4
8. DEFECTS IN THE SAMPLE (Check the appropriate items)
X None Cracks Worm Channels Dry Soil
Root Channels Large Gravel Large Roots Soil / Tube Contacts
Smearing Compaction Other (Specify)
SIGNATURE OF SOIL EVALUATOR DATE
- ~/

		mwater Master			RSC 011.01				
MUNICIPALITY		p of Galloway,	Atlantic (County,	New Jersey				
	BLOCK _		_			6			
SAMPLE AND EQUIPMENT DATA									
Dadius of Dormoometer Tube	- 0.40	om							
Radius of Permeameter Tube Radius of Thin Walled Sample Tube	= 0.40 = 2.40	cm cm							
Height of Tube Before Sample is Added	= 15.2	cm or	6.00	in					
Height of Tube After Sample is Added	= 4.0	cm or		in					
Length of Sample	= 11.2	cm =		in					
TUBE PERMEAMETER TEST DATA	В	DATE CC	NI COTE	n	6/14/2010				
1. TEST # REPLICATE (letter)	B	_ DATE CO	LLECTE	_	6/14/2010	Š			
2. MATERIAL TESTED	/indicate de	nth\	72 ir						
FILL NATIVE SOIL	- (indicate de	pth) x	12 11	'					
3. TYPE OF SAMPLE: UNDISTURBED	X DIST	JRBED 🔲							
4. BULK DENSITY DETERMINATION (Disturbed Sa	mples Only):								
Sample Density Used:	X No		Yes						
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BAS	SIN IN INCH	ES:							
At the beginning of each test interval,	H ₁	= 18.80) с	m					
At the end of each test interval,	H ₂		c	m					
, it and one or odon toot into tan,		4							
6. RATE OF WATER LEVEL DROP:									
TIME T_1 TIME T_2		TiM	E T ₃		AVERAGE T				
(start of test interval) (end of test interval)		(interval ir	_)	(minutes)				
0.00 101.97		1.7	00						
0.00 101.27		1.6	888						
0.00 101.33			89						
0.00 99.14			552						
0.00 100.58		1.6	376		1.68	-			
7. CALCULATION OF PERMEABILITY:									
K, (in/hr) = 60 min / hr x r^2 / R^2 x L (i	n) / T (min) x	: In (H ₁ /H ₂)							
$= 60 \min / \ln x \qquad 0.16$	_				18.8 / 10)			
K = 2.77 in/hr	Soil P	ermeability	Class	= K3					
8. DEFECTS IN THE SAMPLE (Check the appropria	ate items)								
x None Cracks	; [Worm Char	nnels]Dry Soil				
Root Channels Large	Gravel	Large Roots	S		Soil / Tube Co	ntacts			
Smearing Compa		Other (Spec							
	_		-						
SIGNATURE OF SOIL EVALUATOR	25.	2/2		DATE	7/12/201	0			
DIGITATIONE OF GOIL EVALUATION		6/							

PROJECT NAME <u>Stockto</u> MUNICIPALITY	Township of Galloway, Atlantic County, New Jersey BLOCK
SAMPLE AND EQUIPMENT DATA	
Radius of Permeameter Tube Radius of Thin Walled Sample Tube Height of Tube Before Sample is Added Height of Tube After Sample is Added Length of Sample	= 0.40 cm = 2.40 cm = 15.2 cm or 6.00 in = 4.2 cm or 1.654 in = 11.0 cm = 4.346 in
TUBE PERMEAMETER TEST DATA	
1. TEST# 5A REPLICATE (letter)	A DATE COLLECTED6/22/2010
2. MATERIAL TESTED FILL NATIVE SOIL	(indicate depth) x 36 in
3. TYPE OF SAMPLE: UNDISTURBED	x DISTURBED
4. BULK DENSITY DETERMINATION (Disturbed Sa	amples Only):
Sample Density Used:	x No Yes
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	ASIN IN INCHES:
At the beginning of each test interval, At the end of each test interval,	$H_1 = 19.20$ cm $H_2 = 10.40$ cm
6. RATE OF WATER LEVEL DROP:	- AVEDAGE T
TIME T_1 TIME T_2 (start of test interval) (end of test in	-
0.00 115.40	1.923
0.00 117.02	
0.00 116.39 0.00 117.49	103
0.00 116.92	
7. CALCULATION OF PERMEABILITY:	
K, $(in/hr) = 60 \text{ min } / \text{ hr } \times \text{ r}^2 / \text{ R}^2 \times \text{ L}$ ($= 60 \text{ min } / \text{ hr } \times 0.10$ $K = 2.28 \text{ in/hr}$	16 / 5.76 x 4.3 / 1.94 x ln (19.2 / 10.4)
8. DEFECTS IN THE SAMPLE (Check the appropria	iate items)
	Worm Channels Dry Soil Gravel Large Roots Soil / Tube Contacts Dry Soil
SIGNATURE OF SOIL EVALUATOR	7/12/2010 DATE

	n College Stormwa		NORSC 011.01
MUNICIPALITY		Galloway, Atlantic	County, New Jersey
	BLOCK		
SAMPLE AND EQUIPMENT DATA			
D. F. of Bosses and Take	- 0.40 am		
Radius of Permeameter Tube	= 0.40 cm = 2.40 cm		
Radius of Thin Walled Sample Tube Height of Tube Before Sample is Added	= 2.40 cm		in
Height of Tube After Sample is Added	= 4.4 cm		in
Length of Sample	= 10.8 cm		in
Longin of dumple	10.0		
TUBE PERMEAMETER TEST DATA			
1. TEST#5A REPLICATE (letter)	B	DATE COLLECT	ED <u>6/22/2010</u>
2. MATERIAL TESTED			
· · · · · · · · · · · · · · · · · · ·	- (indicate depth)	x 36	in
	-		
3. TYPE OF SAMPLE: UNDISTURBED	x DISTURBE	D	
4. BULK DENSITY DETERMINATION (Disturbed Sa	amples Only):		
Sample Density Used:	x No	Yes	
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	SIN IN INCHES:		
At the beginning of each test interval,	H ₁ =	19.10	cm
At the end of each test interval,	H ₂ =	10.30	cm
, to the one of out in the real,	-		
6. RATE OF WATER LEVEL DROP:			
TIME T		TIME T	AVERAGE T
TIME T ₁ TIME T		TIME T ₃	
(start of test interval) (end of test in	,	interval in minute	5) (IIIIIule5)
0.00118.02		1.967	
0.00 119.18		1.986	
0.00 120.87		2.015	
0.00 120.65		2.011 2.025	2.00
0.00 121.48		2.023	2.00
7. CALCULATION OF PERMEABILITY:			
K, (in/hr) = 60 min / hr x r^2 / R^2 x L (in) / T (min) x ln (H	H ₁ /H ₂)	
$= 60 \min / \ln x \qquad 0.1$	6 / 5.76 x	4.3 / 2.00	x In (19.1 / 10.3)
K = 2.20 in/hr	Soil Perm	eability Class	. = K3
8. DEFECTS IN THE SAMPLE (Check the appropri	ate items)		
x None Crack	s IIw	orm Channels	Dry Soil
	<u>=</u>	rge Roots	Soil / Tube Contacts
		_	Con / Tube Contacts
Smearing Comp	actionO	ther (Specify)	
	20 71	8	
SIGNATURE OF SOIL EVALUATOR		5	DATE7/12/2010

	on College Stormwater Master Plan NO RSC 011.01
MUNICIPALITY	
	BLOCK
SAMPLE AND EQUIPMENT DATA	
Radius of Permeameter Tube	= 0.40 cm
Radius of Thin Walled Sample Tube	= 2.40 cm
Height of Tube Before Sample is Added	= 15.2 cm or 6.00 in = 4.1 cm or 1.614 in
Height of Tube After Sample is Added Length of Sample	= 4.1 cm or 1.614 in = 11.1 cm = 4.386 in
Length of Campic	
TUBE PERMEAMETER TEST DATA	
1. TEST # 5B REPLICATE (letter)	A DATE COLLECTED6/22/2010
2. MATERIAL TESTED FILL NATIVE SOIL	(indicate depth) X 84 in
3. TYPE OF SAMPLE: UNDISTURBED	X DISTURBED
4. BULK DENSITY DETERMINATION (Disturbed Sa	samples Only):
Sample Density Used:	x No Yes
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	ASIN IN INCHES:
At the beginning of each test interval,	$H_1 = 18.60$ cm
At the end of each test interval,	$H_2 = {}$ 9.80 cm
6. RATE OF WATER LEVEL DROP:	
TIME T₁ TIME T	TIME T ₃ AVERAGE T
(start of test interval) (end of test in	• 2
0.00 31.55	0.526
0.00 32.48	
0.00 33.25	
0.00 33.91	
0.00 30.67	0.511
7. CALCULATION OF PERMEABILITY:	
K_{i} (in/hr) = 60 min / hr x r^{2} / R^{2} x L ((in) / T (min) x ln (H_1/H_2)
	16 / <u>5.76 x 4.4 / 0.54 x ln (</u> 18.6 / 9.8)
K = 8.68 in/hr	Soil Permeability Class = K4
8. DEFECTS IN THE SAMPLE (Check the appropri	riate items)
x None Crack	ks Worm Channels Dry Soil
	e Gravel Large Roots Soil / Tube Contacts
	paction Other (Specify)
SIGNATURE OF SOIL EVALUATOR	25-37-5 DATE 7/12/2010
SIGNATURE OF SOIL EVALUATOR	DATE TITEZOTO

	PROJECT NAME Stockto	n College	e Storm	water	Master	Plan	NO	RSC 011.01
	MUNICIPALITY			of Gal	oway,	Atlantic	County,	New Jersey
		BLO	ск <u>—</u>			-		
SA	AMPLE AND EQUIPMENT DATA							
	adius of Permeameter Tube		0.40	cm				
	adius of Thin Walled Sample Tube		2.40	cm		0.00		
	eight of Tube Before Sample is Added	=	15.2 5.4	cm	or or	6.00 2.126	in in	
	eight of Tube After Sample is Added ength of Sample	=	9.8	cm	=	3.874	in	
	UBE PERMEAMETER TEST DATA							
	TEST# 5B REPLICATE (letter)	ŗ	3	DΑ	TE CC	LLECT	FD	6/22/2010
1.	TEST # REFLICATE (letter)				12 00	LLLOT	_	O/ZZ/ZO10
2.	MATERIAL TESTED FILL NATIVE SOIL	(indica	ate dep	th)	X	84	in	
3.	TYPE OF SAMPLE: UNDISTURBED	X [DISTU	RBED				
4.	BULK DENSITY DETERMINATION (Disturbed S	amples (Only):					
	Sample Density Used:	x	No			Yes		
5.	HEIGHT OF WATER LEVEL ABOVE RIM OF BA	ASIN IN I	NCHE	S:				
	At the beginning of each test interval	1	H ₁ =		18.90)	cm	
	At the end of each test interval,		$H_2 =$		10.00)	cm	
6.	RATE OF WATER LEVEL DROP:							
	TIME T ₁ TIME T	_			TIMI	E Ta		AVERAGE T
	(start of test interval) (end of test in	_		(inte		minute	es)	(minutes)
	0.00 35.30				0.5	88		
	0.00 33.30		-		0.5		_	
	0.00 32.21				0.5			
	0.00 32.70				0.5			
	0.00 33.01				0.5	50		0.55
7.	CALCULATION OF PERMEABILITY;							
	K, $(in/hr) = 60 \text{ min / hr x } r^2 / R^2 \text{ x L}$	(in) / T (r	min) x l	n (H₁/⊦	12)			
		6 / 5.			9 /		x In (18.9 / 10)
	K = 7.47 in/hı	<u> </u> s	oil Pe	rmea	bility	Class	s = K4]
8.	DEFECTS IN THE SAMPLE (Check the appropr	iate item	s)					
	X None Crack	(S]Worr	n Char	nels		Dry Soil
		Gravel	Ē	Large	Roots	6		Soil / Tube Contacts
		paction		= -	(Spec			_
			70	-				
S	IGNATURE OF SOIL EVALUATOR	-	75-A	1	_		DATE	7/12/2010

PROJECT NAME Stockto MUNICIPALITY	n College Storr Township BLOCK			RSC 011.01 Inty, New Jersey				
SAMPLE AND EQUIPMENT DATA								
Radius of Permeameter Tube Radius of Thin Walled Sample Tube Height of Tube Before Sample is Added Height of Tube After Sample is Added Length of Sample	= 0.40 = 2.40 = 15.2 = 5.2 = 10.0	cm cm or cm or cm =	6.00 in 2.047 in 3.953 in					
TUBE PERMEAMETER TEST DATA								
1. TEST#5D REPLICATE (letter)	A	DATE CC	LLECTED	6/22/2010				
2. MATERIAL TESTED FILL NATIVE SOIL	- (indicate dep	oth) x	18 in					
3. TYPE OF SAMPLE: UNDISTURBED	X DISTU	RBED						
4. BULK DENSITY DETERMINATION (Disturbed Sa	amples Only):							
Sample Density Used:	X No		Yes					
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	SIN IN INCHE	S:						
At the beginning of each test interval, At the end of each test interval,	H ₁ = H ₂ =							
6. RATE OF WATER LEVEL DROP:								
TIME T ₁ TIME T	_	TIMI (interval ir	_	AVERAGE T (minutes)				
(start of test interval) (end of test in 0.00 20.62	itervai)	(interval ii 0.3		(Hilliates)				
0.00 20.62		0.3		_				
0.00 22.20		0.3		_				
0.00 21.71 0.00 20.62			344	0.36				
7. CALCULATION OF PERMEABILITY:								
K, $(in/hr) = 60 min / hr x r^2 / R^2 x L ($ = 60 min / hr x 0.1 K = 11.35 in/hr	6 / <u>5.76</u> >			<u>ln (</u> 19.2 / 10.4)				
8. DEFECTS IN THE SAMPLE (Check the appropri	ate items)							
x None Crack	s [Worm Char	nnels	Dry Soil				
	Gravel	Large Roots		Soil / Tube Contacts				
Smearing Comp	action	_Other (Spec	iry)					
SIGNATURE OF SOIL EVALUATOR	75-3	X5	DA	ATE7/12/2010				

PROJECT NAI			water Master		
M	UNICIPALITY	Township LOCK	of Galloway,	Atlantic Co	ounty, New Jersey
		LOCK			
SAMPLE AND EQUIPMENT DATA					
Radius of Permeameter Tube	=	0.40	cm		
Radius of Thin Walled Sample Tube	_ =	2.40 15.2	cm	6.00 in	
Height of Tube Before Sample is Adde Height of Tube After Sample is Added	u – =	5.1	cm or	6.00 in 2.008 in	
Length of Sample	=	10.1	cm =	3.992 in	
TUBE PERMEAMETER TEST DATA					
1. TEST# 5D REPLIC	ATE (letter)	В	DATE CC	LLECTED	6/22/2010

2. MATERIAL TESTED FILL	NATIVE SOIL - (in	dicate dep	th) x	18 in	
3. TYPE OF SAMPLE: UND	STURBED x] DISTU	RBED		
4. BULK DENSITY DETERMINATION	(Disturbed Sample	es Only):			
Sample Density Used:	x] No		Yes	
5. HEIGHT OF WATER LEVEL ABOV	E RIM OF BASIN	IN INCHES	S;		
At the beginning of eac	h test interval,	H ₁ =	19.10) cm	
At the end of each test	interval,	H ₂ =	10.40) cm	
6. RATE OF WATER LEVEL DROP:					
TIME T₁	TIME T ₂		TIMI	F Ta	AVERAGE T
(start of test interval)	(end of test interva	al)	(interval in	=	(minutes)
0.00	23.96		0.3	•	
0.00	24.24	,	0.4		_
0.00	24.94		0.4		- -
0.00	23.36		0.3		
0.00	23.26		0.3	888	0.40
7. CALCULATION OF PERMEABILIT	Y:				
K_{i} (in/hr) = 60 min / h					
= 60 min /					In (19.1 / 10.4)
K = 10.13	in/hr	Soil Pe	rmeability	Class =	K4
8. DEFECTS IN THE SAMPLE (Chec	k the appropriate it	ems)			
x None	Cracks]Worm Char	nels	Dry Soil
Root Channels	Large Grav	/el	Large Roots	3	Soil / Tube Contacts
Smearing	Compaction		Other (Spec		
	W	20	7/		
SIGNATURE OF SOIL EVALUATOR	-2	12-12	125_	D	ATE 7/12/2010

PROJECT NAME		tormwater Master Plan	NORSC 011.01
MUNIC		ship of Galloway, Atlantic	County, New Jersey
	BLOCK		
SAMPLE AND EQUIPMENT DATA			
Radius of Permeameter Tube	= 0.4	0 cm	
Radius of Thin Walled Sample Tube	= 2.4		
Height of Tube Before Sample is Added	= 15.		in
Height of Tube After Sample is Added	= 4.5		in
Length of Sample	= 10.	7 cm = 4.228	in
TUBE PERMEAMETER TEST DATA			
1. TEST#5E REPLICATE	(letter) A	DATE COLLECT	ED <u>6/22/2010</u>
2. MATERIAL TESTED FILL NAT	IVE SOIL - (indicate	depth) x 84	in
3. TYPE OF SAMPLE: UNDISTU	RBED X DIS	TURBED	
4. BULK DENSITY DETERMINATION (Dis	turbed Samples Onl	y):	
Sample Density Used:	x No	Yes	
5. HEIGHT OF WATER LEVEL ABOVE RI	M OF BASIN IN INC	HES:	
At the beginning of each tes	t interval,	$H_1 = 18.80$	cm
At the end of each test inter	val, ł	H ₂ = 9.00	cm
6. RATE OF WATER LEVEL DROP:			
TIME T ₁	TIME T ₂	TIME T ₃	AVERAGE T
	f of test interval)	(interval in minute	
			(
0.00	1.73 1.83	0.029 0.031	
0.00	1.79	0.031	
0.00	1.80	0.030	
0.00	1.77	0.030	0.03
7. CALCULATION OF PERMEABILITY:			
K, (in/hr) = $60 \text{ min / hr} \times r^2$	$/R^2 \times L$ (in) $/T$ (min)) v ln (H./H.)	
= 60 min / hr x	0.16 / 5.76	x 4.2 / 0.03	x ln (18.8 / 9)
K = 174.59		Permeability Class	
174.55	111/11	1 criticability Glace	110
8. DEFECTS IN THE SAMPLE (Check the	appropriate items)		
x None	Cracks	Worm Channels	Dry Soil
Root Channels	Large Gravel	Large Roots	Soil / Tube Contacts
Smearing	Compaction	Other (Specify)	
	H	A/Z	
SIGNATURE OF SOIL EVALUATOR		7	DATE7/12/2010

	PROJECT NAME Stock		mwater Master Plan	_	SC 011.01
	MUNICIPALI		o of Galloway, Atlan	tic County, Ne	ew Jersey
		BLOCK _			
SAMPLE AND EQUIPM	MENT DATA				
Radius of Permeameter		= 0.40	cm		
Radius of Thin Walled		= 2.40	cm	o :-	
Height of Tube Before S Height of Tube After Sa		= 15.2 = 4.5	cm or 6.0 cm or 1.77		
Length of Sample	imple is Added	= 10.7	cm = 4.22		
TUBE PERMEAMETER	R TEST DATA				
1. TEST# 5E	REPLICATE (letter)	В	DATE COLLEC	TED 6	6/22/2010
-		-	=-	-	
2. MATERIAL TESTED FILL		IL - (indicate de	pth) X 8	4 in	
3. TYPE OF SAMPLE:	UNDISTURBED	x DISTU	JRBED		
4. BULK DENSITY DE	TERMINATION (Disturbed	Samples Only):			
Sample	Density Used:	X No	Yes		
5. HEIGHT OF WATE	R LEVEL ABOVE RIM OF I	BASIN IN INCHI	ES:		
At the b	eginning of each test interv	ral, H₁	= 19.00	cm	
At the e	nd of each test interval,	H ₂	9.20	_ cm	
6. RATE OF WATER I	LEVEL DROP:				
TIME T ₁	TIME	Ε Τ ₂	TIME T ₃	,	AVERAGE T
(start of test inte			(interval in minu	ıtes)	(minutes)
0.00	2.0	10	0.033		
0.00	2.0		0.035		
0.00	2.0		0.034		
0.00	2.0		0.034		0.03
0.00		J4	0.034		0.00
7. CALCULATION OF					
K, (in/h	$\operatorname{rr}) = 60 \operatorname{min} / \operatorname{hr} \times \operatorname{r}^2 / \operatorname{R}^2 \times$. v	40 (00)
			x 4.2 / 0.03	x in (19 / 9.2)
	K = 150.62 in/	nr Soil P	ermeability Cla	ss = K5	
8. DEFECTS IN THE	SAMPLE (Check the appro	priate items)			
x None	Cra	icks [Worm Channels		ry Soil
Root C	nannelsLar	ge Gravel [Large Roots	□s	oil / Tube Contacts
Smeari	ng Cor	mpaction [Other (Specify)		
		R	21.		
SIGNATURE OF SOIL	EVALUATOR	17	Hy	DATE _	7/12/2010

