

BUREAU OF MATERIALS MATERIALS PROCEDURES

MP NUMBER: 21-08

EFFECTIVE DATE: 07/01/2008

APPROVAL: Eileen Sheehy

CALIBRATION OF CONTINUOUS MIXING-TYPE MOBILES

PURPOSE:

The purpose of this procedure is to establish a standard for the inspection and calibration of concrete mobiles.

SUPERSEDES:

Materials Procedure Number 21 - Dated 10/1/2001

REFERENCES:

Special Provisions, Addenda and Attachments NJDOT Standard Specifications Sections 903.03.04(A), 1010.03, NJDOT 990 (C-1) AASHTO T-121 Density, Yield and Air Content of Concrete AASHTO T-22 Compressive Strength of Cylindrical Concrete Specimens AASHTO T-23 Making and Curing Concrete Test Specimens in the Field AASHTO T-119 Slump of Hydraulic Cement Concrete AASHTO T-141 Sampling Freshly Mixed Concrete AASHTO T-152 Air Content of Freshly Mixed Concrete by the Pressure Method AASHTO M-241 Concrete made by Volumetric Batching and Continuous Mixing ACI 304.6R Guide for Use of Volumetric-Measuring and Continuous-Mixing Concrete Equipment AASHTO T-277.93 Electrical Indication of Concrete's Ability to resist Chloride Ion Penetration

FORMS:

- TLB-100 Concrete Mobile Inspection Form
- TLB-101 Concrete Mobile Calibration Worksheet
- LB-314 Portland Cement Concrete Mix Designs
- LB-201 PCC Inspection/Testing
- A. Equipment Required for Calibration and Supplied by Contractor:
 - 1. Sufficient container(s) of at least 2 cubic foot capacity with which to receive aggregate and cement.
 - 2. One graduated 5 gallon (minimum) capacity container to receive water and liquid admixtures. Graduations shall be in ounces.
 - 3. A scale with a 45 pound capacity. Scale accuracy will be 0.3% of capacity, or $\pm 1\%$ of the material being weighed, or whichever is less. Scales shall be sealed by a State or Municipal Agency or a licensed scale company.
 - 4. A .25 cubic yard watertight container sufficiently rigid to retain its form when filled with concrete.
 - 5. A stopwatch.
 - 6. Equipment for temperature, slump test, air test, and cylinder molds.
- B. Contractor's Responsibility:
 - 1. The contractor shall submit a Materials Questionnaire indicating the mobile unit(s) and source of materials for cement, sand, stone and certifications for any admixtures.
 - 2. At least 45 days prior to the start of mobile use the contractor shall submit, to the appropriate ME, the mix design for approval and verification. The design shall include all material weights required to produce one cubic yard of concrete. Other data to be submitted include the suppliers, specific gravities, percent absorption, percent voids and the percent solids.
 - 3. The contractor must provide a trained and qualified person to conduct the mobile calibration and to perform the required verification tests. Required qualifications shall include current certifications from the mobile manufacturer. If the calibration of the mobile is to be performed by a private testing agency, the agency representative must be Field Technician Grade I ACI certified, perform the procedures in accordance with Department practice, and document the results on Department forms.

- 4. Individual concrete mobiles will be approved for use for a maximum period of one year following the last inspection. Mechanical inspection of the mobile (TLB-100) and the mobile's calibration (TLB-101) must be performed at least 24 hours in advance of the mobile's use. This inspection is to be scheduled by the contractor with at least seven days notice to the ME performing the inspection.
- 5. The capability to produce particular concrete mixes must be demonstrated on a truck and mix-specific basis. (If two trucks are to batch the same mix design, both trucks must be calibrated and approved.) The contractor must demonstrate that the mobile can accurately proportion the mix design according to NJDOT Specifications and ACI 304.6R each time the mobile is brought to a project. This requirement will be satisfied by successfully completing the procedure outlined on the TLB-101 Mobile Calibration Worksheet. If, in the opinion of the ME, the brief absence of the mobile from a project did not affect the current calibration settings, recalibration of the mobile may be waived provided the contractor can demonstrate that both the cement batch weight and the yield are within their respective tolerances.
- 6. Upon completion of the calibration, the following information is transcribed to the LB-314:
 - a. Mobile identification number
 - b. Gate setting for stone
 - c. Gate setting for sand
 - d. Cement meter count and time per bag cement
 - e. Operating RPM of mobile
 - f. Flow meter values for any admixtures
- 7. When the calibration is complete a yield test will be done and must be within $\pm 2\%$, as per test method NJDOT 990 C-1.
- 8. Slump and air tests will be performed by the contractor's representative and at least six verification cylinders will be made for each acceptable mix.** The ME will test three cylinders at 7-days and three cylinders at 28-days to determine the compressive strengths

**If chloride permeability requirements are specified, then four additional cylinders will be cast for rapid permeability testing. (It is recommended that all the cylinders be weighed at time of molding for future reference.)