PROJECT NAME <u>Stockton College Stormwater Master Plan</u> NO. RSC 011.01 MUNICIPALITY Township of Galloway, Atlantic County, New Jersey						
	MUNICIPALITY	BLOCK	o or Galloway,	Aliantic Coun	ty, inew beisey	
				-		
SAMPLE AND EQUIPMENT	DATA					
Radius of Permeameter Tube		= 0.40	cm			
Radius of Thin Walled Samp		= 2.40	cm	0.00		
Height of Tube Before Sample Height of Tube After Sample		= 15.2 = 3.6	cm or	6.00 in 1.417 in		
Length of Sample	is Added	= 11.6	cm or cm =	4.583 in		
Length of Gample	s	11.0	0111	1.000 111		
TUBE PERMEAMETER TES	T DATA					
1. TEST#5F	REPLICATE (letter)	A	_ DATE CO	LLECTED	6/22/2010	
2. MATERIAL TESTED	T NATIVE COLL	/indinate de	aths Luci	18 in		
FILL _	NATIVE SOIL	- (maicate dep	oth) x	10 111		
3. TYPE OF SAMPLE:	UNDISTURBED	X DISTU	RBED			
4. BULK DENSITY DETERM	INATION (Disturbed Sa	amples Only):				
Sample Dens	ity Used:	x No		Yes		
5. HEIGHT OF WATER LEV	'EL ABOVE RIM OF BA	SIN IN INCHE	S:			
At the beginn	ing of each test interval,	H ₁ =	19.80	cm		
At the end of	each test interval,	H ₂ =	= 11.00	cm		
6. RATE OF WATER LEVEL	_ DROP:					
TIME T	TIME T ₂		TIME	т.	AVERAGE T	
TIME T ₁ (start of test interval)	(end of test in		(interval in	=	(minutes)	
	•	,	1.2		,	
0.00	77.51 77.32		1.2			
0.00	77.66	→ n•	1.29			
0.00	79.50		1.3			
0.00	78.38		1.3	06	1.30	
7. CALCULATION OF PERM	MEABILITY:					
K. (in/hr) = 6	60 min / hr x r² / R² x L (i	in) / T (min) x	In (H₁/H₂)			
,				1.30 x lı	n (19.8 / 11)	
K =	3.45 in/hr	Soil Po	ermeability	Class = K3	3	
8. DEFECTS IN THE SAMP	LE (Check the appropria	ate items)				
x None	Cracks	s 「	Worm Chan	nels	Dry Soil	
Root Channe		Gravel	☐ Large Roots		Soil / Tube Contacts	
Smearing	Compa	<u>=</u>	Other (Spec			
		_		- /		
CIONATURE OF COULTYAL	LIATOR	25-1	1/2	DAT	E 7/12/2010	
SIGNATURE OF SOIL EVAL	-UATUR		0	ואט		

	n College Stormwater Master Plan NO. RSC 011.01
MUNICIPALITY	Township of Galloway, Atlantic County, New Jersey BLOCK
SAMPLE AND EQUIPMENT DATA	
Radius of Permeameter Tube	= 0.40 cm = 2.40 cm
Radius of Thin Walled Sample Tube Height of Tube Before Sample is Added	= 2.40 cm = 15.2 cm or 6.00 in
Height of Tube After Sample is Added	= 4.1 cm or 1.614 in
Length of Sample	= 11.1 cm = 4.386 in
TUBE PERMEAMETER TEST DATA	
1. TEST# FEPLICATE (letter)	B DATE COLLECTED 6/22/2010
2. MATERIAL TESTED FILL NATIVE SOIL	- (indicate depth) X 18 in
3. TYPE OF SAMPLE: UNDISTURBED	X DISTURBED
4. BULK DENSITY DETERMINATION (Disturbed Sa	amples Only):
Sample Density Used:	X No Yes
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	ASIN IN INCHES:
At the beginning of each test interval,	$H_1 = _{\underline{}} cm$
At the end of each test interval,	$H_2 = \underline{10.80}$ cm
6. RATE OF WATER LEVEL DROP:	
	TIME T ₃ AVERAGE T
TIME T_1 TIME T_2 (start of test interval) (end of test in	2
0.00 75.21 0.00 76.49	
0.00 77.05	1.284
0.00 77.05	
0.00 77.94	1.299 1.28
7. CALCULATION OF PERMEABILITY;	
K, $(in/hr) = 60 \text{ min / hr} \times r^2 / R^2 \times L$	
= 60 min / hr x 0.1 K = 3.41 in/hr	
K = 3.41 III/III	John Fermedblirty Glass - 100
8. DEFECTS IN THE SAMPLE (Check the appropri	
X None Crack	
	e Gravel Large Roots Soil / Tube Contacts
Smearing Comp	Other (Specify)
CIONATURE OF COULEVALUATOR	DATE
SIGNATURE OF SOIL EVALUATOR	DATE

	College Storm			RSC 011.01
MUNICIPALITY		of Galloway,	Atlantic County	New Jersey
	BLOCK		-	
SAMPLE AND EQUIPMENT DATA				
Radius of Permeameter Tube	= 0.40	cm		
Radius of Thin Walled Sample Tube		cm	0.00	
Height of Tube Before Sample is Added		cm or	6.00 in 1.496 in	
Height of Tube After Sample is Added Length of Sample		cm or cm =	4.504 in	
Length of Sample	- 11.4	OIII	1.001	
TUBE PERMEAMETER TEST DATA				
1. TEST # 5G REPLICATE (letter)	A	DATE CO	LLECTED	6/15/2010
2. MATERIAL TESTED FILL NATIVE SOIL	- (indicate dept	h) X	76 in	
3. TYPE OF SAMPLE: UNDISTURBED	X DISTUR	RBED		
4. BULK DENSITY DETERMINATION (Disturbed Sa	imples Only);			
Sample Density Used:	x No		Yes	
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	SIN IN INCHES	S:		
At the beginning of each test interval,	H ₁ =	18.80) cm	
At the end of each test interval,	$H_2 =$	9.00	cm	
6. RATE OF WATER LEVEL DROP:				
TIME T ₁ TIME T ₂		TIMI	E T₃	AVERAGE T
(start of test interval) (end of test in		(interval in		(minutes)
0.00 37.04		0.6		
0.00 34.07		0.5		
0.00 34.14 0.00 33.93		0.5 0.5		
0.00 33.93 0.00 34.95			583	0.58
7. CALCULATION OF PERMEABILITY:	-			
	: \	· /U /U \		
K, $(in/hr) = 60 \text{ min } / \text{ hr } \times \text{ r}^2 / \text{ R}^2 \times \text{ L}$ (= 60 min / hr x 0.10	6 / 5.76 x	4.5 /	0.58 x ln	(18.8 / 9)
K = 9.53 in/hr	_		Class = K4	
K = 3.33 III/III	00110	inicability	01400 111	
8. DEFECTS IN THE SAMPLE (Check the appropri	ate items)		_	
x None Crack	s _	Worm Char	=	Dry Soil
Root Channels Large	Gravel	Large Roots	s	Soil / Tube Contacts
Smearing Comp	action	Other (Spec	cify)	
	Je Z	Zz		
SIGNATURE OF SOIL EVALUATOR	1 2-17	2	DAT	7/12/2010

		rmwater Maste		
MUNICIPALITY	Townsh BLOCK	ip of Galloway,	Atlantic Co	unty, New Jersey
	BLOCK		· ·	
SAMPLE AND EQUIPMENT DATA				
Radius of Permeameter Tube	= 0.40			
Radius of Thin Walled Sample Tube	= 2.40			
Height of Tube Before Sample is Added Height of Tube After Sample is Added	= 15.2 = 4.0	cm or cm or	6.00 in 1.575 in	
Length of Sample	1.575 in 4.425 in			
TUBE PERMEAMETER TEST DATA	= 11.2	cm =	0	
	_			044740040
1. TEST # SG REPLICATE (letter)	B	DATE CO	DLLECTED	6/15/2010
2. MATERIAL TESTED FILL NATIVE SOIL	- (indicate de	epth) x	76 in	
		_		
3. TYPE OF SAMPLE: UNDISTURBED	_	URBED		
4. BULK DENSITY DETERMINATION (Disturbed Sa	amples Only)):		
Sample Density Used:	x No		Yes	
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	SIN IN INCH	IES:		
At the beginning of each test interval,	H ₁	19.10	cm cm	
At the end of each test interval,	H ₂	9.30	cm	
6. RATE OF WATER LEVEL DROP:				
TIME T ₁ TIME T ₂	2	TIM	E T ₃	AVERAGE T
(start of test interval) (end of test in	_		n minutes)	(minutes)
0.00 30.29		0.5	505	
0.00 30.19			503	
0.00 29.91 0.00 29.91			199	
0.00 29.91 0.00 29.70			199 195	— 0.50
7. CALCULATION OF PERMEABILITY:				
K, (in/hr) = 60 min / hr x r^2 / R^2 x L (in\ / T (min) :	v In (H /H)		
	6 / 5.76	x 4.4 /	0.50 x	In (19.1 / 9.3)
K = 10.62 in/hr		Permeability		
8. DEFECTS IN THE SAMPLE (Check the appropria	ate items)			
X None Crack	s	Worm Char	nnels	Dry Soil
	Gravel	Large Roots		Soil / Tube Contacts
Smearing Comp		Other (Spec		
			• • • • • • • • • • • • • • • • • • • •	
SIGNATURE OF SOIL EVALUATOR	25	Als	ח	ATE 7/12/2010
CICIATIONE OF COLE EVILORION			,ب	77722010

		PRO	OJECT 1	NAME MUNICI	Stocktor PALITY	T	ege Stor ownship OCK				NO. Count		011.01 Jersey	_
SA	MPLE AND	EQUIPMEN	T DATA											
Ra He He	adius of Permadius of Thin Neight of Tube leight of Tube leight of Tube leight of Samp	Walled Sam Before Sam After Sample	ple Tube ple is Ad	ded		= = = =	0.40 2.40 15.2 4.5 10.7	cm cm cm cm	or or =	6.00 1.772 4.228	in in in			
TL	JBE PERMEA	METER TE	ST DAT	Α										
1.	TEST#	5H	REPI	LICATE (letter)		Α	_ D/	ATE CC	LLECT	ED _	5/5	/2010	Ħ
2.	MATERIAL	TESTED FILL [NATIV	E SOIL	- (indi	cate de	oth)	х	50	in			
3.	TYPE OF SA	AMPLE:	UN	NDISTUR	BED	X	DISTU	IRBED						
4.	BULK DENS	ITY DETER	MINATIO	ON (Distu	ırbed Sa	mples	only):							
	:	Sample Den	sity Use	d:		X	No			Yes				
5.	HEIGHT OF	WATER LE	VEL AB	OVE RIM	OF BAS	SIN IN	INCHE	S:						
		At the begin At the end o	-				H ₁ :		19.20		cm			
6.	RATE OF W	ATER LEVE	EL DROF	o;										
	TII	ME T ₁			TIME T ₂	!			TiMI	Ξ T ₃		AVE	ERAGE T	
	(start of	test interval))	(end	of test int	terval))	(int	terval in	minute	es)	(m	ninutes)	
		0.00			53.21				0.8					
		0.00 0.00			52.99 53.24				0.8					
		0.00			53.54				0.8					
	(0.00			53.09				0.8	85		-	0.89	-
7.	CALCULATI	ON OF PER	RMEABIL	JTY:										
	[K, (in/hr) = = K =	60 min 60 mir 5.1	n / hr x		1		x 4	.2 /			(19.2	2 / 10)
8.	DEFECTS II	N THE SAM	PLE (Ch	eck the a	ppropria	ite itei	ms)							
	X	None Root Chann Smearing			Cracks Large	s Grave		Larg	m Char e Roots er (Spec	3		Dry S	Soil ' Tube Co	ntacts
SI	— GNATURE O	F SOIL EVA	LUATO	R			チャ	<i>}_</i>	<u></u>		DATE		7/12/20 ⁻	10

	n College Stori			RSC 011.01
MUNICIPALITY		of Galloway,	Atlantic Coun	ty, New Jersey
	BLOCK _			
SAMPLE AND EQUIPMENT DATA				
Radius of Permeameter Tube	= 0.40	cm		
Radius of Thin Walled Sample Tube	= 2.40	cm		
Height of Tube Before Sample is Added	= 15.2	cm or	6.00 in	
Height of Tube After Sample is Added	= 3,6	cm or	1.417 in	
Length of Sample	= 11.6	cm =	4.583 in	
TUBE PERMEAMETER TEST DATA				
1. TEST#5J REPLICATE (letter)	A	DATE CO	DLLECTED .	6/15/2010
2. MATERIAL TESTED FILL NATIVE SOIL	- (indicate de	oth) x	72 in	
3. TYPE OF SAMPLE: UNDISTURBED	X DISTU	IRBED		
4. BULK DENSITY DETERMINATION (Disturbed Sa	amples Only):			
Sample Density Used;	x No		Yes	
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	SIN IN INCHE	S:		
At the beginning of each test interval,	H ₁ :	= 19.60) cm	
At the end of each test interval,	H ₂ :	= 10.70	cm	
6. RATE OF WATER LEVEL DROP:		3		
TIME T ₁ TIME T	L	TIM	ET ₃	AVERAGE T
(start of test interval) (end of test in	_		n minutes)	(minutes)
	,,,,	,	310	
0.00 18.61 0.00 20.15			336	
0.00 25.13			321	
0.00 20.15			336	
0.00 20.81		0.3	347	0.33
7. CALCULATION OF PERMEABILITY:				
K, (in/hr) = 60 min / hr x r^2 / R^2 x L (in) / T (min) x	In (H₁/H₂)		
		x 4.6 /	0.33 x l	n (19.6 / 10.7)
K = 14.01 in/hr	Soil P	ermeability	Class = K	1
8. DEFECTS IN THE SAMPLE (Check the appropri	ate items)			
x None Crack	s 「	Worm Cha	nnels	Dry Soil
	Gravel	Large Root	s	Soil / Tube Contacts
	action [Other (Spe		
	· ·			
SIGNATURE OF SOIL EVALUATOR	Pari	3/5	DAT	E 7/12/2010

	n College Stormwater Master Plan NO. RSC 011.01					
MUNICIPALITY Township of Galloway, Atlantic County, New Jersey						
	BLOCK					
SAMPLE AND EQUIPMENT DATA						
Radius of Permeameter Tube	= 0.40 cm					
Radius of Thin Walled Sample Tube	= 2.40 cm					
Height of Tube Before Sample is Added	= 15.2 cm or 6.00 in					
Height of Tube After Sample is Added	= 4.4 cm or 1.732 in					
Length of Sample	= 10.8 cm = 4.268 in					
TUBE PERMEAMETER TEST DATA						
1. TEST#5J REPLICATE (letter)	B DATE COLLECTED 6/15/2010					
2. MATERIAL TESTED FILL NATIVE SOIL	- (indicate depth) X 72 in					
3. TYPE OF SAMPLE: UNDISTURBED	x DISTURBED					
4. BULK DENSITY DETERMINATION (Disturbed Sa	amples Only):					
Sample Density Used:	x No Yes					
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	SIN IN INCHES:					
At the beginning of each test interval,	$H_1 = _{\underline{}} 18.10 _{\underline{}} cm$					
At the end of each test interval,	$H_2 = 9.20$ cm					
6. RATE OF WATER LEVEL DROP;						
TIME T ₁ TIME T	TIME T ₃ AVERAGE T					
(start of test interval) (end of test in	<u>-</u>					
0.00 16.23						
0.00 17.28						
0.00 17.08						
0.00 17.07 0.00 17.25						
	0.200					
7. CALCULATION OF PERMEABILITY:						
K, (in/hr) = $60 \text{ min / hr x r}^2 / R^2 x L$ (
	6 / 5.76 x 4.3 / 0.28 x ln (18.1 / 9.2)					
K = 17.01 in/hr	Soil Permeability Class = K4					
8. DEFECTS IN THE SAMPLE (Check the appropri	iate items)					
x None Crack	s Worm Channels Dry Soil					
	Gravel Large Roots Soil / Tube Contacts					
	paction Other (Specify)					
CIONATURE OF CONFINALIATOR	7/12/2010 DATE 7/12/2010					
SIGNATURE OF SOIL EVALUATOR	DATE7/12/2010					

PROJECT NAME Stocktor MUNICIPALITY	Township of Galloway, Atlantic County, New Jersey BLOCK					
SAMPLE AND EQUIPMENT DATA						
Radius of Permeameter Tube Radius of Thin Walled Sample Tube Height of Tube Before Sample is Added Height of Tube After Sample is Added Length of Sample	= 0.40 cm = 2.40 cm = 15.2 cm or 6.00 in = 4.0 cm or 1.575 in = 11.2 cm = 4.425 in					
TUBE PERMEAMETER TEST DATA						
1. TEST# 6A REPLICATE (letter)	A DATE COLLECTED6/15/2010					
2. MATERIAL TESTED FILL NATIVE SOIL	- (indicate depth) x 20 in					
3. TYPE OF SAMPLE: UNDISTURBED	X DISTURBED					
4. BULK DENSITY DETERMINATION (Disturbed Sa	amples Only):					
Sample Density Used:	x No Yes					
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	ASIN IN INCHES:					
At the beginning of each test interval, At the end of each test interval, 6. RATE OF WATER LEVEL DROP:	$H_1 = 19.30$ cm $H_2 = 10.50$ cm					
	TIME T ₃ AVERAGE T					
TIME T_1 TIME T_2 (start of test interval) (end of test in						
0.00 108.49						
0.00 106.47 0.00 108.92						
0.00 107.62 0.00 106.98						
7. CALCULATION OF PERMEABILITY:						
K, (in/hr) = $60 \text{ min / hr x } r^2 / R^2 \times L$ (in) / T (min) $\times \ln (H_1/H_2)$ = 60 min / hr x 0.16 / 5.76 \times 4.4 / 1.79 \times ln (19.3 / 10.5) K = 2.50 in/hr Soil Permeability Class = K3						
	Worm Channels Dry Soil Gravel Large Roots Soil / Tube Contacts Daction Other (Specify)					
SIGNATURE OF SOIL EVALUATOR	DATE					

The state of the s	on College Stormwater Master Plan NO. RSC 011.01
MUNICIPALITY	
	BLOCK
SAMPLE AND EQUIPMENT DATA	
Radius of Permeameter Tube	= 0.40 cm
Radius of Thin Walled Sample Tube	= 2.40 cm
Height of Tube Before Sample is Added	= 15.2 cm or 6.00 in
Height of Tube After Sample is Added	= 4.3 cm or 1.693 in
Length of Sample	= 10.9 cm $=$ 4.307 in
TUBE PERMEAMETER TEST DATA	
1. TEST# 6A REPLICATE (letter)	B DATE COLLECTED6/15/2010
2. MATERIAL TESTED FILL NATIVE SOIL	(indicate depth) X 20 in
3. TYPE OF SAMPLE: UNDISTURBED	x DISTURBED
4. BULK DENSITY DETERMINATION (Disturbed Sa	camples Only):
Sample Density Used:	x No Yes
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	
At the beginning of each test interval, At the end of each test interval,	$H_1 = 19.30$ cm $H_2 = 10.50$ cm
6. RATE OF WATER LEVEL DROP:	
TIME T ₁ TIME T	T ₂ TIME T ₃ AVERAGE T
(start of test interval) (end of test in	nterval) (interval in minutes) (minutes)
0.00 51.82	
0.00 52.27	
0.00 51.47 0.00 57.48	
7. CALCULATION OF PERMEABILITY:	
	(in) / T /min) v ln /U /U)
K, $(in/hr) = 60 \text{ min } / \text{ hr } \times \text{ r}^2 / \text{ R}^2 \times \text{ L}$ (= 60 min / hr x 0.1)	$(10) / 1 (1000) \times 10 (101/102)$ 16 / 5.76 x 4.3 / 0.88 x ln (19.3 / 10.5)
K = 4.95 in/hr	
K = 4.95 III/III	Soli i erineability Glass – ito
8. DEFECTS IN THE SAMPLE (Check the appropri	riate items)
x None Crack	
Root Channels Large	e Gravel Large Roots Soil / Tube Contacts
Smearing Comp	paction Other (Specify)
SIGNATURE OF SOIL EVALUATOR	7/12/2010
GIOIRTI GITE OF GOIL EVILOTTI GIT	

		mwater Master F		RSC 011.01
MUNICIPALITY	BLOCK	o of Galloway, A	Mantic County	, New Jersey
SAMPLE AND EQUIPMENT DATA				
Radius of Permeameter Tube	= 0.40	cm		
Radius of Thin Walled Sample Tube	= 1.78 = 15.2	cm	5.984 in	
Height of Tube Before Sample is Added Height of Tube After Sample is Added	= 15.2		1.575 in	
Length of Sample	= 11.2		4.409 in	
TUBE PERMEAMETER TEST DATA				
1. TEST#6B REPLICATE (letter)	В	_ DATE COL	LECTED _	5/5/2010
2. MATERIAL TESTED				
FILL NATIVE SOIL	(indicate de	pth) x	12 in	
3. TYPE OF SAMPLE: UNDISTURBED	DISTU	JRBED X		
4. BULK DENSITY DETERMINATION (Disturbed S	amples Only):			
Sample Density Used:	x No		Yes	
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	SIN IN INCHE	ES:		
At the beginning of each test interval	, H ₁	= 20.20	cm	
At the end of each test interval,	H ₂	= 11.30	cm	
6. RATE OF WATER LEVEL DROP:				
TIME T ₁ TIME T		TIME	T ₂	AVERAGE T
(start of test interval) (end of test in	_	(interval in r	-	(minutes)
0.00 139.33	}	2.32	2	
0.00 135.33		2.25	6	
0.00 134.96		2.24		
0.00 136.65 0.00 137.68		2.27		2.28
7. CALCULATION OF PERMEABILITY:				2.
K, (in/hr) = 60 min / hr x r^2 / R^2 x L	(in) / T (min) v	In (H./H.)		
, ,	`_ ` ` `		.28 x ln	(20.2 / 11.3)
K = 3.40 in/hr		ermeability (j
8. DEFECTS IN THE SAMPLE (Check the appropri	ate items)			
X None Crack	_	Worm Chann	els	Dry Soil
<u> </u>	Gravel	Large Roots	F	Soil / Tube Contacts
	paction [Other (Specif	·y)	_
	W.	21		
SIGNATURE OF SOIL EVALUATOR		3/2	DATE	7/12/2010

SAMPLE AND EQUIPMENT DATA Radius of Permeameter Tube		n College Stor	mwater Maste		NO	RSC 011.01
SAMPLE AND EQUIPMENT DATA	MUNICIPALITY		of Galloway,	Atlantic	County,	New Jersey
Radius of Permeameter Tube		BLOCK _		_		
Radius of Thin Walled Sample Tube	SAMPLE AND EQUIPMENT DATA					
Radius of Thin Walled Sample Tube	Radius of Permeameter Tube	= 0.40	cm			
Height of Tube Before Sample is Added						
Length of Sample	Height of Tube Before Sample is Added		cm or		in	
TUBE PERMEAMETER TEST DATA 1. TEST #						
1. TEST # 6B	Length of Sample	= 11.0	cm =	4.331	in	
2. MATERIAL TESTED	TUBE PERMEAMETER TEST DATA					
State Stat	1. TEST# 6B REPLICATE (letter)	A	DATE CO	DLLECT	ED	5/5/2010
4. BULK DENSITY DETERMINATION (Disturbed Samples Only): Sample Density Used:		- (indicate de	pth) x	12	in	
Sample Density Used: x No Yes 5. HEIGHT OF WATER LEVEL ABOVE RIM OF BASIN IN INCHES: At the beginning of each test interval, At the end of each test interval, At the end of each test interval, H ₂ = 11.70 cm Cm 6. RATE OF WATER LEVEL DROP: TIME T ₂ TIME T ₃ AVERAGE T (minutes) TIME T ₁ (start of test interval) (end of test interval) (interval in minutes) AVERAGE T (minutes) 0.00 164.71 2.745 2.745 0.00 163.52 2.725 2.725 0.00 167.08 2.785 2.785 0.00 166.31 2.772 2.74 2.74 7. CALCULATION OF PERMEABILITY: K, (in/hr) = 60 min / hr x r ² / R ² x L (in) / T (min) x ln (H ₁ /H ₂) = 60 min / hr x 0.16 / 3.17 x 4.3 / 2.74 x ln (20.6 / 11.7) 8. DEFECTS IN THE SAMPLE (Check the appropriate items) Soil Permeability Class = K3 8. Defects In The Sample (Check the appropriate items) Dry Soil Soil / Tube Contacts Smearing (Compaction) Other (Specify)	3. TYPE OF SAMPLE: UNDISTURBED	DISTU	JRBED X			
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BASIN IN INCHES: At the beginning of each test interval, At the end of each test interval, TIME T ₂ TIME T ₃ AVERAGE T (interval in minutes) 0.00 161.33 2.689 0.00 164.71 2.745 0.00 163.52 2.725 0.00 167.08 2.785 0.00 167.08 2.772 2.74 7. CALCULATION OF PERMEABILITY: K ₁ (in/hr) = 60 min / hr x r ² / R ² x L (in) / T (min) x ln (H ₁ /H ₂) = 60 min / hr x 0.16 K = 2.70 in/hr Soil Permeability Class = K3 8. DEFECTS IN THE SAMPLE (Check the appropriate items) x None Root Channels Root Channels Cracks Worm Channels Dry Soil Smearing Compaction Other (Specify)	4. BULK DENSITY DETERMINATION (Disturbed Sa	amples Only):	1			
At the beginning of each test interval, At the end of each test interval, $H_2 = \frac{20.60}{11.70}$ cm 6. RATE OF WATER LEVEL DROP: TIME T ₁ TIME T ₂ TIME T ₃ AVERAGE T (interval in minutes) (end of test interval) (end of test interval) (1.33) (1.33) (1.34) $(1.3$	Sample Density Used:	x No		Yes		
At the end of each test interval,	5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA					
6. RATE OF WATER LEVEL DROP: TIME T ₁	At the beginning of each test interval,	H ₁	= 20.60	0	cm	
TIME T1	At the end of each test interval,	H ₂	= 11.70	0	cm	
(start of test interval) (interval in minutes) (minutes) 0.00 161.33 2.689 0.00 164.71 2.745 0.00 163.52 2.725 0.00 167.08 2.785 0.00 166.31 2.772 2.74 7. CALCULATION OF PERMEABILITY: K, (in/hr) = 60 min / hr x r² / R² x L (in) / T (min) x ln (H₁/H₂) = 60 min / hr x 0.16 / 3.17 x 4.3 / 2.74 x ln (20.6 / 11.7) K = 2.70 in/hr Soil Permeability Class = K3 8. DEFECTS IN THE SAMPLE (Check the appropriate items) x None Cracks Worm Channels Dry Soil Root Channels Large Gravel Large Roots Soil / Tube Contacts Smearing Compaction Other (Specify)	6. RATE OF WATER LEVEL DROP:					
(start of test interval) (end of test interval) (interval in minutes) (minutes) 0.00	TIME T. TIME T		TIM	E T ₃		AVERAGE T
0.00	·	_		-	s)	(minutes)
0.00			26	389		
0.00						
7. CALCULATION OF PERMEABILITY: K, (in/hr) = 60 min / hr x r² / R² x L (in) / T (min) x ln (H₁/H₂) = 60 min / hr x 0.16 / 3.17 x 4.3 / 2.74 x ln (20.6 / 11.7) K = 2.70 in/hr Soil Permeability Class = K3 8. DEFECTS IN THE SAMPLE (Check the appropriate items) x None						
7. CALCULATION OF PERMEABILITY: K, (in/hr) = 60 min / hr x r² / R² x L (in) / T (min) x ln (H ₁ /H ₂) = 60 min / hr x 0.16 / 3.17 x 4.3 / 2.74 x ln (20.6 / 11.7) K = 2.70 in/hr Soil Permeability Class = K3 8. DEFECTS IN THE SAMPLE (Check the appropriate items) x None						7
K, (in/hr) = 60 min / hr x r² / R² x L (in) / T (min) x ln (H ₁ /H ₂) = 60 min / hr x 0.16 / 3.17 x 4.3 / 2.74 x ln (20.6 / 11.7) K = 2.70 in/hr Soil Permeability Class = K3	0.00 166.31		2.	772		2.74
## Soil Permeability Class = K3 8. DEFECTS IN THE SAMPLE (Check the appropriate items) X None	7. CALCULATION OF PERMEABILITY:					
## Soil Permeability Class = K3 8. DEFECTS IN THE SAMPLE (Check the appropriate items) X None	K. (in/hr) = 60 min / hr x r^2 / R^2 x L ((in) / T (min) x	$ln (H_1/H_2)$			
8. DEFECTS IN THE SAMPLE (Check the appropriate items) X None	, ,			2.74	x In	(20.6 / 11.7)
X None Cracks Worm Channels Dry Soil Root Channels Large Gravel Large Roots Soil / Tube Contacts Smearing Compaction Other (Specify)	K = 2.70 in/hr	Soil P	ermeability	/ Class	= K3]
Root Channels Smearing Large Gravel Compaction Compaction Large Roots Soil / Tube Contacts Contacts	8. DEFECTS IN THE SAMPLE (Check the appropri	ate items)				
Smearing Compaction Other (Specify)	x None Crack	is [☐Worm Cha	nnels		Dry Soil
Smearing Compaction Other (Specify)	Root Channels Large	Gravel	Large Root	s		Soil / Tube Contacts
			= -			
SIGNATURE OF SOIL EVALUATOR DATE7/12/2010		-25		• /		
	SIGNATURE OF SOIL EVALUATOR	15-1	7-5	•	DATE	7/12/2010

	College Storn			RSC 011.01
MUNICIPALITY		of Galloway,	Atlantic County	, New Jersey
	BLOCK _			
SAMPLE AND EQUIPMENT DATA				
Radius of Permeameter Tube	= 0.40	cm		
Radius of Thin Walled Sample Tube	= 2.40	cm		
Height of Tube Before Sample is Added	= 15.2	cm or	6.00 in	
Height of Tube After Sample is Added	= 4.8	cm or	1.89 in	
Length of Sample	= 10.4	cm =	4.11 in	
TUBE PERMEAMETER TEST DATA				
1. TEST# 6C REPLICATE (letter)	A	DATE CO	LLECTED _	6/15/2010
2. MATERIAL TESTED FILL NATIVE SOIL	- (indicate dep	oth) X	42 in	
3. TYPE OF SAMPLE: UNDISTURBED	X DISTU	RBED		
4. BULK DENSITY DETERMINATION (Disturbed Sa	mples Only):			
Sample Density Used:	x No		Yes	
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BAS	SIN IN INCHE	S:		
At the beginning of each test interval,	H ₁ =	19.60	cm	
At the end of each test interval,	H ₂ =	10.80	cm	
6. RATE OF WATER LEVEL DROP:				
TIME T_1 TIME T_2	i	TIME	≣ T₃	AVERAGE T
(start of test interval) (end of test in		(interval in	-	(minutes)
		0.8		
0.00 51.58		0.8		
0.00 51.55		0.8 0.8		
0.00 52.48 0.00 53.80		0.8		0.87
7. CALCULATION OF PERMEABILITY:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
20 00 10 10 10 10 10 10 10 10 10 10 10 10	-> / T /==i=>	l= (11 /11)		
K, (in/hr) = 60 min / hr x r^2 / R^2 x L (i			0.07 v ln	(19.6 / 10.8)
= 60 min / hr x = 0.16 $K = 4.71 in/hr$	_		Class = K3	19.0 / 10.0)
K - 4.71 III/III	3011 F	Filleability	Class - No	
8. DEFECTS IN THE SAMPLE (Check the appropria	ate items)			
x None Cracks	5	☐Worm Char	nels	Dry Soil
Root Channels Large	Gravel [Large Roots	· [Soil / Tube Contacts
Smearing Compa	action Γ	Other (Spec	cify)	
		-		
OLONATURE OF COLL EVALUATOR	K.	3/5		7/10/0010
SIGNATURE OF SOIL EVALUATOR		0	DATE	7/12/2010

	ge Stormwater Master Plan NO. RSC 011.01 ownship of Galloway, Atlantic County, New Jersey
	DCK
SAMPLE AND EQUIPMENT DATA	
Radius of Permeameter Tube = Radius of Thin Walled Sample Tube = Height of Tube Before Sample is Added = Height of Tube After Sample is Added = Length of Sample =	0.40 cm 2.30 cm 15.2 cm or 6.00 in 4.2 cm or 1.654 in 11.0 cm = 4.346 in
TUBE PERMEAMETER TEST DATA	
1. TEST#6C REPLICATE (letter)	B DATE COLLECTED 6/15/2010
2. MATERIAL TESTED FILL NATIVE SOIL - (indic	ate depth) X 42 in
3. TYPE OF SAMPLE: UNDISTURBED X	DISTURBED
4. BULK DENSITY DETERMINATION (Disturbed Samples	Only):
Sample Density Used:	No Yes
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BASIN IN	INCHES;
At the beginning of each test interval, At the end of each test interval,	$H_1 = 19.60$ cm $H_2 = 10.80$ cm
6. RATE OF WATER LEVEL DROP:	
TIME T_1 TIME T_2 (start of test interval) (end of test interval)	TIME T_3 AVERAGE T (interval in minutes) (minutes)
0.00 20.17	0.336
0.00 20.55 0.00 20.43	0.343
0.00 21.39 0.00 21.58	0.357 0.360 0.35
7. CALCULATION OF PERMEABILITY:	0.300 0.33
K, (in/hr) = 60 min / hr x r^2 / R^2 x L (in) / T = 60 min / hr x 0.16 / 5	
8. DEFECTS IN THE SAMPLE (Check the appropriate iter	ns)
	Worm Channels Dry Soil Large Roots Soil / Tube Contacts Other (Specify)
SIGNATURE OF SOIL EVALUATOR	DATE

	n College Stormwater Master Plan NO. RSC 011.01
MUNICIPALITY	
	BLOCK
SAMPLE AND EQUIPMENT DATA	
Radius of Permeameter Tube	= 0.40 cm
Radius of Thin Walled Sample Tube	= 2.40 cm
Height of Tube Before Sample is Added	= 15.2 cm or 6.00 in
Height of Tube After Sample is Added	= 4.0 cm or 1.575 in
Length of Sample	= 11.2 cm = 4.425 in
TUBE PERMEAMETER TEST DATA	
1. TEST# 6D REPLICATE (letter)	A DATE COLLECTED6/15/2010
2. MATERIAL TESTED FILL NATIVE SOIL	- (indicate depth) X 27 in
3. TYPE OF SAMPLE: UNDISTURBED	x DISTURBED
4. BULK DENSITY DETERMINATION (Disturbed Sa	amples Only):
Sample Density Used:	X No Yes
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BAS	SIN IN INCHES:
At the beginning of each test interval,	$H_1 = 19.10$ cm
At the end of each test interval,	$H_2 = \frac{10.30}{}$ cm
, , , , , , , , , , , , , , , , , , , ,	
6. RATE OF WATER LEVEL DROP:	
TIME T	TIME T ₃ AVERAGE T
TIME T_1 TIME T_2 (start of test interval) (end of test in	2
,	
0.00 69.52	1.159
0.00 69.80 0.00 70.24	<u>1.163</u> 1.171
0.00 70.24 0.00 70.87	1.181
0.00 71.64	1.194
7. CALCULATION OF PERMEABILITY:	
	Constitution of the second of
K, $(in/hr) = 60 \text{ min } / \text{ hr } \times \text{ r}^2 / \text{ R}^2 \times \text{L} \text{ (in/hr)}$	
	6 / 5.76 x 4.4 / 1.17 x ln (19.1 / 10.3)
K = 3.88 in/hr	Soil Permeability Class = K3
8. DEFECTS IN THE SAMPLE (Check the appropria	ate items)
x None Cracks	s Worm Channels Dry Soil
Root Channels Large	Gravel Large Roots Soil / Tube Contacts
	paction Other (Specify)
	75-86-5 DATE 7/12/2010
SIGNATURE OF SOIL EVALUATOR	DATE7/12/2010

PROJECT NAME Stockton MUNICIPALITY	College Stormwater Master F Township of Galloway, F BLOCK	Plan NO. RSC 011.01 Atlantic County, New Jersey
SAMPLE AND EQUIPMENT DATA		
Radius of Permeameter Tube Radius of Thin Walled Sample Tube Height of Tube Before Sample is Added Height of Tube After Sample is Added Length of Sample		6.00 in 1.772 in 4.228 in
TUBE PERMEAMETER TEST DATA		
1. TEST # 6D REPLICATE (letter)	B DATE COL	LECTED6/15/2010
2. MATERIAL TESTED FILL NATIVE SOIL	(indicate depth) x	27 in
3. TYPE OF SAMPLE: UNDISTURBED	x DISTURBED	
4. BULK DENSITY DETERMINATION (Disturbed Sa	nples Only):	
Sample Density Used:	x No	Yes
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	IN IN INCHES:	
At the beginning of each test interval, At the end of each test interval,	$H_1 = 19.30$ $H_2 = 10.50$	cm cm
6. RATE OF WATER LEVEL DROP:		
TIME T_1 TIME T_2 (start of test interval) (end of test in	TIME erval) (interval in	
0.00 62.80	1.04	
0.00 62.89	1.04	
0.00 63.09 0.00 62.41	1.04	
0.00 63.55	1.05	1.05
7. CALCULATION OF PERMEABILITY:		
K, $(in/hr) = 60 min / hr x r^2 / R^2 x L ($ = 60 min / hr x 0.10 K = 4.09 in/hr		.05 x ln (19.3 / 10.5) Class = K3
8. DEFECTS IN THE SAMPLE (Check the appropri	e items)	
X None Crack Root Channels Large Smearing Comp	—	Soil / Tube Contacts
SIGNATURE OF SOIL EVALUATOR	15-14-5	DATE7/12/2010

PROJECT NAME Stockton College Stormwater Master Plan NO. RSC 011.0	
MUNICIPALITY Township of Galloway, Atlantic County, New Jersey BLOCK	/
BLOOK	
SAMPLE AND EQUIPMENT DATA	
Radius of Permeameter Tube = 0.40 cm Radius of Thin Walled Sample Tube = 2.40 cm Height of Tube Before Sample is Added = 15.2 cm or 6.00 in	
Height of Tube After Sample is Added = 5.0 cm or 1.969 in Length of Sample = 10.2 cm = 4.031 in	
TUBE PERMEAMETER TEST DATA	
1. TEST # 6E REPLICATE (letter) A DATE COLLECTED 6/15/2010	
2. MATERIAL TESTED FILL NATIVE SOIL - (indicate depth) x 68 in	
3. TYPE OF SAMPLE: UNDISTURBED X DISTURBED	
4. BULK DENSITY DETERMINATION (Disturbed Samples Only):	
Sample Density Used: X No Yes	
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BASIN IN INCHES:	
At the beginning of each test interval, $H_1 = 19.30$ cm At the end of each test interval, $H_2 = 10.50$ cm	
6. RATE OF WATER LEVEL DROP:	
TIME T ₁ TIME T ₂ TIME T ₃ AVERAGE	
(start of test interval) (end of test interval) (interval in minutes) (minutes) 0.00 3.71 0.062	>)
0.00 3.74 0.062	
0.00 3.79 0.063 0.00 3.78 0.063	
0.00 3.78 0.063 0.06	
7. CALCULATION OF PERMEABILITY:	
K, $(in/hr) = 60 \text{ min / hr x } r^2 / R^2 \times L (in) / T (min) \times ln (H_1/H_2)$	
= 60 min / hr x 0.16 / 5.76 x 4.0 / 0.06 x ln (19.3 / 10	0.5)
8. DEFECTS IN THE SAMPLE (Check the appropriate items)	
X None	Contacts
Smearing Compaction Other (Specify)	
SIGNATURE OF SOIL EVALUATOR SAFE DATE 7/12/	/2010

		rmwater Maste		O. RSC 011.01
MUNICIPALITY		p of Galloway,	Atlantic C	ounty, New Jersey
	BLOCK			
SAMPLE AND EQUIPMENT DATA				
Radius of Permeameter Tube	= 0.40	cm		
Radius of Thin Walled Sample Tube	= 2.40	cm		
Height of Tube Before Sample is Added	= 15.2	cm or		in
Height of Tube After Sample is Added	= 4.8	cm or		in
Length of Sample	= 10.4	cm =	4.11 i	in
TUBE PERMEAMETER TEST DATA				
1. TEST# 6E REPLICATE (letter)	B	DATE CO	DLLECTE	6/15/2010
A MATERIAL TEATER				
2. MATERIAL TESTED FILL NATIVE SOIL	- (indicate de	epth) x	68 in	
3. TYPE OF SAMPLE: UNDISTURBED	X DIST	JRBED		
4. BULK DENSITY DETERMINATION (Disturbed Sa	mples Only)			
Sample Density Used:	x No		Yes	
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BAS	SIN IN INCH	ES:		
At the beginning of each test interval,	H ₁			n
At the end of each test interval,	H ₂	= 11.10) cr	n
6. RATE OF WATER LEVEL DROP:				
TIME T. TIME T.		TIME		AVEDAGE T
$TIMET_1\qquad\qquadTIMET_2$			ET ₃	AVERAGE T
(start of test interval) (end of test interval)	terval)	·	n minutes)	(minutes)
0.00 3.02			50	
0.00 2.95)49	
0.00 3.02)50	
0.00 2.96)49	- 0.05
0.00 2.99		0.0)50	0.05
7. CALCULATION OF PERMEABILITY:				
K, (in/hr) = 60 min / hr x r^2 / R^2 x L (i	n) / T (min) >	(In (H ₁ /H ₂)		
= 60 min / hr x 0.16	6 / 5.76	x 4.1 /	0.05	x In (19.9 / 11.1)
K = 80.30 in/hr	1 Soil F	ermeability		
] [33		10.000	
8. DEFECTS IN THE SAMPLE (Check the appropria	ate items)			
x None Cracks		Worm Char		Dry Soil
Root Channels Large	Gravel [Large Root	S	Soil / Tube Contacts
Smearing	action	Other (Spec	cify)	
		` '		
	R	3/2		DATE 7/40/0040
SIGNATURE OF SOIL EVALUATOR		1 2	0	DATE 7/12/2010