9. A copy of the completed TLB-101 Mobile Calibration Worksheet will be sent to the appropriate Regional Materials Office and to the Bureau of Materials Office.

- C. Department Responsibility:
 - 1. Aggregates will be tested and approved by the ME prior to calibration. At the time of calibration, a moisture test will be done on the coarse and fine aggregate and a sample of cement will be submitted for testing.
 - 2. The ME will observe and record the calibration of the mobile. The ME will also perform the calculations necessary to determine whether the mobile performs satisfactorily.
 - 3. Final acceptance of the mobile will be given by the ME.
 - 4. The ME will maintain the LB-314 Mix Design, TLB-100 Concrete Mobile Inspection, and the TLB-101 Mobile Calibration Worksheet. The ME will maintain a current list of approved concrete mobiles.

DISTRIBUTION OF FORMS:

Bureau of Materials Regional Laboratory Project File

TLB-100

CONCRETE MOBILE INSPECTION FORM

	Date of Inspection	/	_
	Rejected		
Company Name Address	<u> </u>	Fruck No	_
		-	
Phone No			
Operator Name			
Inspected by		_Region	-
Title	Phone No		
1) Truck Type (manufacturer	·):		
2) Calibration Plate Data:			
Serial No.			
Operating Speed	d (rpm)		
Cement Constan	nt (ct)		
Time (sec)			
3) Truck gross capacity (cy)		
4) Cement bin capacity (lbs	5)		
5) Water tank capacity (gal)		
6) Cement bin capacity add and truck capacity?	equate for class of concrete		
(6110 pounds or 65 bag	gs, minimum)	Yes	No
7) Specified water measuring	ng device	Vac	No
operational and accurat		1 68	100
8) Water tank capacity adeq	uate for class of		
concrete and truck capa	icity?	Yes	No

9)	Specified admixture measuring device operational and accurate?	Yes	No
10)	Admixture tank capacity (gal)		
11)	Cement bin sealed to preclude moisture an contamination?	d Yes	No
12)	Admixture tank present and in satisfactory condition and of adequate capacity?	Yes	No
13)	Tarp or plastic to cover aggregate bins during rain?	Yes	No
14)	Aggregate bins appropriately labeled to avoid contaminated loading?	Yes	No
15)	Extended partition between bins to preven contamination during loading?	t Yes	No
16)	Operator advised that filling bins to maximum capacity not permissible with extended partition?	out Yes	No
17)	Divider apron at bottom of feed bin (and just above feed belt) present and in operational condition?	Yes	No
18)	Feed belt (conveyor) operational and in satisfactory condition?	Yes	No
19)	Mixing unit (auger blades) operational in satisfactory condition?	and Yes	No
20)	Bin vibrators operational?	Yes	No
21)	Truck mixer capable of maintaining manufacturer's recommended operating speed (rpm's) while truck is moving?	Yes	No
22)	If applicable, gate setting dials lockable?		
	Stone	Yes	No
	Sand	Yes	No
	Cement	Yes	No Na
	water	res	INO

3)	All fluid level indicators present and in satisfactory condition?	Yes	No
4)	All indicators, dials, meters, tachometers and controls in full view and near enough to be read and adjusted by operator while mixing concrete?	Yes	No
5)	Mobile manufacturers operating manual available?	Yes	No
6)	Remarks:		

TLB-101

CONCRETE MOBILE CALIBRATION WORKSHEET

Producer _	 _ Date _	//	

Concrete Mobile Serial No.

Determination of Cement Meter Count and Time to Discharge One Bag of Cement

Cement Brand

Cement Type _____

Truck No.