PROJEC	T NAME Stocktor		mwater Maste		RSC 011.01
	MUNICIPALITY	Townshi	p of Galloway	, Atlantic Coun	ty, New Jersey
		BLOCK			
SAMPLE AND EQUIPMENT DA	TA				
Radius of Permeameter Tube		= 0.40	cm		
Radius of Thin Walled Sample To		= 2.40	cm		
Height of Tube Before Sample is		= 15.2	cm or	6.00 in	
Height of Tube After Sample is A	dded	= 5.3 = 9.9	cm or	2.087 in 3.913 in	
Length of Sample		- 9.9	cm =	3.913 111	
TUBE PERMEAMETER TEST D	ATA				
1. TEST #	EPLICATE (letter)	A	_ DATE C	OLLECTED	6/14/2010
2. MATERIAL TESTED FILL	NATIVE SOIL	- (indicate de	pth) x] 30 in	
3. TYPE OF SAMPLE:	UNDISTURBED	X DIST	JRBED]	
4. BULK DENSITY DETERMINA	ATION (Disturbed Sa	amples Only):	9	_	
Sample Density U	Jsed:	X No		Yes	
5. HEIGHT OF WATER LEVEL	ABOVE RIM OF BA				
At the beginning	of each test interval,				
At the end of eac	h test interval,	H ₂	= 11.0	00 cm	
6. RATE OF WATER LEVEL DR	ROP:				
TIME T₁	TIME T	2	TIN	∕IE T₃	AVERAGE T
(start of test interval)	(end of test in		(interval	in minutes)	(minutes)
0.00	194.21		3.	237	
0.00	185.67			095	:
0.00	187.93			132	
0.00	187.30			.122	. 044
0.00	188.05		3.	.134	3.14
7. CALCULATION OF PERMEA	ABILITY				
, (,	nin / hr x r^2 / R^2 x L (
		6 / 5.76	x 3.9 /		ln (19.8 / 11)
K =	1.22 in/hr	Soil	ermeabilit	y Class = K	2
8. DEFECTS IN THE SAMPLE	(Check the appropri	ate items)			
x None	Crack	s	Worm Cha	annels	Dry Soil
Root Channels	Large	Gravel	Large Roo	ots	Soil / Tube Contacts
Smearing		action	Other (Spe		
CIONATURE OF COULTVALUA	TOP	25-	2/-5	DA ⁻	TE 7/12/2010
SIGNATURE OF SOIL EVALUA	II OIX		0		

	n College Storn			
MUNICIPALITY		of Galloway,	Atlantic Co	ounty, New Jersey
	BLOCK _			
SAMPLE AND EQUIPMENT DATA				
Radius of Permeameter Tube	= 0.40	cm		
Radius of Thin Walled Sample Tube	= 2.40	cm		
Height of Tube Before Sample is Added	= 15.2	cm or	6.00 ir	
Height of Tube After Sample is Added	= 4.3	cm or	1.693 ir	
Length of Sample	= 10.9	cm =	4.307 ir	1
TUBE PERMEAMETER TEST DATA				
1. TEST# REPLICATE (letter)	B	DATE CC	LLECTED	6/14/2010
2. MATERIAL TESTED		V		
FILL NATIVE SOIL	- (indicate dep	oth) x	30 in	
3. TYPE OF SAMPLE: UNDISTURBED	X DISTU	RBED		
4. BULK DENSITY DETERMINATION (Disturbed Sa	amples Only):			
Sample Density Used:	x No		Yes	
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	SIN IN INCHE	S:		
At the beginning of each test interval,	H ₁ =	19.40) cm	i
At the end of each test interval,	H ₂ =	10.60	cm	1
6. RATE OF WATER LEVEL DROP:				
TIME T ₁ TIME T	2	TIMI	E Ta	AVERAGE T
(start of test interval) (end of test in	_	(interval in	_	(minutes)
0.00 150.05		2.5	01	
0.00 157.02		2.6		 :
0.00 158.68		2.6		_
0.00 159.89		2.6		
0.00 159.02		2.6	50	2.62
7. CALCULATION OF PERMEABILITY:				
K, (in/hr) = $60 \text{ min / hr x r}^2 / R^2 x L$ (in) / T (min) x l	n (H_1/H_2)		
	6 / 5.76 x			<u>in (</u> 19.4 / 10.6)
K = 1.66 in/hr	Soil Pe	rmeability	Class =	K2
8. DEFECTS IN THE SAMPLE (Check the appropri	ate items)			
x None Crack	s []Worm Char	nels	Dry Soil
Root Channels Large	Gravel	Large Roots	5	Soil / Tube Contacts
	action	Other (Spec	cify)	
	_	_	.	
SIGNATURE OF SOIL EVALUATOR	15-1	4-5-	F	OATE 7/12/2010
SIGNATURE OF SOIL EVALUATOR		0		1/12/2010

PROJECT NAME Stockton	College Stormwater Master Plan NO. RSC 011.01
MUNICIPALITY	Township of Galloway, Atlantic County, New Jersey
	BLOCK
SAMPLE AND EQUIPMENT DATA	
Radius of Permeameter Tube	= 0.40 cm
Radius of Thin Walled Sample Tube	= 2.40 cm
Height of Tube Before Sample is Added	= 15.2 cm or 6.00 in
Height of Tube After Sample is Added	= 4.2 cm or 1.654 in
Length of Sample	= 11.0 cm $=$ 4.346 in
TUBE PERMEAMETER TEST DATA	
1. TEST #7B REPLICATE (letter)	A DATE COLLECTED 6/14/2010
2. MATERIAL TESTED	(indicate depth) x 44 in
FILL NATIVE SOIL -	(indicate depth)
3. TYPE OF SAMPLE: UNDISTURBED [x DISTURBED
4. BULK DENSITY DETERMINATION (Disturbed Sar	mples Only):
Sample Density Used:	x No Yes
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BAS	SIN IN INCHES:
At the beginning of each test interval,	$H_1 = \underline{\hspace{1cm}} 19.20 \hspace{1cm} \text{cm}$
At the end of each test interval,	$H_2 = \underline{\hspace{1cm}} 10.40 \underline{\hspace{1cm}} \text{cm}$
6. RATE OF WATER LEVEL DROP:	
TIME T ₁ TIME T ₂	TIME T ₃ AVERAGE T
(start of test interval) (end of test interval)	•
	0.224
0.00 13.41 0.00 13.67	0.228
0.00 13.51	0.225
0.00 13.97	0.233
0.00 13.81	0.230 0.23
7. CALCULATION OF PERMEABILITY:	
K, (in/hr) = 60 min / hr x r^2 / R^2 x L (ir	n) / T (min) x ln (H ₁ /H ₂)
	/ 5.76 x 4.3 / 0.23 x ln (19.2 / 10.4)
K = 19.49 in/hr	Soil Permeability Class = K4
	<u> </u>
8. DEFECTS IN THE SAMPLE (Check the appropria	
x None Cracks	
Root Channels Large C	
Smearing Compa	action Other (Specify)
	70 71
SIGNATURE OF SOIL EVALUATOR	

PROJECT NAME <u>Stocktor</u> MUNICIPALITY	Township of Galloway, Atlantic County, New Jersey BLOCK
	BLOCK
SAMPLE AND EQUIPMENT DATA	
Radius of Permeameter Tube Radius of Thin Walled Sample Tube Height of Tube Before Sample is Added Height of Tube After Sample is Added Length of Sample	= 0.40 cm = 2.40 cm = 15.2 cm or 6.00 in = 4.0 cm or 1.575 in = 11.2 cm = 4.425 in
TUBE PERMEAMETER TEST DATA	
1. TEST#7B REPLICATE (letter)	B DATE COLLECTED 6/14/2010
2. MATERIAL TESTED FILL NATIVE SOIL	(indicate depth) X 44 in
3. TYPE OF SAMPLE: UNDISTURBED	X DISTURBED
4. BULK DENSITY DETERMINATION (Disturbed Sa	amples Only):
Sample Density Used:	x No Yes
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BAS	ASIN IN INCHES:
At the beginning of each test interval,	
At the end of each test interval,	$H_2 = \underline{\hspace{1cm}} 10.30 \hspace{1cm} cm$
6. RATE OF WATER LEVEL DROP:	
TIME T ₁ TIME T ₂	_
(start of test interval) (end of test in	,
0.00 74.42 0.00 75.90	
0.00 75.90 0.00 76.28	
0.00 75.71	1.262
0.00 76.04	1.267 1.26
7. CALCULATION OF PERMEABILITY:	
K, $(in/hr) = 60 \text{ min / hr x } r^2 / R^2 \times L$ (in/hr) = 60 min / hr x 0.16 K = 3.61 in/hr	16 / 5.76 x 4.4 / 1.26 x ln (19.1 / 10.3)
8. DEFECTS IN THE SAMPLE (Check the appropria	riate items)
x None Cracks	ks Worm Channels Dry Soil
	e Gravel Large Roots Soil / Tube Contacts
Smearing Compa	paction Other (Specify)
SIGNATURE OF SOIL EVALUATOR	DATE

		mwater Maste		RSC 011.01
MUNICIPALITY		p of Galloway,	Atlantic Coun	ity, New Jersey
	BLOCK _			
SAMPLE AND EQUIPMENT DATA				
Radius of Permeameter Tube	= 0.40	cm		
Radius of Thin Walled Sample Tube	= 2.40	cm		
Height of Tube Before Sample is Added	= 15.2	cm or	6.00 in	
Height of Tube After Sample is Added	= 3.5	cm or	1.378 in	
Length of Sample	= 11.7	cm =	4.622 in	
TUBE PERMEAMETER TEST DATA				
1. TEST # REPLICATE (letter)	A	_ DATE CO	DLLECTED .	6/14/2010
2. MATERIAL TESTED FILL NATIVE SOIL	- (indicate de	pth) X	30 in	
3. TYPE OF SAMPLE: UNDISTURBED	x DISTU	JRBED		
4. BULK DENSITY DETERMINATION (Disturbed Sa	ımples Only):			
Sample Density Used:	x No		Yes	
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	SIN IN INCHI	ES:		
At the beginning of each test interval,	H ₁	= 19.60	cm cm	
At the end of each test interval,	H ₂	= 10.70	om cm	
6. RATE OF WATER LEVEL DROP:				
TIME T ₁ TIME T ₂	,	TIM	ET ₃	AVERAGE T
(start of test interval) (end of test in	=		n minutes)	(minutes)
0.00 17.25		0.2	288	
0.00 17.25			289	E
0.00 17.29			288	
0.00 17.32		0.2	289	
0.00 17.35		0.2	289	0.29
7. CALCULATION OF PERMEABILITY:				
K, (in/hr) = 60 min / hr x r^2 / R^2 x L (i	n) / T (min) x	In (H ₁ /H ₂)		
= 60 min / hr x = 0.16	5 / 5.76	x 4.6 /	0.29 x l	n (19.6 / 10.7)
K = 16.16 in/hr	Soil P	ermeability	Class = K	4
8. DEFECTS IN THE SAMPLE (Check the appropria	ate items)			
x None Cracks	s [Worm Char	nnels	Dry Soil
Root Channels Large	Gravel	Large Root	s	Soil / Tube Contacts
Smearing Comp	=	Other (Spe		_
	L		• /	
CIONATURE OF COLL FLAVOR	K	2/5	D 4.7	TE 7/40/0040
SIGNATURE OF SOIL EVALUATOR		r - 2	DAT	ΓE <u>7/12/2010</u>

	PROJECT NAME Stockton MUNICIPALITY		rmwater Maste p of Galloway		D. RSC 011.01 bunty, New Jersey			
SA	AMPLE AND EQUIPMENT DATA							
Ra He He	adius of Permeameter Tube adius of Thin Walled Sample Tube eight of Tube Before Sample is Added eight of Tube After Sample is Added ength of Sample	= 0.40 = 2.40 = 15.2 = 3.8 = 11.4	cm cm cm or cm or cm =		n n n			
TL	UBE PERMEAMETER TEST DATA							
1.	TEST # 7C REPLICATE (letter)	В	_ DATE C	OLLECTED	6/14/2010			
2.	MATERIAL TESTED FILL NATIVE SOIL -	(indicate de	epth) x] 30 in				
3.	TYPE OF SAMPLE: UNDISTURBED [x DIST	URBED _]				
4.	BULK DENSITY DETERMINATION (Disturbed Sar	nples Only);	:					
	Sample Density Used:	x No		Yes				
5.	HEIGHT OF WATER LEVEL ABOVE RIM OF BAS	IN IN INCH	ES:					
	At the beginning of each test interval,	H_1	-					
	At the end of each test interval,	112		30 cn	1			
6.	RATE OF WATER LEVEL DROP:							
	TIME T_1 TIME T_2 (start of test interval) (end of test interval)	anval)		ME T₃ in minutes)	AVERAGE T (minutes)			
	(start of test interval) (end of test interval) 39.84	civai)		.664	(minutes)			
	0.00 33.64			.627	_			
	0.00 37.96			.633				
	0.00 38.58 0.00 38.58			0.643 0.643	0.64			
7.	. CALCULATION OF PERMEABILITY:							
	K, (in/hr) = $60 \text{ min / hr x } r^2 / R^2 \times L$ (in) / T (min) $\times \ln (H_1/H_2)$ = 60 min / hr x 0.16 / 5.76 \times 4.5 / 0.64 $\times \ln ($ 20.1 / 11.3) K = 6.73 in/hr Soil Permeability Class = K4							
8.	. DEFECTS IN THE SAMPLE (Check the appropria	te items)						
	x None Cracks		Worm Ch	annels	Dry Soil			
	Root Channels Large C	Gravel	Large Ro	ots	Soil / Tube Contacts			
	Smearing Compa		Other (Sp	ecify) _				
S	SIGNATURE OF SOIL EVALUATOR	H	Kz	_	DATE7/12/2010			

PROJECT NAME Stockton MUNICIPALITY	Township of Galloway, Atlantic County, New Jersey BLOCK						
SAMPLE AND EQUIPMENT DATA							
Radius of Permeameter Tube Radius of Thin Walled Sample Tube Height of Tube Before Sample is Added Height of Tube After Sample is Added Length of Sample	= 0.40 cm = 2.40 cm = 15.2 cm or 6.00 in = 4.2 cm or 1.654 in = 11.0 cm = 4.346 in						
TUBE PERMEAMETER TEST DATA							
1. TEST # 7D REPLICATE (letter)	A DATE COLLECTED 5/5/2010						
2. MATERIAL TESTED FILL NATIVE SOIL	(indicate depth) X 18 in						
3. TYPE OF SAMPLE: UNDISTURBED	x DISTURBED						
4. BULK DENSITY DETERMINATION (Disturbed Sa	amples Only):						
Sample Density Used:	x No Yes						
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	ASIN IN INCHES:						
At the beginning of each test interval, At the end of each test interval,	$H_1 = 21.40$ cm $H_2 = 12.20$ cm						
6. RATE OF WATER LEVEL DROP:							
TIME T ₁ TIME T ₂							
(start of test interval) (end of test in 0.00 101.81	, , , , , , , , , , , , , , , , , , ,						
0.00 102.69	9 1.712						
0.00 101.63 0.00 101.94							
0.00 101.94 0.00 102.09							
7. CALCULATION OF PERMEABILITY:							
K, $(in/hr) = 60 min / hr x r^2 / R^2 x L (in) / T (min) x ln (H_1/H_2)= 60 min / hr x 0.16 / 5.76 x 4.3 / 1.70 x ln (21.4 / 12.2)K = 2.39 in/hr Soil Permeability Class = K3$							
8. DEFECTS IN THE SAMPLE (Check the appropria	riate items)						
	Worm Channels Dry Soil Gravel Large Roots Soil / Tube Contacts Dry Soil						
SIGNATURE OF SOIL EVALUATOR	DATE						

PROJECT NAME Stocktor MUNICIPALITY	Township BLOCK	nwater Master of Galloway,	Plan NO Atlantic County	RSC 011.01 r, New Jersey			
SAMPLE AND EQUIPMENT DATA	:		::				
Radius of Permeameter Tube Radius of Thin Walled Sample Tube Height of Tube Before Sample is Added Height of Tube After Sample is Added Length of Sample	= 0.40 = 2.40 = 15.2 = 4.2 = 11.0	cm cm or cm or cm =	6.00 in 1.654 in 4.346 in				
TUBE PERMEAMETER TEST DATA							
1. TEST # REPLICATE (letter)	B	DATE CO	LLECTED _	5/5/2010			
2. MATERIAL TESTED FILL NATIVE SOIL	- (indicate dep	th) X	18 in				
3. TYPE OF SAMPLE: UNDISTURBED	X DISTUI	RBED					
4. BULK DENSITY DETERMINATION (Disturbed Sa	mples Only):						
Sample Density Used:	x No		Yes				
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	SIN IN INCHE	S:					
At the beginning of each test interval, $H_1 = 21.30$ cm At the end of each test interval, $H_2 = 12.10$ cm							
6. RATE OF WATER LEVEL DROP: TIME T ₁ TIME T ₂		TIMI	Ε T.	AVERAGE T			
TIME T_1 TIME T_2 (start of test interval) (end of test in		(interval in	_	(minutes)			
0.00 99.43		1.6					
0.00 100.11 0.00 99.45		1.6 1.6					
0.00 99.97		1.6 1.6		1.67			
0.00 100.55	(() -	1.0	170	1.07			
7. CALCULATION OF PERMEABILITY: $ K, (in/hr) = 60 \text{ min / hr x } r^2 / R^2 \text{ x L } (in) / T (min) \text{ x ln } (H_1/H_2) $ $ = 60 \text{ min / hr x} 0.16 / 5.76 \text{ x} 4.3 / 1.67 \text{ x ln } (21.3 / 12.1) $ $ K = 2.46 \text{ in/hr} $ Soil Permeability Class = K3							
8. DEFECTS IN THE SAMPLE (Check the appropria	ate items)						
	Gravel]Worm Char]Large Roots]Other (Spec	s [Dry Soil Soil / Tube Contacts			
SIGNATURE OF SOIL EVALUATOR	15-19	X-5	DATE	= <u>7/12/2010</u>			

PROJECT NAME Stock	ton College Sto	ormwater Maste	Plan	NO	RSC 011.01
MUNICIPALI		nip of Galloway,	Atlantic	County,	New Jersey
	BLOCK		-		
SAMPLE AND EQUIPMENT DATA					
Radius of Permeameter Tube	= 0.40				
Radius of Thin Walled Sample Tube	= 1.78		E 004	in	
Height of Tube Before Sample is Added Height of Tube After Sample is Added	= 15.2 = 4.2		5.984 1.654	in in	
Length of Sample	= 11.0		4.331	in	
TUBE PERMEAMETER TEST DATA					
1. TEST#7D REPLICATE (letter)	В	DATE CO	LLECT	ED _	5/5/2010
2. MATERIAL TESTED FILL NATIVE SO	IL - (indicate c	lepth) x	20	in	
	<u> </u>				
3. TYPE OF SAMPLE: UNDISTURBED		TURBED x			
4. BULK DENSITY DETERMINATION (Disturbed	Samples Only	r): 			
Sample Density Used:	x No		Yes		
5. HEIGHT OF WATER LEVEL ABOVE RIM OF I	BASIN IN INC	HES:			
At the beginning of each test interv	al, H	1 = 21.3)	cm	
At the end of each test interval,	Н	2 = 12.1)	cm	
6. RATE OF WATER LEVEL DROP:					
TIME T₁ TIME	ΞΤ ₂	TIM	ET ₃		AVERAGE T
(start of test interval) (end of test	_	(interval i	•	s)	(minutes)
0.00 99.4	13	1 6	357		
0.00 100.			669		
0.00 99.4			658		
0.00 99.9			666 676		1.67
0.00 100.	55	1.0	576		1.07
7. CALCULATION OF PERMEABILITY:					
K, (in/hr) = 60 min / hr x r^2 / R^2 x			4.07	In 8	(04.0 / 40.4)
San Control of the Co	0.16 / 3.17	x 4.3 /	1.67		(21.3 / 12.1)
K = 4.45 in/	nr Soli	Permeability	Class	- N3	J
8. DEFECTS IN THE SAMPLE (Check the appro	priate items)				
x None Cra	cks	Worm Cha	nnels		Dry Soil
Root Channels Lar	ge Gravel	Large Root	s		Soil / Tube Contact
<u> </u>	npaction	Other (Spe	cify)		
	H	ALS			
SIGNATURE OF SOIL EVALUATOR		4	es.	DATE	7/12/2010

PROJECT NA	AME <u>Stockton Colleg</u> MUNICIPALITY <u>To</u> BLC	e Stormwater Master wnship of Galloway, OCK	Plan NO. Atlantic County	RSC 011.01 y, New Jersey
SAMPLE AND EQUIPMENT DATA				
Radius of Permeameter Tube Radius of Thin Walled Sample Tube Height of Tube Before Sample is Add Height of Tube After Sample is Added Length of Sample		0.40 cm 1.78 cm 15.2 cm or 4.2 cm or 11.0 cm =	5.984 in 1.654 in 4.331 in	
TUBE PERMEAMETER TEST DATA				
1. TEST# 7D REPLI	CATE (letter)	A DATE CO	LLECTED _	5/5/2010
2. MATERIAL TESTED FILL	NATIVE SOIL - (indic	ate depth) x	20 in	
3. TYPE OF SAMPLE: UNI	DISTURBED	DISTURBED X		
4. BULK DENSITY DETERMINATIO	N (Disturbed Samples	Only):		
Sample Density Used	х	No 🔲	Yes	
5. HEIGHT OF WATER LEVEL ABO	VE RIM OF BASIN IN	INCHES:		
At the beginning of ea	ch test interval,	H ₁ = 21.40)cm	
At the end of each tes	t interval,	$H_2 = 12.20$) cm	
6. RATE OF WATER LEVEL DROP;				
TIME T ₁	TIME T ₂	TIM	-	AVERAGE T
(start of test interval)	(end of test interval)	(interval ir	·	(minutes)
0.00	101.81 102.69	1.6	12	
0.00	101.63		94	
0.00	101.94		99	
0.00	102.09		02	1.70
7. CALCULATION OF PERMEABILI	TY:			
K, (in/hr) = 60 min / = 60 min K = 4.33				(21.4 / 12.2)
8. DEFECTS IN THE SAMPLE (Che	ck the appropriate item	ns)		-
X None	Cracks	Worm Char		Dry Soil
Root Channels Smearing	Large Gravel Compaction	Large Roots Other (Spec	-	Soil / Tube Contacts
SIGNATURE OF SOIL EVALUATOR		15-15-5	DATE	= 7/12/2010

	College Stormwater Master Plan NO. RSC 0	
MUNICIPALITY	Township of Galloway, Atlantic County, New J	lersey
	BLOCK	
SAMPLE AND EQUIPMENT DATA		
Radius of Permeameter Tube Radius of Thin Walled Sample Tube Height of Tube Before Sample is Added	= 0.40 cm = 2.40 cm = 15.2 cm or 6.00 in	
Height of Tube After Sample is Added Length of Sample	= 3.0 cm or 1.181 in = 12.2 cm = 4.819 in	
TUBE PERMEAMETER TEST DATA		
1. TEST# REPLICATE (letter)	A DATE COLLECTED6/14/	2010
2. MATERIAL TESTED FILL NATIVE SOIL	(indicate depth) X 36 in	
3. TYPE OF SAMPLE: UNDISTURBED	x DISTURBED	
4. BULK DENSITY DETERMINATION (Disturbed Sa	mples Only):	
Sample Density Used:	x No Yes	
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	SIN IN INCHES:	
At the beginning of each test interval, At the end of each test interval,	$H_1 = 20.00$ cm $H_2 = 10.10$ cm	
6. RATE OF WATER LEVEL DROP:		
TIME T ₁ TIME T		RAGE T
(start of test interval) (end of test in 0.00 16.06	erval) (interval in minutes) (m 0.268	inutes)
0.00 15.26	0.254	
0.00 16.06 0.00 15.92	0.268 0.265	
0.00 16.13	0.269	0.26
7. CALCULATION OF PERMEABILITY:		
K, $(in/hr) = 60 \text{ min / hr x r}^2 / R^2 \times L$. / 40.4
= 60 min / hr x 0.16 K = 20.72 in/hr		/ 10.1)
8. DEFECTS IN THE SAMPLE (Check the appropria	te items)	
x None Crack	Worm Channels Dry S	Soil
Root Channels Large Smearing Comp		Tube Contacts
SIGNATURE OF SOIL EVALUATOR		7/12/2010

PROJECT N		College Stor	mwater Maste	r Plan NO.	RSC 011.01
	MUNICIPALITY		of Galloway	Atlantic Cou	nty, New Jersey
		BLOCK _			
SAMPLE AND EQUIPMENT DATA					
Radius of Permeameter Tube		= 0.40	cm		
Radius of Thin Walled Sample Tube	i e	= 2.30	cm		
Height of Tube Before Sample is Ad		= 15.2	cm or	6.00 in	
Height of Tube After Sample is Adde	ed	= 3.5	cm or	1.378 in	
Length of Sample		= 11.7	cm =	4.622 in	
TUBE PERMEAMETER TEST DAT	A				
1. TEST# REPL	ICATE (letter)	В	_ DATE CO	OLLECTED	6/14/2010
2. MATERIAL TESTED FILL	NATIVE SOIL -	(indicate de	pth) x	36 in	
3. TYPE OF SAMPLE: UN	IDISTURBED [x DISTU	JRBED		
4. BULK DENSITY DETERMINATION	ON (Disturbed San	nples Only):			
Sample Density Use	d: [x No		Yes	
5. HEIGHT OF WATER LEVEL AB	OVE RIM OF BAS	IN IN INCHE	ES:		
At the beginning of e	ach test interval,	H₁			
At the end of each te	est interval,	H ₂	= 11.0	0 cm	
6. RATE OF WATER LEVEL DROP	o:				
TIME T₁	TIME T ₂		TIM	IE T ₃	AVERAGE T
(start of test interval)	(end of test inte	erval)		n minutes)	(minutes)
0.00	9.27		0	155	
0.00	9.52			159	-
0.00	9.47		0.	158	- -
0.00	9.38			156	
0.00	9.51		0.	159	0.16
7. CALCULATION OF PERMEABIL	_ITY:				
K, (in/hr) = 60 min	$/ hr \times r^2 / R^2 \times L (in$) / T (min) x	In (H_1/H_2)		
= 60 mir	n / hr x 0.16	/ 5.29	x 4.6 /	0.16 x	<u>ln (</u> 19.8 / 11)
K = 31.	37 in/hr	Soil P	ermeabilit	y Class = k	(5
8. DEFECTS IN THE SAMPLE (Ch	eck the appropriat	te items)			_
x None	Cracks		Worm Cha	nnels	Dry Soil
Root Channels	Large C	Fravel [Large Roo	ts	Soil / Tube Contacts
Smearing	Compa	ction [Other (Spe	ecify)	
_		70	21		
SIGNATURE OF SOIL EVALUATO	R	1	3/5	_ DA	TE7/12/2010

		mwater Master		
MUNICIPALITY	Townshi BLOCK	p of Galloway,	Atlantic Co	ounty, New Jersey
	BLOOK _		-	
SAMPLE AND EQUIPMENT DATA				
Radius of Permeameter Tube	= 0.40	cm		
Radius of Thin Walled Sample Tube	= 1.78	cm	E 004 1	
Height of Tube Before Sample is Added Height of Tube After Sample is Added	= 15.2 = 3.5	cm or cm or	5.984 in 1.378 in	
Length of Sample	= 11.7	cm =	4.606 in	
TUBE PERMEAMETER TEST DATA				
1. TEST# 10A REPLICATE (letter)	Α	DATE CO	LLECTED	6/14/2010
1. TEST# REPLICATE (letter)		_ DAIL CC	LLLCTLD	
2. MATERIAL TESTED FILL NATIVE SOIL	(indicate de	epth) x	51 in	
3. TYPE OF SAMPLE: UNDISTURBED	DIST	JRBED X		
4. BULK DENSITY DETERMINATION (Disturbed S	amples Only):			
Sample Density Used:	x No		Yes	
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	ASIN IN INCH	ES:		
At the beginning of each test interval	, H ₁	= 21.10)cm	
At the end of each test interval,	H_2	= 12.10) cm	
6. RATE OF WATER LEVEL DROP:				
TIME T ₁ TIME T	- 2	TIM	E T ₃	AVERAGE T
(start of test interval) (end of test in	_		minutes)	(minutes)
0.00 109.98	3	1.8	33	
0.00 109.30			22	
0.00 109.47 0.00 110.00			325 334	_
0.00 109.34			322	1.83
7. CALCULATION OF PERMEABILITY:		,		
K, (in/hr) = 60 min / hr x r^2 / R^2 x L	(in) / T (min) x	In (H ₁ /H ₂)		
	6 / 3.17	x 4.6 /		<u>ln (</u> 21.1 / 12.1)
K = 4.25 in/h	Soil P	ermeability	Class =	K3
8. DEFECTS IN THE SAMPLE (Check the appropr	iate items)			
X None Crack	ks [Worm Char	nnels	Dry Soil
Root Channels Large	Gravel [Large Roots	5	Soil / Tube Contacts
Smearing Com	paction [Other (Spec	cify)	
	N	21		
SIGNATURE OF SOIL EVALUATOR	/>-	R/5		ATE7/12/2010

PROJECT NAME Stockto	on College Stor	mwater Master		NO	RSC 011.01	
MUNICIPALIT		o of Galloway,	Atlantic	County	New Jersey	
	BLOCK _		2			
SAMPLE AND EQUIPMENT DATA						
Radius of Permeameter Tube	= 0.40	cm				
Radius of Thin Walled Sample Tube	= 1.78	cm		F1.7		
Height of Tube Before Sample is Added	= 15.2 = 3.8	cm or	5.984 1.496	in in		
Height of Tube After Sample is Added Length of Sample	- 3.6 = 11.4	cm or	4.488	in		
TUBE PERMEAMETER TEST DATA		J				
		DATE OC	LLECTI		6/14/2010	
1. TEST # 10A REPLICATE (letter)	B	_ DATE CC	ILLECT	<u> </u>	6/14/2010	
2. MATERIAL TESTED FILL NATIVE SOIL	L - (indicate de	pth) x	51	in		
3. TYPE OF SAMPLE: UNDISTURBED	DIST	JRBED X				
4. BULK DENSITY DETERMINATION (Disturbed S	Samples Only):					
Sample Density Used:	X No		Yes			
5. HEIGHT OF WATER LEVEL ABOVE RIM OF B	ASIN IN INCHI	ES:				
At the beginning of each test interval, $H_1 = 21.30$ cm						
At the end of each test interval,	H ₂	= 12.30)	cm		
6. RATE OF WATER LEVEL DROP:						
TIME T ₁ TIME	T ₂	TIM	E T ₃		AVERAGE T	
(start of test interval) (end of test	-	(interval in	-	s)	(minutes)	
0.00 102.2		1.7				
0.00 102.9		1.7				
0.00 103.1			20			
0.00 102.9		1.7			4 74	
0.00 102.4	3	1.7	07		1.71	
7. CALCULATION OF PERMEABILITY:						
K, (in/hr) = 60 min / hr x r^2 / R^2 x L	(in) / T (min) x					
		x 4.5 /			(21.3 / 12.3)	
K = 4.36 in/h	r Soil P	ermeability	Class	= K3		
8. DEFECTS IN THE SAMPLE (Check the approp	riate items)			11	_	
x None Crac	ks [Worm Char	nels		Dry Soil	
Root Channels Larg	e Gravel [Large Roots	5		Soil / Tube Contacts	
Smearing Com	paction [Other (Spec	cify)			
	R	7/5			7/49/9040	
SIGNATURE OF SOIL EVALUATOR		, 0		DATE	7/12/2010	

·		tormwater Maste		RSC 011.01
MUNICIPALI		hip of Galloway	Atlantic Count	ty, New Jersey
	BLOCK			
SAMPLE AND EQUIPMENT DATA				
Radius of Permeameter Tube	= 0.4	0 cm		
Radius of Thin Walled Sample Tube	= 2.4			
Height of Tube Before Sample is Added	= 15.		6.00 in	
Height of Tube After Sample is Added	= 5.2		2.047 in	
Length of Sample	= 10.	0 cm =	3.953 in	
TUBE PERMEAMETER TEST DATA				
1. TEST# 10B REPLICATE (letter)	A	DATE CO	DLLECTED _	6/15/2010
2. MATERIAL TESTED FILL NATIVE SO	IL - (indicate	depth) x	50 in	
3. TYPE OF SAMPLE: UNDISTURBED	X DIS	TURBED		
4. BULK DENSITY DETERMINATION (Disturbed	Samples Onl	y):		
Sample Density Used:	x No		Yes	
5. HEIGHT OF WATER LEVEL ABOVE RIM OF I	BASIN IN INC	HES:		
At the beginning of each test interv	al, ł	$H_1 = 20.00$	0 cm	
At the end of each test interval,	ŀ	$H_2 = \frac{11.20}{11.20}$	cm	
6. RATE OF WATER LEVEL DROP:		'		
TIME T ₁ TIME	T.	TIM	ET ₃	AVERAGE T
(start of test interval) (end of test	_		n minutes)	(minutes)
0.00 60.2	21	1.0	004	
0.00 59.8			997	
0.00 60.0			000	
0.00 60.4			007	1.01
0.00 61.0	15	1.(018	1.01
7. CALCULATION OF PERMEABILITY:				
K, (in/hr) = $60 \text{ min / hr x } r^2 / R^2 x$	L (in) / T (min	$) \times ln (H_1/H_2)$		
	.16 / 5.76	x 4.0 /	1.01 x lr	
K = 3.80 in/l	nr Soil	Permeability	Class = K3	
8. DEFECTS IN THE SAMPLE (Check the approp	oriate items)			
X None Cra	cks	Worm Cha	nnels [Dry Soil
	ge Gravel	Large Root	5	Soil / Tube Contacts
	npaction	Other (Spe	_	
	πρασαστι	Шошег (оре		
CIONATURE OF COULEVALUATOR	25	7/2	DAT	E 7/12/2010
SIGNATURE OF SOIL EVALUATOR		0	DAT	

PROJEC			mwater Maste		NO	RSC 011.01
	MUNICIPALITY		p of Galloway	Atlantic	County,	New Jersey
		BLOCK _		-		
SAMPLE AND EQUIPMENT DA	TA					
Radius of Permeameter Tube		= 0.40	cm			
Radius of Thin Walled Sample T	ube	= 2.30	cm			
Height of Tube Before Sample is		= 15.2	cm or	6.00	in	
Height of Tube After Sample is A	\dded	= 5.8	cm or	2.283	in	
Length of Sample		= 9.4	cm =	3.717	in	
TUBE PERMEAMETER TEST D	DATA					
1. TEST# 10B R	EPLICATE (letter)	ВВ	_ DATE CO	OLLECTE	D	6/15/2010
2. MATERIAL TESTED FILL	NATIVE SOIL	- (indicate de	pth) x	50 i	n	
3. TYPE OF SAMPLE:	UNDISTURBED	X DISTU	JRBED			
4. BULK DENSITY DETERMINA	ATION (Disturbed Sa	amples Only):				
Sample Density l	Jsed:	x No		Yes		
5. HEIGHT OF WATER LEVEL	ABOVE RIM OF BA	SIN IN INCHI	ES:			
At the beginning	of each test interval,	H ₁	= 19.9	00	m	
At the end of eac	h test interval,	H_2	= 11.1	0 0	m	
6. RATE OF WATER LEVEL DI	ROP:					
TIME T₁	TIME T	2	TIM	E T ₃		AVERAGE T
(start of test interval)	(end of test in		(interval i	_	s)	(minutes)
0.00	47.52	•	0.	792		
0.00	45.68			761		
0.00	47.95			799		
0.00	46.27		0.7	771		
0.00	46.67		0.	778		0.78
7. CALCULATION OF PERMEA	ABILITY:					
K_{\cdot} (in/hr) = 60 r	nin / hr x r² / R² x L (in) / T (min) x	In (H ₁ /H ₂)			
, ,			x 3.7 /	0.78	x In ((19.9 / 11.1)
K =	5.05 in/hr	Soil P	ermeability	/ Class	= K3]
8. DEFECTS IN THE SAMPLE	(Check the appropria	ate items)				
x None	Crack	s [Worm Cha	nnels		Dry Soil
Root Channels	Large	Gravel	Large Root	s		Soil / Tube Contacts
Smearing	Comp	=	Other (Spe			-
				**		
OLONATURE OF CO.	TOD	26	2/5		D 4 T C	7/40/0040
SIGNATURE OF SOIL EVALUA	TOR		,		DATE	7/12/2010

	n College Stori			NO	RSC 011.01
MUNICIPALITY		of Galloway	Atlantic	County,	New Jersey
	BLOCK _		-		
SAMPLE AND EQUIPMENT DATA					
Radius of Permeameter Tube	= 0.40	cm			
Radius of Thin Walled Sample Tube	= 2.40	cm			
Height of Tube Before Sample is Added	= 15.2	cm or	6.00	in	
Height of Tube After Sample is Added	= 4.0	cm or	1.575	in	
Length of Sample	= 11.2	cm =	4.425	in	
TUBE PERMEAMETER TEST DATA					
1. TEST#10C REPLICATE (letter)	A	_ DATE CO	DLLECTE	ED	5/5/2010
2. MATERIAL TESTED FILL NATIVE SOIL	- (indicate dep	oth) X	16 i	n	
3. TYPE OF SAMPLE: UNDISTURBED	X DISTU	IRBED			
4. BULK DENSITY DETERMINATION (Disturbed Sa	imples Only):				
Sample Density Used:	x No		Yes		
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	SIN IN INCHE	S:			
At the beginning of each test interval,	H ₁ =	-		cm	
At the end of each test interval,	H ₂ =	= 11.4) (cm	
6. RATE OF WATER LEVEL DROP:					
TIME T ₁ TIME T ₂	,	TIM	E T ₃		AVERAGE T
(start of test interval) (end of test in	-	(interval i		s)	(minutes)
0.00 100.58			376		
0.00 99.58	20		660		
0.00 103.88			731		
0.00 103.95 0.00 101.24			733 687		1.70
7. CALCULATION OF PERMEABILITY:			507		1.70
K, (in/hr) = $60 \text{ min / hr x } r^2 / R^2 x L$ (i					
	_	x 4.4 /		x In (20 / 11.4)
K = 2.44 in/hr	Soil Po	ermeability	Class	= K3	
8. DEFECTS IN THE SAMPLE (Check the appropria	ate items)				
x None Cracks	ь Г	Worm Cha	nnels		Dry Soil
	Gravel	Large Root		<u> </u>	Soil / Tube Contacts
Smearing Compa		Other (Spe			1
	L L		- 		
SIGNATURE OF SOIL EVALUATOR	H-4	3/5		DATE	7/12/2010
SIGNATURE OF SOIL EVALUATOR		0	2		111212010

	on College Stori			O. RSC 011.01
MUNICIPALITY	Y Township BLOCK	of Galloway	Atlantic C	ounty, New Jersey
	BLOCK _		· (=	
SAMPLE AND EQUIPMENT DATA				
Radius of Permeameter Tube	= 0.40	cm		
Radius of Thin Walled Sample Tube	= 2.40	cm	6.00	_
Height of Tube Before Sample is Added Height of Tube After Sample is Added	= 15.2 = 3.2	cm or		n n
Length of Sample	= 12.0	cm =		n
TUBE PERMEAMETER TEST DATA				
1. TEST # 10D REPLICATE (letter)	Α	DATEC	OLLECTED	6/15/2010
1. TEST# REPLICATE (letter)	3———	_ DAIL O	OLLLOTLL	0/13/2010
2. MATERIAL TESTED FILL NATIVE SOIL	(indicate de	pth) x] 60 in	
3. TYPE OF SAMPLE: UNDISTURBED	X DISTU	JRBED]	
4. BULK DENSITY DETERMINATION (Disturbed S	samples Only):			
Sample Density Used:	x No		Yes	
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	ASIN IN INCHE	ES:		
At the beginning of each test interval	I, H ₁ =	= 18.8	30 cn	า
At the end of each test interval,	H ₂ :	= 10.0	00 cn	n
6. RATE OF WATER LEVEL DROP:				
TIME T ₁ TIME T	Γ ₂	TIN	ΛΕ Τ ₃	AVERAGE T
(start of test interval) (end of test i	_		in minutes)	(minutes)
0.00 5.88			098	
0.00 5.87			098	
0.00 5.95 0.00 6.13			099 102	
0.00 5.91			099	0.10
7. CALCULATION OF PERMEABILITY:				
K, (in/hr) = 60 min / hr x r^2 / R^2 x L	(in) / T (min) x	In (H ₁ /H ₂)		
= 60 min / hr x 0.1	16 / <u>5.76 :</u>	x 4.7 /		<u>(In (</u> 18.8 / 10)
K = 50.31 in/h	r Soil Po	ermeabilit	y Class =	K5
8. DEFECTS IN THE SAMPLE (Check the appropr	iate items)			
x None Crack	ks [Worm Cha	annels	Dry Soil
Root Channels Large	e Gravel	Large Roo	ts	Soil / Tube Contacts
Smearing Com	paction [Other (Spe	ecify)	
OLONATURE OF COLL EVALUATOR	Kal	7/2		DATE 7/40/2040
SIGNATURE OF SOIL EVALUATOR		. 5	- '	DATE 7/12/2010

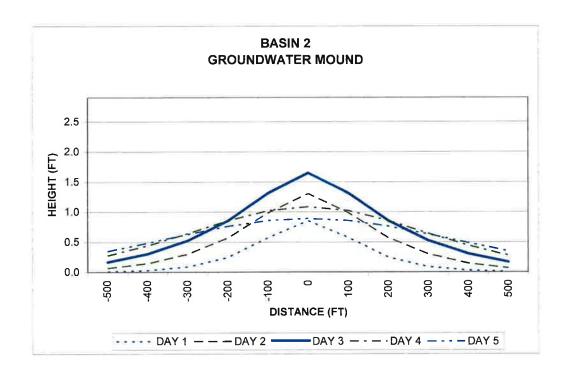
	on College Stormwater Master Plan NO. RSC 011.01
MUNICIPALITY	Township of Galloway, Atlantic County, New Jersey BLOCK
SAMPLE AND EQUIPMENT DATA	
Radius of Permeameter Tube Radius of Thin Walled Sample Tube Height of Tube Before Sample is Added Height of Tube After Sample is Added Length of Sample	= 0.40 cm = 2.40 cm = 15.2 cm or 6.00 in = 4.0 cm or 1.575 in = 11.2 cm = 4.425 in
TUBE PERMEAMETER TEST DATA	
1. TEST# 10E REPLICATE (letter)	A DATE COLLECTED6/15/2010
2. MATERIAL TESTED FILL NATIVE SOIL	(indicate depth) x 36 in
3. TYPE OF SAMPLE: UNDISTURBED	x DISTURBED
4. BULK DENSITY DETERMINATION (Disturbed Sa	Samples Only):
Sample Density Used:	x No Yes
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BA	ASIN IN INCHES:
At the beginning of each test interval, At the end of each test interval, 6. RATE OF WATER LEVEL DROP:	$H_1 = 20.10$ cm $H_2 = 11.30$ cm
	- WEDAGE T
TIME T_1 TIME T_2 (start of test interval) (end of test in	_
0.00 7.55 0.00 7.34 0.00 7.46 0.00 7.42 0.00 7.46	0.124 0.124
7. CALCULATION OF PERMEABILITY:	
K = 34.23 in/hr	16 / 5.76 x 4.4 / 0.12 x ln (20.1 / 11.3) Soil Permeability Class = K5
8. DEFECTS IN THE SAMPLE (Check the appropria	riate items)
	ks
SIGNATURE OF SOIL EVALUATOR	DATE

PROJECT NAME Stockton C MUNICIPALITY	Township of Galloway, Atlantic County, New Jersey
	BLOCK
SAMPLE AND EQUIPMENT DATA	
Radius of Termeameter Tube Radius of Thin Walled Sample Tube Height of Tube Before Sample is Added Height of Tube After Sample is Added	= 0.40 cm = 2.30 cm = 15.2 cm or 6.00 in = 4.1 cm or 1.614 in = 11.1 cm = 4.386 in
TUBE PERMEAMETER TEST DATA	
1. TEST # 10E REPLICATE (letter)	B DATE COLLECTED 6/15/2010
2. MATERIAL TESTED FILL NATIVE SOIL - (indicate depth) X 36 in
3. TYPE OF SAMPLE: UNDISTURBED	x DISTURBED
4. BULK DENSITY DETERMINATION (Disturbed Sam	ples Only):
Sample Density Used:	x No Yes
5. HEIGHT OF WATER LEVEL ABOVE RIM OF BASII	N IN INCHES;
At the beginning of each test interval, At the end of each test interval,	$H_1 = 19.70$ cm $H_2 = 10.90$ cm
6. RATE OF WATER LEVEL DROP:	
TIME T_1 TIME T_2 (start of test interval) (end of test interval)	TIME T ₃ AVERAGE T val) (interval in minutes) (minutes)
0.00 8.84	0.147
0.00 8.77	0.146 0.151
0.00 9.05 0.00 8.93	0.131
0.00 8.96	0.149 0.15
7. CALCULATION OF PERMEABILITY:	
K, $(in/hr) = 60 \text{ min / hr x } r^2 / R^2 \text{ x L } (in)$ = 60 min / hr x 0.16 K = 31.72 in/hr	/ T (min) x ln (H ₁ /H ₂) / 5.29 x 4.4 / 0.15 x ln (19.7 / 10.9) Soil Permeability Class = K5
8. DEFECTS IN THE SAMPLE (Check the appropriate	e items)
X None Cracks Root Channels Large Gi Smearing Compac	Worm Channels Dry Soil Tavel Large Roots Soil / Tube Contacts
SIGNATURE OF SOIL EVALUATOR	DATE