Tolerance = 0 to +4% = 94 lbs to 97.76 lbs Material + Container Limits = _____to____

	Trial #1	Trial #2	Trial #3	Trial #4	Trial #5	Totals	
Wt (Cement + Container)							
- Tare Weight							
= Wt of Cement							Lbs
Count							Units
Time							Seconds
R P M s							
Conveyor Belt Speed							

- 1. Record the cement weights, actual meter counts and times for 5 in-tolerance trials.
- 2. Determine 2% of total weight: Total lbs _____ X 0.02 = ____ lbs
- 3. From the total weight, subtract the 2% of the total weight to get the adjusted wt Adjusted Wt = _____ - ____ = ____lbs
- (total lbs) (2% total wt) 4. Divide the total units by the adjusted weight factor (use 4 decimal places):
- Factor for Units = _____ ÷ ____ = ____ (total units) (adjusted wt)
- 5. Determine the new cement meter count by multiplying the Factor for Units by 94. New Cement Meter Count = _____ X 94 = _____ units
- 6. Divide the total seconds by the adjusted wt to determine the factor for time. Factor for Time = _____ ÷ ____ = ____
 - (total seconds) (adjusted wt)
- 7. Determine the new time by multiplying the factor for the time by 94 **New Time =** X 94 = seconds (factor for time)

Calculated by: _____ Title _____

Checked by: _		Title		
***Latex	Wt per Gallon	Pounds of Latex per Bag		

Tolerance for Admixtures = $\pm 3\%$ Material + Container Limits = _____ to _____

	Trial #1	Trial #2	Trial #3	Trial #4	Trial #5	
Wt (Latex+Container)						
- Tare Weight						
= Wt of Latex						
Seconds						
Flow Meter Setting						
R P M s						

Calculation for Entrained Water in Latex:

 $\frac{3.5 \text{ gals X (} \% \text{ liquid)}}{1 \text{ bag of cement}} X \frac{7 \text{ bags}}{1 \text{ cy}} = \underline{\qquad} \text{gals / cy of water}$

***Coarse Aggregate _____

Tolerance for coarse agg = $\pm 3\%$ Material + Container Limits = _____ to _____

	Trial #1	Trial #2	Trial #3	Trial #4	Trial #5	
Wt (CoarseAgg+Container)						
- Tare Weight						
= Wt of CoarseAggregate						
Count						
Seconds						
Gate Setting						
R P M s						

***Fine Aggregate _____

Tolerance for fine agg = $\pm 2\%$ Material + Container Limits = _____ to _____

	Trial #1	Trial #2	Trial #3	Trial #4	Trial #5	
Wt (FineAgg+Container)						
- Tare Weight						
= Wt of Fine Agg						
Count						
Seconds						
Gate Setting						
R P M s						

***Water Temperature _____ Unit Wt of Water at this temp _____

Tolerance for water = ± 1 % Material + Container Limits = _____ to _____

	Trial #1	Trial #2	Trial #3	Trial #4	Trial #5	
Wt (Water+Container)						
- Tare Weight						
= Wt of Water						
Seconds						
Flow Meter Setting						
R P M s						

***Admixture #1 _____

Tolerance for admixture = $\pm 3\%$ Fluid in Cylinder = ____ ml

	Trial #1	Trial #2	Trial #3	Trial #4	Trial #5		
Wt (Admix+Container)							
- Tare Weight							
= Wt of Admixture							
Seconds							
Flow Meter Setting							
R P M s							
Parts of solution to total solution parts $(\underline{gals}) X \underline{1 hr}_{3600 sec} X \underline{128 oz} X (\underline{seconds}) X (\underline{bags}) = \underline{coz/cy}$ $1 hour 3600 sec 1 gal 1 hour 2 h$							
Tolerance for admixture = $\pm 3 \%$ Fluid in Cylinder = ml							
	Trial #1	Trial #2	Trial #3	Trial #4	Trial #5		
Wt (Admix+Container)							

Wt (Admix+Container)						
- Tare Weight						
= Wt of Admixture						
Seconds						
Flow Meter Setting						
R P M s						
Parts of solution	1	to	total so	olution parts	s	

 $\underbrace{(\begin{array}{c} gals)}{1 \text{ hour}} X \underbrace{1 \text{ hr}}_{3600 \text{ sec}} X \underbrace{128 \text{ oz}}_{1 \text{ gal}} X \underbrace{(\text{ seconds})}_{1 \text{ bag cement}} X \underbrace{(\text{ bags})}_{1 \text{ cy}} = \underbrace{\text{oz/cy}}_{1 \text{ cy}}$