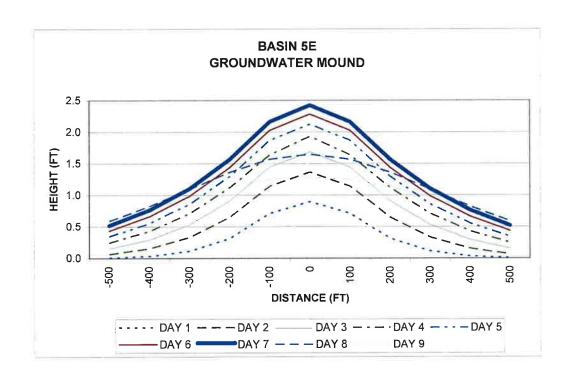
Marathon completed a groundwater mounding analysis of the largest design volumes proposed for infiltration in the proposed stormwater management infiltration basins for the Richard Stockton College of New Jersey 2010 Stormwater Master Plan using the computer model found in <u>Ground Water</u>, Volume 22, Number 1, published by Molden, Sunada and Warner. For this analysis, Marathon utilized the volume below the basin spillways calculated in Appendix B of the Stormwater Compliance Statement. The volume of runoff was then divided by the area of the bottom of the infiltration basin over the required infiltration time of 72 hours to determine the recharge rate as given in the table below:

Basin Description	Maximum 100-year design volume (cubic feet)	Basin bottom area (square feet)	Recharge rate (ft/day)
Basin 2	195,075	248,747	0.26
Basin 5 East	391,517	261,467	0.50
Basin 5 West	264,621	147,243	0.60
Basin 6	395,981	252,550	0.52
Basin 7	205,116	212,335	0.32
Basin 10	124,920	178,015	0.23

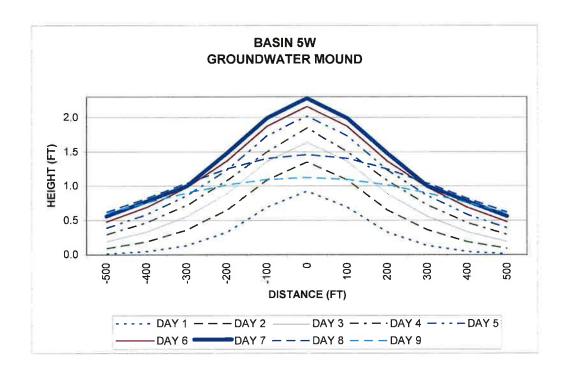
Marathon determined the aquifer thickness to be 200 feet beneath the Subject Property through a review of well logs for Well 01-180 identified as USGS Oceanville 1 located in Galloway Township, Atlantic County, New Jersey. The well log was presented in the report entitled "Hydrogeologic Framework of the New Jersey Coastal Plain, United States Geological Survey Open File Report 84-730." Marathon used the average tested permeability rate for the soil to remain in the basin footprint, as provided in the stormwater report referenced above, as the hydraulic conductivity. Transmissivity was calculated by multiplying the tested hydraulic conductivity by the aquifer thickness for a value in the basin footprint as given in the table below:

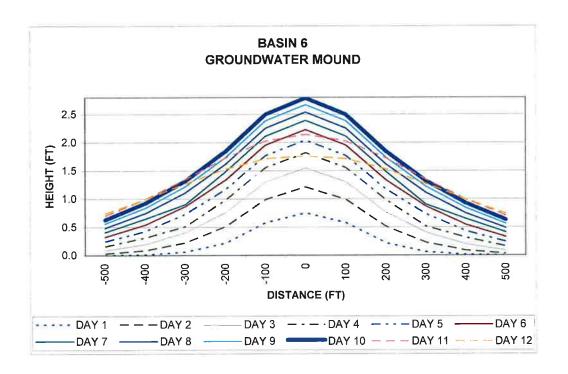

Basin Description	Average Hydraulic (Transmissivity (square ft/day)		
•	(in/hr)	(ft/day)	(Square Inday)	
Basin 2	7.56	15.11	3023	
Basin 5 East	7.02	7.02 14.04		
Basin 5 West	9.03	18.06	3612	
Basin 6	4.97	9.94	1989	
Basin 7	6.25	12.50	2500	
Basin 10	3.98	7.96	1592	

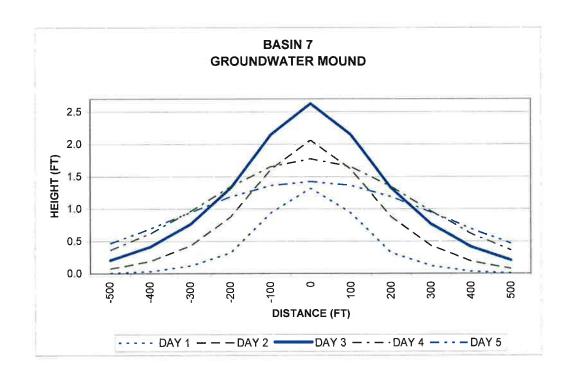
Utilizing the values obtained and the program described above, groundwater mounding for the maximum volume retained and infiltrated in the stormwater management basins was determined to not cause stormwater or groundwater to breakout to the land surface or cause adverse impacts to adjacent water bodies, wetlands, or subsurface structures.

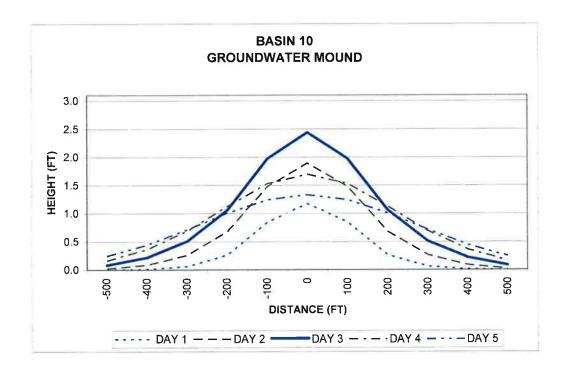

The following tables and graphs depict the results of the calculations for the groundwater mounding associated with the infiltration volume in the basin. Please note that the height of the groundwater mound is assumed to start at the estimated seasonal high water table elevation, as provided in the stormwater report referenced above, and the center of the subject basin. Both points are assigned a value of zero (0):

VARIABLE		BASIN 2	BASIN 5E	BASIN 5W	BASIN 6	BASIN 7	BASIN 10
RECHARGE RATE	(FT/DAY)	0.26	0.21	0.26	0.16	0.32	0.23
TRANSMISSIVITY	(SF/DAY)	3023	2807	3612	1989	2500	1592
SPECIFIC YIELD		0.15	0.15	0.15	0.15	0.15	0.15
BEGINNING TIME	(DAY)	1	1	1	1	1	1
FINAL TIME	(DAYS)	5	9	9	12	5	5
TIME INCREMENT	(DAY)	1	1	1	1	1	11
END OF RECHARGE TIME	(DAYS)	3	7	7	10	3	3
BEGINNING DISTANCE	(FT)	0	0	0	0	0	0
FINAL DISTANCE	(FT)	500	500	500	500	500	500
DISTANCE INCREMENT	(FT)	100	100	100	100	100	100
AVG DEPTH TO ESHWT	(FT)	2.90	2.50	2.30	2.80	2.70	3.10
BASIN WIDTH	(FT)	160	350	200	400	200	230
BASIN LENGTH	(FT)	2000	700	740	850	1300	800


DISTANCE FROM CENTER OF BASIN	HEIGHT OF MOUND (FT) - BASIN 2						
(FT)	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5		
0	0.851	1.299	1.645	1.085	0.891		
100	0.573	0.985	1.314	1.022	0.857		
200	0.250	0.570	0.854	0.857	0.764		
300	0.091	0.303	0.525	0.646	0.632		
400	0.028 0.148 0.305 0.443 0.487						
500	0.007	0.066	0.167	0.281	0.350		


DISTANCE FROM CENTER OF BASIN		HEIGHT OF MOUND (FT) - BASIN 5E							
(FT)	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	DAY 6	DAY 7	DAY 8	DAY 9
0	0.897	1.367	1.686	1.927	2.121	2.283	2.422	1.647	1.287
100	0.711	1.142	1.445	1.637	1.866	2.024	2.161	1.570	1.246
200	0.317	0.651	0.910	1.118	1.297	1.438	1.567	1.364	1.132
300	0.116	0.334	0.535	0.708	0.857	0.988	1.104	1.093	0.969
400	0.035	0.035							
500	0.009	0.067	0.156	0.251	0.345	0.435	0.519	0.589	0.605


DISTANCE FROM CENTER OF BASIN		HEIGHT OF MOUND (FT) - BASIN 5W							
(FT)	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	DAY 6	DAY 7	DAY 8	DAY 9
0	0.924	1.351	1.634	1.846	2.016	2.157	2.278	1.460	1.127
100	0.691	1.089	1.365	1.500	1.732	1.871	1.990	1.403	1.099
200	0.328	0.650	0.890	1.079	1.234	1.365	1.478	1.251	1.018
300	0.136	0.364	0.559	0.722	0.860	0.979	1.000	1.042	0.898
400	0.048	0.190	0.336	0.469	0.586	0.691	0.781	0.822	0.758
500	0.015	0.092	0.194	0.295	0.391	0.480	0.561	0.621	0.613


DISTANCE FROM CENTER OF BASIN		HEIGHT OF MOUND (FT) - BASIN 6										
(FT)	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	DAY 6	DAY 7	DAY 8	DAY 9	DAY 10	DAY 11	DAY 12
0	0.752	1.210	1.548	1.815	2.037	2.225	2.390	2.536	2.666	2.785	2.142	1.763
100	0.579	0.988	1.302	1.556	1.769	1.952	2.111	2.254	2.382	2.498	2.026	1.715
200	0.219	0.509	0.763	0.981	1.169	1.335	1.482	1.614	1.734	1.843	1.725	1.529
300	0.063	0.227	0.406	0.514	0.728	0.868	0.900	1.112	1.220	1.319	1.349	1.271
400	0.014	0.089	0.198	0.315	0.432	0.542	0.647	0.746	0.838	0.925	0.993	0.995
500	0.002	0.030	0.088	0.162	0.243	0.326	0.407	0.486	0.562	0.630	0.702	0.741

DISTANCE FROM CENTER OF BASIN	HEIGHT OF MOUND (FT) - BASIN 7						
(FT)	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5		
0	1.317	2.060	2.627	1.774	1.426		
100	0.937						
200	0.324	0.877	1.325	1.343	1.187		
300	0.123	0.433	0.767	0.963	0.947		
400	0.032 0.192 0.415 0.619 0.693						
500	0.007	0.076	0.208	0.364	0.469		

DISTANCE FROM CENTER OF BASIN	HEIGHT OF MOUND (FT) - BASIN 10						
(FT)	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5		
0	1.170	1.896	2.437	1.698	1.331		
100	0.846 1.476 1.971 1.530 1.241						
200	0.268	0.680	1.060	1.126	1.007		
300	0.061	0.266	0.510	0.692	0.716		
400	0.010 0.088 0.221 0.366 0.448						
500	0.001	0.024	0.085	0.171	0.250		

APPENDIX E

Pinelands Stormwater Checklist

STORMWATER CHECKLIST (Part 1)

Stormwater Management Information Required to Be Submitted to Commission and Municipality for Review

The following checklist identifies the stormwater management standards that an applicant must address to complete an application with the Pinelands Commission and the concerned municipality (each "Item #" is cross-referenced in the attached <u>Reference Guide</u>).

Note that the stormwater management standards need not be addressed if either:

- The proposed development is minor residential development, resulting in less than five lots or dwelling units, *and* the development does not involve the construction of any new roads; *OR*
- The development proposed is minor non-residential development, *and* the development does not involve the grading, clearing or disturbance of an area in excess of 5,000 square feet within any five-year period.

Item	Addressed	Description
#	Audicsscu	Description
<u></u>	V	Calculations demonstrating that the proposed development meets
		one of the following three stormwater runoff rate standards:
		Post-development hydrographs for the 2, 10 and 100-year storms of 24-hour duration will not exceed the predevelopment runoff hydrographs at any point in time [N.J.A.C. 7:50-6.84(a)6ii(1)].
		No increase in pre-development rates from the 2, 10 and 100 year storms will occur. In addition, any increase in stormwater volume for these storms will not increase flood damage at or
		downstream of the parcel [N.J.A.C. 7:50-6.84(a)6ii(2)].
		The peak post-development runoff from the 2, 10 and 100-year storms will be 50%, 75% and 80% respectively of the pre-development peak rates for the same storms [N.J.A.C. 7:50-6.84(a)6ii(3)].
2.		Calculations demonstrating that the total runoff volume generated from the net increase in impervious surfaces by a 10-year storm of 24-hour duration will be retained and infiltrated on site.
3.		Information (soil logs) demonstrating that the lowest point of infiltration of each structural stormwater management measure (e.g. swales, basins, drywells) will meet the two foot separation to

1

6/26/09

	Addressed	<u>Description</u>
<u>#</u>		
		the seasonal high water table (SHWT) standard.
4.		Information demonstrating that the proposed stormwater design will meet the wetland, required buffer to wetlands and surface water protection standards.
5.		Information demonstrating that the soil suitability (permeability rate) standard will be met for all stormwater infiltration facilities (e.g. swales, basins, drywells).
6.	NA NA	If the development includes High Pollutant Loading Areas (HPLAs) such as gas stations or vehicle maintenance facilities, information which demonstrates that the HPLA standards will be met is submitted.
7.	V	The groundwater mounding standards will be met.
8.		Information demonstrating that all of the following low impact stormwater design standards will be met (as applicable – see Reference Guide):
	V	Pretreatment of stormwater, prior to entering infiltration measures, has been incorporated into the design.
		The design utilizes multiple, smaller stormwater management measures dispersed spatially throughout the site.
		The design incorporates non-structural stormwater management strategies identified in the NJDEP stormwater regulations to the maximum extent practical. A written description of each of these strategies must be provided. Alternatively, the results of the NJDEP's NSPS Spreadsheet or Low Impact Design (LID) Checklist may be submitted.

2 6/26/09

STORMWATER CHECKLIST (PART 2)

Additional Stormwater Management Information Required to Be Submitted to Municipality for Review

The following checklist identifies certain stormwater management standards that an applicant must address with the municipality (each "Item #" is cross-referenced in the attached <u>Reference Guide</u>). Note that there may be additional information that is required by a municipal ordinance that is not identified in this Pinelands Commission Checklist and Reference Guide.

Item #	Addressed	<u>Description</u>
<u>#</u>		No direct discharge of stormwater to farm fields will occur to the maximum extent practical.
10.		The Total Suspended Solids (TSS) load in the stormwater will be reduced by 80%.
11.		Stormwater management measures have been designed to reduce the nutrient load in the stormwater runoff from the post-developed site to the maximum extent practical.
12.	V	The development will meet the groundwater recharge standards.
13.		The stormwater management plan addresses stormwater facilities construction and as-built requirement standards.
14.		The proposed stormwater management measures meet structural design standards.
15.	V	The development meets stormwater facility safety standards.
16.	V	A stormwater facilities maintenance plan is provided.

3 6/26/09

APPENDIX F

Stormwater Management Facility Maintenance Manual

STORMWATER MANAGEMENT FACILITY MAINTENANCE MANUAL

for

The Richard Stockton College of New Jersey Block 875.04, Lots 1.01 - 1.08 Galloway Township, Atlantic County, New Jersey

July 2010

Prepared for:
The Richard Stockton College of New Jersey
P.O. Box 195
Pomona, New Jersey 08240

Prepared by:
Marathon Engineering & Environmental Services, Inc.
2922 Atlantic Avenue, Suite 3A
Atlantic City, New Jersey 08401

Jason T. Sciullo, P.E. Professional Engineer New Jersey License No. 24GE04586000 ALL DOCUMENTS PREPARED BY MARATHON ENGINEERING & ENVIRONMENTAL SERVICES ARE INSTRUMENTS OF SERVICE WITH RESPECT TO THE PROJECT. THEY ARE NOT INTENDED OR REPRESENTED TO BE SUITABLE FOR REUSE BY THE OWNER OR OTHERS ON EXTENSIONS OF THE PROJECT OR ON ANY OTHER PROJECT. ANY REUSE WITHOUT WRITTEN VERIFICATION OR ADAPTATION BY MARATHON ENGINEERING & ENVIRONMENTAL SERVICES FOR THE SPECIFIC PURPOSE INTENDED WILL BE AT OWNER'S SOLE RISK AND WITHOUT LIABILITY OR LEGAL EXPOSURE TO MARATHON ENGINEERING & ENVIRONMENTAL SERVICES; AND OWNER SHALL INDEMNIFY AND HOLD HARMLESS MARATHON ENGINEERING & ENVIRONMENTAL SERVICES FROM ALL CLAIMS, DAMAGES, LOSSES AND EXPENSES ARISING OUT OF OR RESULTING THEREFROM.

INSPECTION, MAINTENANCE AND REPAIR PLAN

A. PROJECT INFORMATION

I. DRAWINGS OF STORMWATER MANAGEMENT MEASURES:

The project's Stormwater Management Plans are included in the plan set "**Stockton College Stormwater Master Plan**, Block 875.04, Lots 1.01 – 1.08, Galloway Township, Atlantic County, New Jersey" prepared by Marathon Engineering & Environmental Services, Inc. and are included herein by reference.

II. LOCATION OF STORMWATER MANAGEMENT MEASURES BY MEANS OF LATITIUDE AND LONGITUDE AND BLOCK AND LOT:

The site's BMPs (Stormwater Management Facilities) are located at various sites within the College Campus in the Township of Galloway, Atlantic County, New Jersey. The center of the site is approximately LAT: 39° 29' 28" N LONG: 74° 31' 49" W.

III. PREVENTATIVE CORRECTIVE MAINTENANCE TASKS AND SCHEDULES:

Refer to SECTION B.III for Summary of Maintenance Procedures.

IV. COST ESTIMATE:

Because this Maintenance Manual is prepared as a general overview of possible tasks for the various SWMFs, a specific cost estimate cannot be prepared at this time. Because the Richard Stockton State College (the "College") is a state entity, no payment of fees to the municipality for maintenance of the stormwater management facilities is required and a maintenance bond is not required for activities performed by the College. Refer to SECTION B.VIII, Cost of SWMF Maintenance Tasks for a generalized cost list.

V. NAME OF PERSON RESPONSIBLE FOR INSPECTIONS AND MAINTENANCE:

The stormwater management system within the Campus Development Zone will consist of a variety of underground storm sewer pipe, inlets, manholes, flared end sections, stormwater management infiltration basins and underground infiltration trenches. The maintenance of all of the stormwater management components and facilities (SWMFs) shall be the responsibility of the College Facilities Maintenance Department. It shall be the responsibility of the contractor, during construction, to maintain these facilities until final acceptance by the College is assumed.

During Construction:

Company / Individual: Construction Contractor

ADDRESS: To be provided

To be provided

PHONE: To be provided

Upon Acceptance of the facilities by the College:

Company / Individual: The Richard Stockton College of New Jersey (the "College")

P.O. Box 195

ADDRESS: Pomona, New Jersey 08240

PHONE: (609) 626-6052

The title and date on the maintenance plan and the name, address, and telephone number of the person with stormwater management measure maintenance responsibility as specified, will be recorded on the deed of the property on which the measure is located. Any change in the information due to change in property ownership will be recorded on the deed.

The person with maintenance responsibility will be required to perform the following:

- 1. Maintain records of all maintenance related work orders.
- 2. Evaluate the effectiveness of the maintenance plan at least once a year and adjust the plan and deed as necessary.
- 3. Retain and make available the maintenance plan and associated documentation to any requesting administrative, health, environmental or safety agency having authority over the site.
- 4. Because the College is a state entity, in lieu of submitting the documents to the Township, submit annual copies of these documents to the College's Engineer for their records.

Maintenance training will be required and instruction given by the person with the maintenance responsibility. A basic description of the purpose and function of the overall stormwater management measures and their major components such as, but not limited to, sedimentation accumulation around drainage structures, pruning and general clean-up procedures, maintenance of lawns and vegetation management, will be outlined. Maintenance personnel will also receive training in specialized inspection and maintenance tasks and/or the operation and care of specialized maintenance equipment. Training will be provided in the need for, and use of, all required safety equipment and procedures.

B. PREVENTATIVE MAINTENANCE PROCEDURES

I. OBJECTIVES:

The purpose of preventative maintenance is to assure that the Stormwater Management Facilities (SWMFs) remain operational and safe at all times, while minimizing the need for emergency or corrective procedures.

II. OVERVIEW:

A comprehensive SWMF maintenance program is comprised of several related requirements including:

- A. Providing adequate funding, staffing, equipment, and materials
- B. Performing routine maintenance procedures on a regular basis
- C. Performing emergency maintenance procedures and repairs in a timely manner

- D. Conducting SWMF inspections to determine the need for and effectiveness of maintenance work
- E. Providing training and instruction to maintenance personnel and inspections
- F. Conducting periodic program reviews and evaluations to determine the overall effectiveness of the maintenance programs and the need for revised or additional maintenance procedures, personnel, and equipment
- G. Instilling pride of workmanship and a commitment to excellence in program personnel

III. SUMMARY OF GENERAL MAINTENANCE PROCEDURES

The following are general procedures and not all measures may be applicable to the individual SWMF. Maintenance for the individual SWMFs shall be applied or adapted as necessary on a case by case basis.

A. PREVENTATIVE MAINTENANCE PROCEDURES:

1. Grass Cutting

A regularly scheduled program of mowing and trimming of grass at SWMFs during the growing season will help to maintain a tightly knit turf and will also help to prevent diseases, pests, and the intrusion of weeds. The actual mowing requirements of an area should be tailored to the specific site conditions, grass type, and seasonal variations in the climate. In general, grass should not be allowed to grow more than 1 to 2 inches between cuttings, or shall be mowed at least once a month during the growing season. Allowing the grass to grow more than this amount prior to cutting it may result in damage to the grades growing points and limit its continued healthy growth. Agencies such as the local Soil Conservation District can provide valuable assistance in determining optimum mowing requirements.

2. Grass Maintenance

Grassed areas require periodic fertilizing, de-thatching, and soil conditioning in order to maintain healthy growth. Additionally, provisions should be made to reseed and re-establish grass cover in areas damaged by sediment accumulation, storm water flow, or other causes. Agencies such as the local Soil Conservation District can provide valuable assistance in establishing a suitable grass maintenance program. All vegetation deficiencies should be addressed without the use of fertilizers or pesticides whenever possible.

3. Vegetative Cover

Trees, shrubs, and ground cover require periodic maintenance, including fertilizing, pruning, and pest control in order to maintain healthy growth. Agencies such as the local Soil Conservation District can be of assistance in establishing a preventative maintenance program. Inspection of the vegetative components shall be performed at least annually for unwanted growth. When

establishing or restoring vegetation, biweekly inspections of vegetative health should be performed during the first growing season or until the vegetation is established. Once established, inspections of vegetation health, density, and diversity should be performed at least twice annually during both the growing and non-growing seasons.

4. Removal and Disposal of Trash and Debris

A regularly scheduled program of debris and trash removal from SWMFs will reduce the chance of outlet structures, trash racks, and other components becoming clogged and inoperable during storm events. Additionally, removal of trash and debris will prevent possible damage to vegetated areas and eliminate potential mosquito breeding habitats. Disposal of debris and trash must comply with all local, county, state, and federal waste flow control regulations. Only suitable disposal and recycling sites should be utilized. Agencies such as the Division of Solid Waste Management of the New Jersey Department of Environmental Protection should be contacted for information on disposal regulations.

5. Sediment Removals and Disposal

Accumulated sediment should be removed before it threatens the operation or storage volume of a SWMF. Typically, sediment shall be removed every 5-10 years, or when the sediment accumulation is more than 6" – 12". Disposal of sediment must comply with all local, county, state, and federal regulations. Only suitable disposal sites should be utilized. The sediment removal program in infiltration facilities must also include provisions for monitoring the porosity of the sub-base, and replacement or cleansing of the pervious materials as necessary. Agencies such at the Division of Solid Waste Management of the New Jersey Department of Environmental Protection should be contacted for information on disposal regulations.

6. Mechanical Components

All structural components must be inspected for cracking, subsidence, spalling, erosion, and deterioration at least annually. SWMF components, such as valves, sluice gates, pumps, fence gates, locks, and access hatches should remain functional at all times. Regularly scheduled maintenance should be performed in accordance with the manufacturers' recommendations. Additionally, all mechanical components should be operated at least once every three months to assure their continued performance.

7. Elimination of Potential Mosquito Breading Habitats

The most effective mosquito control program is one that eliminates potential breeding habitats. Almost any stagnant pool of water can be attractive to mosquitoes, and the source of a large mosquito population. Ponded water in areas such as open cans and bottles, debris and sediment accumulations, and areas of ground settlement provide ideal locations for mosquito breeding. A maintenance program dedicated to eliminating potential breeding areas is

certainly preferable to controlling the health and nuisance effects of flying mosquitoes. The local Mosquito Control Commission can provide valuable information on establishing this maintenance program.

8. Pond Maintenance

Water quality, including suitable oxygen levels, should be maintained through continuous recharge with fresh water from either surface or subsurface sources. Where adequate oxygen levels cannot be assured through inflow, mechanical aeration such as a solar powered aerator or fountain, shall be provided. A program of monitoring the aquatic environment of a permanent pond should be established. Although the complex environment of a healthy aquatic ecosystem will require little maintenance, water quality, aeration, vegetative growth, and animal populations should be monitored on a regular basis. The timely correction of an imbalance in the ecosystem can prevent more serious problems form occurring. Additional information on pond maintenance can be obtained through agencies such as the U.S. Fish and Wildlife Service.

Provisions to drain a permanent pool are necessary for maintenance and safety. If a gravity drain is not feasible, suitable pumps and both primary and backup power sources shall be provided.

9. Pervious Pavement Maintenance

The surface of all pervious paving must be inspected for cracking, subsidence, spalling, deterioration, erosion, and the growth of unwanted vegetation at least once a year. Remedial measures must be taken as soon as practical. Care must be taken when removing snow from pervious pavement. Routine sweeping or vacuuming at least four times a year, or more often if required, will reduce the possibility of clogging. If mud or sediment is tracked onto the surface course of a pervious paving system, it must be removed as soon as possible. Removal should take place when the surface course is thoroughly dry. Disposal of debris, trash, sediment, and other waste matter removed from pervious paving surface courses should be done at a suitable disposal/recycling site and in compliance with local, state, and federal waste regulations.

9. Inspection

Regularly scheduled inspections of the SWMFs should be performed by qualified inspectors. The primary purpose of the inspections is to ascertain the operational condition of embankments, outlet structures, and other safety-related aspects. Inspections will also provide information on the effectiveness of regularly scheduled preventative and aesthetic maintenance procedures and will help to identify where changes are warranted. Finally, the SWMF inspections should be used to determine the need for and timing of corrective maintenance procedures. In addition to regularly scheduled inspections, an informal inspection should be performed during every visit to a SWMF by maintenance or supervisory personnel. An inspection checklist is included as part of this maintenance plan.

10. Reporting

The recording of all maintenance work and inspections provide valuable data on the SWMF condition. Along with the written reports, a chain of command for reporting and solving maintenance problems and addressing maintenance needs should be established.

B. CORRECTIVE MAINTENANCE PROCEDURES

The following are general procedures and not all measures may be applicable to the individual SWMF. Maintenance for the individual SWMFs shall be applied or adapted as necessary on a case by case basis.

1. Removal of Debris and Sediment

Sediment, debris, and trash should be removed immediately and properly disposed of in a timely manner. All disposal of materials should be done at suitable disposal /recycling sites and in compliance with all applicable local, state, and federal waste regulations. Equipment and personnel must be available to perform the removal work on short notice. The lack of an available disposal site should not delay the removal of trash, debris, and sediment. Temporary disposal sites may be utilized if necessary.

2. Structural Repairs

Structural damage to outlet and inlet structures, trash racks, and headwalls or flared end sections from vandalism, flood events, or other causes must be repaired promptly. Equipment, material, and personnel must be available to perform these repairs on short notice. The analysis of structural damage and the design and performance of structural repairs shall only be undertaken by qualified personnel.

3. Wall, Embankment, and Slope Repairs

Damage to walls, embankments, and side slopes must be repaired promptly. Typical problems include settlement, scouring, cracking, sloughing, seepage, and rutting. Equipment, materials, and personnel must be available to perform these repairs on short notice. The immediacy of the repairs will depend upon the nature of the damage and its effects on the safety and operation of the facility. The analysis of damage and the design and performance of geotechnical repairs should only be undertaken by qualified personnel. Repair of wall systems shall be per the manufacturer's specifications.

4. Dewatering

It may be necessary to remove ponded water from within a SWMF for maintenance and repair. If a gravity drain is not feasible, portable pumps may be necessary to remove ponded water.

5. Pond Maintenance

Water quality, including suitable oxygen levels, should be maintained through continuous recharge with fresh water from either surface or subsurface sources. Where adequate oxygen levels cannot be assured through inflow, mechanical aeration such as a solar powered aerator or fountain, shall be provided. A program of monitoring the aquatic environment of a permanent pond should be established. Although the complex environment of a healthy aquatic ecosystem will require little maintenance, water quality, aeration, vegetative growth, and animal populations should be monitored on a regular basis. The timely correction of an imbalance in the ecosystem can prevent more serious problems form occurring. Problems such as algae growth, excessive siltation, and mosquito breeding, should be addressed and corrected in a timely manner. The sooner the problem is corrected, the easier it will be to restore a balanced environment in the pond. Due to the complex environment in a pond, it is recommended agencies such as the U.S. Fish and Wildlife Service be consulted for corrective maintenance procedures and additional information on pond maintenance.

6. Extermination of Mosquitoes

If neglected, a SWMF can readily become an ideal mosquito breeding area. Extermination of mosquitoes will usually require the services of an expert, such as the local Mosquito Commission. Proper procedures carried out be trained personnel can control the mosquitoes with a minimum of damage or disturbance to the environment. If mosquito control in a facility becomes necessary, the preventative maintenance program should be re-evaluated, and more emphasis placed on control of mosquito breeding habitats.

7. Erosion Repair

Vegetative cover or other protective measures are necessary to prevent the loss of soil from the erosive forces of wind and water. Where a re-seeding program has not been effective in maintaining a non-erosive vegetative cover, or other factors have exposed soils, to erosion, corrective steps should be initiated to prevent further loss of soil and any subsequent danger to the stability of the facility. Soil loss can be controlled by a variety of materials and methods, including riprap, gabion lining, sod, seeding, concrete lining, and re-grading. The local Conservation District can provide assistance in recommending materials and methodologies to control erosion.

8. Vegetative Cover Repair

The vegetative cover should be maintained at 85 percent. If vegetation has greater than 50 percent damage, the area should be reestablished in accordance with the original specifications. Fertilization of vegetation surrounding the pond area should be avoided except in special cases. Overfertilization can contribute to excess algae growth in the pone. As a general rule, the nutrient needs of the vegetation surrounding the pond should be evaluated by testing the pH and nutrient content of the soil prior to fertilization. The adjustment of pH may be necessary to maintain vegetation. Fertilization of all turf areas should occur in the

fall.

9. Fence Repair

Where fences are provided, they may be damaged by many factors, including vandalism and storm events. Timely repair will maintain the security of the site.

10. Elimination of Trees, Brush, Roots, and Animal Burrows

Large roots can impair the stability of dams, embankments, and side slopes. Animal burrows can present a safety hazard for maintenance personnel. Trees and brush with extensive, woody root systems should be completely removed from dams and embankments to prevent their destabilization and the creation of seepage routes. Roots should also be completely removed to prevent their decomposition within the dam or embankment. Rood voids and burrows should be plugged by filling with material similar to the existing material, and capped just below grade with stone, concrete, or other material. If plugging of the burrows does not discourage the animals form returning, further measures should be taken to either remove the animal population or to make critical areas of the facility unattractive to them.

11. Snow and Ice Removal

Accumulations of snow and ice can threaten the functioning of a SWMF, particularly at inlets, outlets, and emergency spillways. Providing the equipment, materials, and personnel to monitor and remove snow and ice from these critical areas is necessary to assure the continued functioning of the facility during the winter months. Care must be taken when removing snow from pervious pavement surfaces or stabilized lawn areas which can be damaged by snow plows or loader buckets. Sand, grit, or cinders should not be used on pervious paving surfaces or stabilized lawn areas for snow or ice control.

12. Pervious Pavement

Routine sweeping or vacuuming at least annually, or more often if required, will reduce the possibility of clogging of pervious pavement surfaces. Remedial measures must be taken as soon as practical. Pressure washing will restore porosity of clogged pervious pavement to nearly new conditions.

13. Stabilized Lawn

Should potholes occur, or if three or more adjacent rings area broken or damaged, the sections shall be removed and replaced per manufacturer's specifications. Vegetation shall be re-established.

C. AESTHETIC GENERAL MAINTENANCE PROCEDURES

The following are general procedures and not all measures may be applicable to the individual SWMF. Maintenance for the individual SWMFs shall be applied or adapted as necessary on a case by case basis.

1. Graffiti Removal

The timely removal of this eyesore will restore the aesthetic quality of a SWMF. Removal can be accomplished by painting or otherwise covering it, or removing it with scrapers, solvents, or cleansers. Timely removal is important to discourage further graffiti and other acts of vandalism.

2. Grass Trimming

Trimming of grass edges around structures and fences will provide for a neat and attractive appearance of the facility.

3. Control of Weeds

Although a regular grass maintenance program will keep weed intrusion to a minimum, some weeds will appear. Periodic weeding, either chemically or mechanically, will not only help to maintain a healthy turf, but will also keep grassed areas attractive. The use of chemicals should be limited in areas adjacent to the SWMFs.

4. Details

Careful, meticulous, and frequent attention to the performance of maintenance items such as painting, tree pruning, leaf collection, debris removal, and grass cutting will result in a SWMF that remains both functional and attractive.

D. MAINTENANCE DURING CONSTRUCTION

The following are general procedures and not all measures may be applicable to the individual SWMF. Maintenance for the individual SWMFs shall be applied or adapted as necessary on a case by case basis.

- 1. The contractor shall stage his activity during construction to limit the amount of exposed soil on the site in an effort to reduce erosion and silt and sediment accumulation. Soil erosion and sediment control structures shall be placed as indicated on the Soil Erosion and Sediment Control Plan. These structures shall include, but not be limited to, stabilized construction entrances, hay bales, silt fences, inlet protection, and swale and slope protection blankets.
- The contractor shall grade all swales as per the engineering documents to ensure positive flow patterns. Any low points within the swales that create standing water shall be regraded so that positive flow patterns are achieved. The elimination of standing water will eliminate possible mosquito breeding habitats.
- 3. Following each significant rainfall event (1" of rainfall or greater), the contractor shall perform the following inspection and clean-up:
 - a. All swales shall be inspected and all accumulated silt and sediment shall be removed and redistributed on the site.

- b. All erosion activities that might have occurred within the swales shall be regraded, retopsoiled, refertilized, and reseeded.
- c. Swale and slope blankets that have been exposed or torn and damaged shall be removed and replaced with new material.
- d. Inlet protection shall be inspected, and if damaged, shall be replaced.
- e. All debris within swales such as tree limbs, excessive leaves, or trash shall be removed and disposed of legally. These materials shall not be placed back on the site.
- f. All inlets and outlet structures shall be inspected and all debris, silt, sediment, trash, excessive leaves, and tree limbs shall be removed and disposed of legally. These materials shall not be placed back on the site.
- g. All signs of erosion around inlets and outlet structures shall be regraded, retopsoiled, refertilized, and reseeded.
- Should excessive accumulation of sediment be present within the inlets and storm sewer pipe, reverse flushing and vacuuming will be required.
- i. Infiltration basins shall be inspected for erosion damage and accumulated debris, trash, leaves, and tree limbs. Eroded areas shall immediately be regraded, retopsoiled, refertilized, and reseeded and all debris, trash, leaves, and tree limbs shall be removed. All debris, trash, leaves, and tree limbs shall be disposed of legally and shall not be placed back on the site or buried on site.
- j. Undesirable plant growth such as woody vegetation and weeds, etc. shall be removed.
- k. Damage from rodents and loss of basin freeboard shall be repaired immediately.
- I. The contractor shall inspect the spillways for damage and repair any damage.
- m. The contractor shall inspect the sand bottom in infiltration basins. Washed away sand shall be replaced as needed. A 6 inch sand bottom consisting of K5 material, certified by a Professional Engineer licensed in New Jersey, must be maintained in a basin at all times. Accumulated debris, trash, leaves, and tree limbs shall be removed from the basin along with accumulated sediment. All material must be disposed of legally and shall not be placed back on the site or buried on site. Infiltration basins must drain within the required 72 hour period. After rainfall events the contractor shall keep records to ensure that the basin drains within 72 hours. Should permeability of a basin become a problem, the basin shall be drained manually by pumping. The basin shall be inspected for damage to the sand layer or excessive silt and sediment. Should

basin permeability remain a problem, a licensed professional engineer shall be consulted to make an inspection and render a solution. Basin bottoms shall remain as level as possible to ensure uniform distribution of runoff. Soil compaction under the basins shall be prohibited. All excavation must be performed by equipment placed outside of the basin area. Infiltration basins shall not be put into operation until all upland areas are stabilized. During construction the basin areas can be utilized as sediment basins which will be cleaned and the final sand bottom placed.

- n. Prior to basin construction, the contractor shall cordon off the area required for the infiltration basin to prevent construction equipment and stockpiled materials from compacting the subgrade soils. During construction, precautions shall be taken to prevent the subgrade from being compacted and the area contaminated with sediment. All excavation should be performed with the lightest practical excavation equipment. All excavation equipment should be placed or stored outside of the limits of the infiltration basin. The contractor is directed to the Soil Erosion and Sediment Control Plans for additional requirements regarding basin construction.
- o. Basin spillways should also be checked for damage or silt and sediment buildup. Accumulated silt and sediment shall be removed after each storm event if necessary.
- 4. As a minimum, if no significant rainfall event occurs, all SWMF system components shall be inspected weekly and procedures specified under item B of this report shall be followed should deficiencies be discovered.
- 5. During construction, the College's consulting engineer shall inspect the SWMFs on a monthly basis. A written report shall be filed with the College and the contractor. Remedial action to correct any damages on site shall be performed immediately and conform to item B. of this report. The written engineer's report shall contain the following:
 - a. Date and time of the inspection.
 - b. Damages and deficiencies encountered.
 - c. Action to be taken to correct damages and deficiencies.
 - d. Date and time that the damages and deficiencies were corrected.
 - e. A copy of any work order shall also be attached to the maintenance log.

E. MAINTENANCE BY THE COLLEGE

The following are general procedures and not all measures may be applicable to the individual SWMF. Maintenance for the individual SWMFs shall be applied or adapted as necessary on a case by case basis.

- 1. After each significant rainfall event (1" of rainfall or greater) or once every month the College shall be responsible for the inspection of the related SWMFs and to remediate any damage or deficiencies found on site. The SWMFs shall be checked for debris and trash build-up, sediment accumulation, erosion damage, standing water, rodent or animal damage and unwanted vegetative growth. The items of inspection shall include the following:
 - a. Infiltration basin side slope, basin bottom and spillway.
 - b. Stormwater conveyance systems including inlets, manholes, headwalls, endwalls, and piping in roads, on the site, and in the SWMFs.
 - c. The inlets along underground infiltration trenches to determine if the trenches are functioning properly.
 - d. Open space swales directing runoff toward the infiltration basins.
- 2. Written inspection logs shall be kept by the College for each inspection. The inspection logs shall contain the following information:
 - a. Date and time of the inspection.
 - b. Deficiencies or damages encountered
 - c. Actions taken to correct damages or deficiencies
 - d. Date and time that the damage or deficiencies were corrected.
 - e. Copies of work orders shall be attached to the inspection logs.
- 3. Actions to remediate damage or deficiencies to the SWMFs shall include the following:
 - a. The flared end section or headwall entrances to basins shall be inspected for debris, trash, leaves, and tree limbs, and if found, shall be removed and disposed of legally. These items shall not be placed back on the site or be buried on the site. Should excessive silt, sediment, debris or trash be found within inlets and the storm sewer system, the College shall be made aware of the conditions and will be responsible for cleaning and repairing the system.
 - b. Any sign of erosion around the flared end sections or headwalls shall immediately be regraded, retopsoiled, reseeded and refertilized.
 - c. Infiltration basins shall be inspected for erosion damage and for accumulated debris, trash, and sediment build-up. All debris, trash, tree limbs, and leaves shall be removed from the basins and disposed of legally and shall not be placed back on the site or buried on the site. All sediment accumulation shall be removed from basins. Backhoes or heavy equipment shall not be permitted into infiltration basins so as not to damage the six (6) inch sand layer or to create compaction of the sand layer. Sediment shall be removed by hand with the aid of wheel barrows and shovels. Sediment shall be disposed of legally and shall not be placed back on the site. Should the sand bottom of an infiltration basin become damaged or eroded it shall be replaced with sand of a K5 material, certified by a Professional Engineer licensed in New Jersey. The sand bottom of the basin shall at all times remain at a

depth of six (6) inches. All grass clippings from mowing operations shall be bagged and disposed of legally and shall not be placed back on the site. Freeboard in the basins must be maintained and the spillways must be kept free of all debris and trash. A good grass cover must be maintained for the spillways and side slopes. Iinfiltration basins shall be monitored after major rain events to observe the permeability of the basin. Should permeability of the basin become a problem, the basin shall be drained manually by pumping. Basins shall be inspected for damage to the sand layer or excessive silt and sediment. Should basin permeability remain a problem, a licensed professional engineer shall be consulted to make an inspection and render a solution. The basin bottom shall remain as level as possible to ensure uniform distribution of runoff.

- d. Basin spillways shall be checked for damage or silt and sediment buildup.
- e. All undesirable plant growth such as woody vegetation, weeds, etc. shall be removed and disposed of legally and shall not be placed back on the site or buried on the site. All vegetation shall be pruned and trimmed to help keep the access to the basin free and clear.
- f. Rodent and animal damage shall be corrected immediately.
- g. All landscaped plant material shall be pruned to remove damaged, diseased or dead vegetation and limbs. All material shall be disposed of legally and shall not be placed back on the site or buried on site.

F. CHECKLISTS AND LOGS

Included in this report are Tables and Sample Checklists and Logs regarding various aspects of SWMF maintenance and inspection. They contain a list of general procedures and not all measures may be applicable to the individual SWMF. Maintenance for the individual SWMFs shall be applied or adapted as necessary on a case by case basis.

IV. MAINTENANCE EQUIPMENT AND MATERIALS

Equipment required for the maintenance of the SWMFs may include, but shall not be limited to, one or all of the following:

A. GRASS MAINTENANCE EQUIPMENT

- 1. Tractor-Mounted Mowers
- 2. Riding Mowers
- 3. Hand Mowers
- 4. Gas Powered Trimmers
- 5. Gas Powered Edgers
- 6. Gas Powered Air Blowers
- 7. Seed Spreaders
- 8. Fertilizer Spreaders
- 9. De-Thatching Equipment

- 10. Pesticide and Herbicide Application Equipment
- 11. Grass Clipping and Leaf Collection Equipment

B. VEGETATIVE COVER MAINTENANCE EQUIPMENT

- 1. Saws
- 2. Chain Saw
- 3. Mulcher
- 4. Pruning Shears
- 5. Hedge Trimmers
- 6. Wood Chippers

C. TRANSPORTATION EQUIPMENT

- 1. Trucks for Transportation of Materials
- 2. Trucks for Transportation of Equipment
- 3. Vehicles for Transportation of Personnel

D. DEBRIS, TRASH, AND SEDIMENT REMOVAL EQUIPMENT

- 1. Loader
- 2. Backhoe
- 3. Grader

E. MISCELLANEOUS EQUIPMENT

- 1. Shovels
- 2. Rakes
- 3. Pruning tools
- 4. Brooms
- 5. Picks
- 6. Wheelbarrows
- 7. Fence Repair Tools
- 8. Painting Equipment
- 9. Gloves
- 10. Standard Mechanics Tools
- 11. Tools for Maintenance of Equipment
- 12. Office Space
- 13. Office Equipment
- 14. Telephones
- 15. Safety Equipment
- 16. Camera or Video (to record events)
- 17. Tools for Concrete Work (Mixers, Form Materials, etc.)
- 18. Welding Equipment (for Repair of Trash Racks, etc.)

F. MATERIALS

- 1. Topsoil
- 2. Fill
- 3. Seed
- 4. Soil Amenities (Fertilizer, Lime, etc.)

- 5. Chemicals (Pesticides, Herbicides, etc.)
- 6. Mulch
- 7. Paint
- 8. Paint Removers (for Graffiti)
- 9. Spare Parts for Equipment
- 10. Oil and Grease for Equipment and SWMF Components
- 11. Concrete

G. INSTRUCTIONS AND WARRANTIES

All manufacturers' repair and replacement instructions, along with manufacturers' product instructions and user manuals shall be kept on file. Original copies of the manufacturers' warranties shall also be kept on file.

H. ENGINEERING PLANS

A set of approved Engineering Plans shall be kept on file, along with approved test boring results, and all other copies of municipal or state approvals granted for the site development.

I. DISPOSAL AND RECYCLING SITES

The inspection and maintenance personnel shall have at their disposal, the recycling sites within Galloway Township or Atlantic County which shall include addresses, phone numbers, and names of personnel in charge, at the disposal or recycling sites.

V. SAFETY

Procedures and equipment required to protect the safety of inspection and maintenance personnel shall be, but not limited to, the following:

A. SAFETY EQUIPMENT

Safety equipment shall be worn during all inspection and repair operations. Equipment shall be, but not limited to, the following:

- 1. Safety Helmets
- 2. Safety Glasses
- 3. Protective Clothing Including Shoes and Gloves
- 4. First Aid Kit
- 5. Cell Phone with Emergency Numbers

B. STANDARD PROCEDURE

Standard procedure shall be that a minimum of two (2) persons shall perform inspections in the event of injury or disability during the inspection and remediation operations

VI. SWMF MAINTENANCE EQUIPMENT AND MATERIAL COSTS

This estimate is taken from NJDEP Stormwater Management Facilities Manual Table 6-

1 and adjusted for 2010 costs. It is provided herein to present a general idea of the cost of various maintenance equipment that might be required.

GRASS MAINTENANCE EQUIPMENT

	Purchase (dollars)	Rent (per day) (dollars)
Hand Mower	300 - 500	25 - 40
Riding Mower	3,000 - 5,000	75 - 100
Tractor Mower	15,000 - 20,000	100 - 300
Trimmer / Edger	200 - 500	25 - 35
Spreader	100 - 200	20 - 30
Chemical Sprayer	200 - 500	25 - 40

VEGETATIVE COVER MAINTENANCE EQUIPMENT

	Purchase (dollars)	Rent (per day) (dollars)
Hand Saw	15	5
Chain Saw	300 - 500	15 - 35
Pruning Shears	25	5
Shrub Trimmer	200	25 - 35
Brush Chipper	1,000 - 5,000	50 - 150

TRANSPORTATION EQUIPMENT

	Purchase (dollars)	Lease (per month) (dollars)	Rent (per day) (dollars)
Van	10,000 - 15,000	400	50 - 70
Pickup Truck	10,000 - 15,000	400	50 - 70
Dump Truck	30,000 - 50,000	1,200	75 - 150
Light Duty Trailer	3,000 - 5,000	150	30 - 50
Heavy Duty Trailer	10,000 - 20,000	500	100 - 200

DEBRIS, TRASH, AND SEDIMENT REMOVAL EQUIPMENT

	Purchase (dollars)	Lease (per month) (dollars)	Rent (per day) (dollars)
Front End Loader	50,000 - 100,000	1,500 - 2,000	200 - 400
Backhoe	30,000 - 50,000	1,200	150 - 300
Excavator	100,000+	2,000	400 - 1,000
Grader	100,000+	2,000	400 - 1,000

MISCELLANEOUS EQUIPMENT

	Purchase (dollars)	Rent (per day) (dollars)
Shovel	15	5
Leaf Rake	15	5
Soil Rake	15	5

Pick	15	5
Wheelbarrow	100 - 200	10
Gloves	5	N /A
Portable Compressor	500 - 1,000	50 - 100
Portable Generator	500 - 1,000	50 - 100
Concrete Mixer	500 - 1,000	25 - 50
Welding Equipment	500 - 1,500	35 - 70

MATERIALS

	Purchase (dollars)
Topsoil	35 / cubic yard
Fill Soil	15 / cubic yard
Grass Seed	5 / pound
Soil Amenities (Fertilizer, Lime, etc)	0.05 / sq ft
Chemicals (Pesticides, Herbicides, etc)	10 / gallon
Mulch	25 / cubic yard
Paint	20 / gallon
Paint Remover	10 / gallon
Machine / Motor Lubricants	5 / gallon
Dry Mortar Mix	4 / 50 pound bag
Concrete Delivered to Site	60 – 100 / cubic yard

Notes:

- 1. These estimates are approximation of the probable construction costs in 2008 dollars and are based upon previous construction experience and should be used as an approximate budget figure only
- 2. Estimated equipment costs are based upon Industrial / Commercial grade equipment.

VII. COST OF SWMF MAINTENANCE TASKS

Taken from NJDEP Stormwater Management Facilities Manual Table 6-2

PREVENTATIVE MAINTENANCE TASKS

	Small Facility (Man-Hours)	Large Facility (Man-Hours)
Grass Cutting	1	1 - 2
Grass Maintenance	0.5	1
Trash & Debris Removal	0.5	1
Sediment Removal	4	8
Mobilization	1	1
Inspection & Reporting	1	2

CORRECTIVE MAINTENANCE TASKS

		Small Facility	Large Facility
--	--	----------------	----------------

	(Man-Hours)	(Man-Hours)
Trash & Debris Removal	4	8
Structural Repairs	2-4	40
Dewatering	4	8
Mosquito Extermination	1	2-4
Erosion Repair	4	8
Fence Repair	2-4	4-8
Snow & Ice Removal	1	2
Mobilization	2	2

AESTHETIC MAINTENANCE TASKS

	Small Facility (Man-Hours)	Large Facility (Man-Hours)
Grass Trimming	0.5	2
Weed Control	0.5	2
Landscape Maintenance	1 - 2	2 - 4
Graffiti Removal	2 - 4	4 - 8

Notes:

- This estimate is an approximation of the man-hours as provided in the NJDEP Stormwater Facility Maintenance Manual. It is based upon previous construction experience and should be used as an approximate budget figure only.
- 2. Cost estimates are presented in terms of man-hours. These values should be used in conjunction with applicable personnel rates to determine labor costs for a specific program or facility.
- 3. Facility size definitions:

Small Facility: Total SWMF Site Area ¼ Acre Large Facility: Total SWMF Site Area 1 Acre

Appropriate adjustments to the estimates presented should be made as necessary to account for actual SWMF size.

X. MAINTENANCE AND INSPECTION LOGS AND CHECKLISTS

Maintenance Work Order and Checklist For Stormwater Management Facilities

SWM Maintenance List Page 1 of 4						
Name of Facility: Location:					Date:	
Crew:		Work St	arted:		Time:	
Equipment:		Work Comp	leted:		Time:	
Weather:		Total Man-ho	urs for Wo	ork::		
A. Preventative Maintena	nce Items	Items				
4. One of Ordiffer	Required	Done √				
Grass Cutting A. Embankments and Side Slopes	√ 	1	Cor	nments and Special Instru	uctions	
B. Perimeter Areas						
C. Access Areas and Roads						
D. Other:						
D. Ciliot.		<u> </u>				
2. Curan Maintanana	Items Required					
2. Grass Maintenance	√	√ 	Cor	nments and Special Instru	uctions	
A. Fertilizing B. Re-Seeding						
C. De-Thatching						
D. Pest Control						
E. Other:						
3. Vegetative Cover Maintenance	Items Required √	Items Done √	Cor	nments and Special Instr	uctions	
A. Fertilizing			·			
B. Pruning						
C. Pest Control						
D. Other:						

SWM Maintenance List Page 2 of 4

J			
	Items Required	Items Done	
5. Trash and Debris Removal	√ √	√ √	Comments and Special Instructions
A. Pond Bottom		· · ·	
B. Embankments and Side Slopes			
C. Perimeter Areas			
D. Access Areas and Roads			
E. Inlets			
F. Outlets and Trash Racks			
G. Other			
H. Other:			
	Items Required	Items Done	
6. Sediment Removal	√ .	\checkmark	Comments and Special Instructions
A. Inlets			·
B. Outlets and Trash Racks			
C. Basin Bottoms			
D. Underground Recharge			
Trenches			
E. Other			
	l I		
	Items	Items	
	Required	Done	
7. Mechanical Components	√	√	Comments and Special Instructions
A. Valves			
B. Sluice Gates			
C. Pumps			
D. Fence Gates			
E. Locks			
F. Access Hatches			
G. Other:			
	'		
	Items	Items	
	Required	Done	
8. Pond Maintenance	√ 	√	Comments and Special Instructions
A. Aeration Equipment			
B. Debris & Trash Removal			
C. Weed Removal			
D. Vegetation Maintenance			
E. Dewatering			
F. Other			
	Items	Items	
9. Elimination of Potential	Required	Done	
Mosquito Breeding Habitats	<u>√</u>	√	Comments and Special Instructions
A.			
В.			
C.			
l n			

SWM Maintenance List Page 3 of 4

	Items Required	Items Done	
10. Other Preventative Maintenance	· 1	V	Comments and Special Instructions
A.			
B.			
C.			
D.			

B. Corrective Maintenance

	Items Required	Items Done	
	√	√	Location, Comments, and Special Instructions
1. Debris and Sediment Removal			
2. Structural Repairs			
3. Wall, Embankment, and Slope			
Repairs			
4. Dewatering			
5. Pond Maintenance			
6. Control of Mosquitoes			
7. Erosion Repair			
8. Vegetative Cover Repair			
9. Fence Repair			
10. Elimination of Trees, Brush,			
Roots and Animal Burrows			
11. Snow and Ice Removal			
12. Other			
13. Other			

C. Aesthetic Maintenance

	Items Required	Done	
	√	√	Location, Comments, and Special Instructions
1. Graffiti Removal			
2. Grass Trimming			
3. Weeding			
4. Maintenance Details			
5. Other			
6.			
7.			
8.			

SWM Maintenance List Page 4 of 4	
Remarks: (Refer to Item No, If	f Applicable)
•	
Work Order Prepared By:	! :

SWM Maintenance Log Page 1 of 4									
Name of Facility:						Da	ate:		
A. Preventative Mainter	nance	•							
Date:									
Work Item			(√)	Completed	i				
1. Grass Cutting			(',						
A. Embankments and Side Slopes									
B. Perimeter Areas									
C. Access Areas and Roads									
D. Other:									
		•		•					
2. Grass Maintenance									
A. Fertilizing									
B. Re-Seeding									
C. De-Thatching									
D. Pest Control									
E. Other:									
3. Vegetative Cover									
A. Fertilizing									
B. Pruning									
C. Pest Control									
D. Other:									
4. Trash and Debris Removal									
A. Bottoms									
B. Embankments and Side Slopes									
C. Perimeter Areas									
D. Access Areas and Roads									
E. Inlets:									
F. Outlets and Trash Racks									
G. Pervious Pavement Areas:									
H. Other:									
5. Sediment Removal		1		1	1				1
A. Inlets									
B. Outlets and Trash Racks									
C. Bottoms									
D. Underground Trenches									
E. Other:			1					[

SWM Maintenance Log Page 2 of 4									
Date:		1							<u> </u>
Date:									<u> </u>
			(2)						
Work Item 6. Mechanical Components			(1/2)	Completed	1				
A. Valves									
B. Sluice Gates	1								
C. Pumps	1								
D. Fence Gates									
E. Locks									
F. Access Hatches									
G. Other									
	•	•							
7. Pond Maintenance									
A. Aeration Equipment									
B. Debris & Trash Removal									
C. Weed Removal									
D. Vegetation Maintenance									
E. Dewatering									
F. Other									
8. Elimination of Potential									
Mosquito Breeding Habits	1	I	1	1	1	1	1		T
A.									
В.									1
C.									ļ
D.									j
9. Other Preventative Maintenance									
A.									
В.									
C.									

SWM Maintenance Log Page 3 of 4

B. Corrective Maintenance

Date:									
Work Item	1	(√)	Completed	1	1	1		1	ı
1. Debris and Sediment Removal									
2. Structural Repairs									
3. Wall, Embankment, and Slope									
Repairs									
4. Dewatering									
5. Pond Maintenance									
6. Control of Mosquitoes									
7. Erosion Repair									
8. Vegetative Cover Repair									
9. Fence Repair									
10. Elimination of Trees, Brush,									
Roots and Animal Burrows									
11. Snow and Ice Removal									
12. Underground Trench									
13. Other									
14. Other									
15.									
16.									
C. Aesthetic Maintenand	e	ı		T	I	I			
Date:									
		(.)							
Work Item		[(v)	Completed	1			T		
1. Graffiti Removal							 		
2. Grass Trimming		 					 		
3. Weeding									
Maintenance Details Other		 					 		
6.									
7.									
8.									
r - -	, ,	1	1				1		1

SWM Mainten Page 4 of 4	nance Log	
Remarks:	(Refer to Item No, If Applicable)	
Work Orde	er Prepared By:	
Work Com	npleted By:	

SWM Inspection Checklist Page 1 of 4					
Name of Facility:					
Location:					Date:
Weather:					
Facility Item	OK ¹	Routine ²	Urgent ³	Comments ⁴	
1. Embankments and Side Slopes		1	1		
A. Vegetation					
B. Linings					
C. Erosion					
D. Settlement					
E. Sloughing					
F. Trash and Debris					
G. Seepage					
H. Aesthetics					
I. Other:					
2. Bottoms (Detention and Infiltration	on)				
A. Vegetation					
B. Erosion					
C. Standing Water					
D. Settlement					
E. Trash and Debris					
F. Sediment					
G. Aesthetics					
H. Other:					
3. Low Flow Channels (Detention)					
A. Vegetation					
B. Linings					
C. Erosion					
D. Settlement					
E. Standing Water					
F. Trash and Debris					
G. Sediment					
H. Other:					

- 1. The item checked is in good condition and the maintenance program is adequate.
- 2. The item checked requires attention but does not present an immediate threat to the facility function or other facility components.
- 3. The item checked requires immediate attention to keep the facility operational or to prevent damage to other facility components.
- 4. Provide explanation and details if columns 2 or 3 are checked.

SWM Inspection List Page 2 of 4

Facility Item	OK ¹	Routine ²	Urgent ³	Comments ⁴
4. Ponds (Retention)	ı	1	1	
A. Vegetation				
B. Shoreline Erosion				
C. Aeration Equipment				
D. Trash and Debris				
E. Sediment				
F. Water Quality				
G. Other:				
5. Inlet Structure				
A. Condition of Structure				
B. Erosion				
C. Trash & Debris				
D. Sediment				
E. Aesthetics				
F. Other:				
6. Outlet Structure (Detention & Re	tention)	T T		
A. Condition of Structure				
B. Erosion				
C. Trash & Debris				
D. Sediment				
E. Mechanical Components				
F. Aesthetics				
G. Other:				
7. Emergency Spillway				
A. Vegetation				
B. Lining				
C. Erosion				
D. Trash & Debris				
E. Other:				
8. Perimeter	T			
A. Vegetation				
B. Erosion				
C. Trash & Debris				
D. Fences & Gates				
E. Aesthetics				
F. Other:				

- 1. The item checked is in good condition and the maintenance program is adequate.
- 2. The item checked requires attention but does not present an immediate threat to the facility function or other facility components.
- 3. The item checked requires immediate attention to keep the facility operational or to prevent damage to other facility components.
- 4. Provide explanation and details if columns 2 or 3 are checked.

OK¹

SWM Inspection List Page 3 of 4

Facility Item

9. Access Roads	 	
A. Vegetation		
B. Road Surface		
C. Fences & Gates		
D. Erosion		
E. Aesthetics		
F. Other:		
10. Underground Trenches	 	
A. Sediment		
B. Standing Water		
C. Settlement		
D. Other		
E. Other		
11. Miscellaneous		
A. Effectiveness of Exist.		
Maintenance Program		
B. Potential Mosquito Habitats		
C. Mosquitoes		
D. Other:		
E.		
F.		

Routine² Urgent³

Comments⁴

- 1. The item checked is in good condition and the maintenance program is adequate.
- 2. The item checked requires attention but does not present an immediate threat to the facility function or other facility components.
- 3. The item checked requires immediate attention to keep the facility operational or to prevent damage to other facility components.
- 4. Provide explanation and details if columns 2 or 3 are checked.

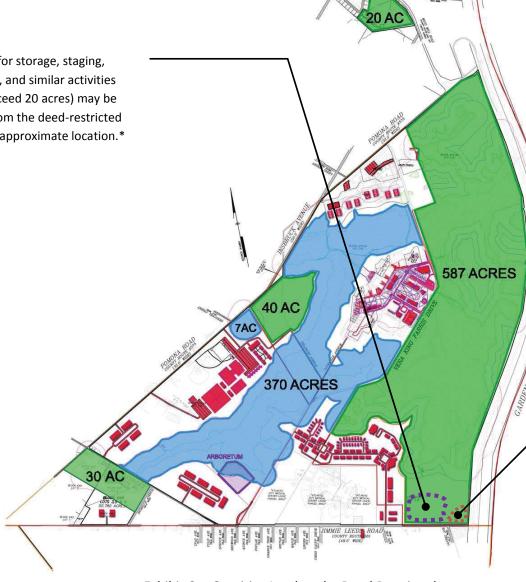

SWM Inspection List Page 4 of 4	
Remarks:	(Refer to Item No, If Applicable)
	Inspector:

Exhibit C

Executive Director's Report on The Richard Stockton College April 2010 Master Plan

An area for storage, staging, stockpiling, and similar activities (not to exceed 20 acres) may be excluded from the deed-restricted lands in this approximate location.*

Approximately 9 acres may be excluded from the deed-restricted lands to accommodate a proposed Garden State Parkway exit ramp and improvements ancillary thereto in this approximate location.*

207 ACRES

Exhibit C. – Sensitive Lands to be Deed Restricted (amended from Exhibit 7 of the Richard Stockton College of New Jersey April 2010 Master Plan)

^{*} Area not drawn to scale

ATTACHMENT 5: Supplemental Background and Details from the April 2010 Master Plan

- 1. The wetlands buffer applicable for Designated Development Area of the College is depicted in the 2010 Master Plan. It is generally 300' except around the central core (Area 1) where it is 175'. Where existing development within a Designated Development Area is closer than 175 feet from wetlands, the buffer for adjacent new development shall be no greater than the existing buffer.
- 2. Notwithstanding the provisions of Paragraph IV above, the following provisions from prior MOAs remain valid. Additionally, regardless of where such activities are conducted, the following shall not constitute development for purposes of this MOA and shall not require Commission approval prior to the commencement thereof:
 - a) the resurfacing of a right-of-way, access road or driveway constructed of an impervious material which will not result in an increase in the width of the existing impervious surface;
 - b) the installation of scientific monitoring and research equipment such as weather and temperature monitoring equipment, water quality monitoring equipment and other similar scientific devices;
 - c) the installation of lighting and electrical utilities along existing walkways, pathways, roadways and parking lots;
 - d) the maintenance of the surface of existing parking areas which does not result in an expansion of the parking area and which does not result in a change in the composition of the parking surface;
 - e) the replacement and installation of directional signs, facility identification signs parking lot directory signs, ADA signs and traffic signs;
 - f) the installation of fencing, provided that no more than 1,500 square feet of clearing will occur, and that said clearing does not exceed the clearing limits established for any applicable Designated Development Area;
 - g) the development of a trail or pathway in existing cleared areas provided that the width does not exceed four feet;
 - h) clearing of areas along roads and at the edges of existing recreational fields, provided that the clearing does not exceed 5,000 square feet and that said clearing does not exceed the clearing limits established for any applicable Designated Development Area;
 - i) the installation of equipment storage sheds and maintenance sheds, provided the area of disturbance does not exceed 1,500 square feet and that any associated

- j) clearing does not exceed the clearing limits established for any applicable Designated Development Area;
- k) the installation of satellite dishes and antennas, provided that the area of disturbance does not exceed 1,500 square feet, that any associated clearing does not exceed the clearing limits established for any applicable Designated Development Area, and that the antennas are located within a Pinelands Regional Growth Area;
- 1) the repair, renovation, or rehabilitation of existing culverts, stormwater inlets, and stormwater piping;
- m) the installation of an underground storage tank or an above ground storage tank, provided that said installation does not result in the disturbance of greater than 1,500 square feet, and that any associated clearing does not exceed the clearing limits established for any applicable Designated Development Area; and, all other activities enumerated in N.J.A.C. 7:50-4.1(a)1.-21.
- 3. The College may, instead of using the process delineated in this MOA, file a complete public development application seeking formal Commission approval for any proposed development project either (1) within any Designated Development Area, which exceeds the maximum impervious coverage ratio or the total area of disturbance identified within the Stormwater Plan; or, (2) anywhere else on its campus not within a Designated Development Area. Development projects satisfying either of these criteria are not subject to the terms of this MOA, however, they are subject to the Master Plan and its DCR and alternative submission does not guarantee approval.