APPENDIX F - PRELIMINARY CONSTRUCTION COST ESTIMATES

In advance of an economic impact analysis to be conducted as part of the next stage of the Portway Extensions program, preliminary construction cost estimates were prepared for the roadway infrastructure improvement concepts presented in Section X of this report. The cost estimates follow the NJDOT preliminary estimation procedures. Following is a summary table of the infrastructure improvement costs (exclusive of any required right-of-way acquisition or extensive environmental remediation that may be required). Also presented are the computation sheets detailing the construction items, estimated quantities and unit costs for each recommended alternative concept.

Table F-1

Portway Extensions Concept Development Study Recommended Infrastructure Improvements

Preliminary Construction Cost Estimates

Figure Number	Alternative Concept Description	Cost Estimate
X.3	Northern Extensions	$65,000,000$
X.4	NJ Turnpike Interchange 15-W Area	$\$$
X.5	Hackensack River Bridge	$109,000,000$
X.6	NJ Turnpike Interchange 14-A Scheme 1	$161,000,000$
X.7	NJ Turnpike Interchange 14-A Scheme 2	$65,000,000$
X.8	NJ Turnpike Interchange 14	$110,000,000$
X.9	Interim Newark Bay Bridge Improvement	$5,000,000$
X.10	Bayonne Bridge	$186,000,000$
X.11	Routes 1\&9 Northbound at Delancy Street	$4,000,000$
X.12	NJ Turnpike Interchange 13-A - Kapkowski Road Area	$8,000,000$
X.13	NJ Turnpike Interchange 13	$40,000,000$
X.14	NJ Turnpike Interchange 12 Area	$7,000,000$
X.15	NJ Turnpike Interchange 10 Area	$11,000,000$
		$709,000,000$
	Total (w/14-A Scheme 1)	$\mathbf{7 5 4 , 0 0 0 , 0 0 0}$

Classification Number 1 - NEW CONSTRUCTION - English
Route PORTWAY EXTENSIONS Section/Contract \# NORTHERN EXTENSIONS PM UPC No.

EARTHWORK (must be calculated)

	Unit	Quantity	x Unit Price	Amount
Stripping (4-6" Depth)	Acre	26	4,050	105,300
Roadway Exc. Unclassified, See (\mathbf{J})	C.Y.	0	15	0
Removal of Conc. Base \& Conc. Surface Courses, See (K)	S.Y.	0		0
Channel Excavation	C.Y.	0	12.25	0
Ditch Excavation	C.Y.	0	10	0
Borrow Excavation Zone 3, See (J)	C.Y.	104,948	12	1,259,376
		0		0
EARTHWORK TOTAL	=			\$1,364,676

Suggested procedure for calculating earthwork:
A) Determine Typical section (number of lanes, median widths, side slopes, etc.).
B) Get latest topography map available.
C) Plot proposed alignment on topo map.
D) Develop profile using topo controls such as existing roads, streams, rivers and design manual.
E) Calculate Areas for the typical section in 1 foot increments of cut or fill.
F) At 10 to 60 foot intervals (depending on frequency of X-section changes) calculate the earthwork.
G) Calculate any other significant earthwork (ramps, cross-roads, etc.).
H) Make appropriate earthwork corrections for the pavement box and striping. Use 21 inch depth for rigid pavement, 26 inch depth for all flexible pavement and 4 inch depth for stripping.
I) Deduct any roadway excavation from borrow required to calculate Borrow Excavation Zone 3.
J) See Construction Cost Estimate Work Sheet (Section 3.1). This worksheet must be utilized for the most recent price information.
K) 11.2 to 12.5 , based on the quantity, location and type of project.

PAVEMENT

12 FOOT WIDE LANE (from subgrade up)

Pav't. Type	Description of Pavement	Cost/Linear Foot
A	10 inch R.C. Pavement	156
B	2 inch HMA Surf. Crs. \& 8 inch HMA Base	61
C	3 inch HMA Surf. Crs. \& 4 inch HMA Base	46
D	2 inch HMA Surf. Crs. \& 2 inch HMA Base	22
E	Bridge Approach \& Transition Slabs	156

Computation Table for Pavement. Cost

Type	Cost from table above	x Length	x Pavement *W.F.	$=$ Amount
B	61	56,672	2.08	$7,190,543$
E		156	800	4.17
			520,416	
			0	
				0
				0
				0
				0
			0	

*Width Factors = Ratio of 12 foot wide lane to actual pavement width.
Example $=$ actual pavement width $=25$ foot $=25 / 12=2.08$ W.F.

CONTEXT SENSITIVE DESIGN

Attach additional sheet detailing items and costs of context sensitive design work

CULVERTS

COVER

Type	Layout (3)	Skew (1)	Cover (2)	Cost Per Sq. Foot
Type 1	Area w x L exceeds 1000 Sq. Feet	$\begin{array}{\|l\|} \hline 0-60 \\ \text { degrees } \end{array}$	0 to 10'	114.75
			10' to 20'	147.25
	Short Culverts Difficult Conditions under 1000 Square Feet	0-60degrees	0 to 10'	203.50
			10' to 20'	235.00
Type 2	Area w x L exceeds 1000 Sq. Feet	0-60	0 to 10'	121.75
		degrees	10' to 20'	152.50
	Short Culverts Difficult Conditions under 1000 Square Feet	$\begin{aligned} & \hline 0-60 \\ & \text { degrees } \\ & \hline \end{aligned}$	0 to 10'	203.50
			10' to 20'	235.00

For skews over 60 degrees it will be necessary to make a special analysis and establish a square meter price comparable to above.

Description	Area Computation	x Cost per Sq. Foot	$=$ Amount
			0
			0
			0
			0

BRIDGES

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet)
H = Clear Height 14 To 23 feet (4)
$\mathrm{L}=100$ to 400 feet \& all viaducts over 400 feet (5)

Class	Layout	Skew (1)	Foundation (2)	$\begin{aligned} & \text { Cost per Sq. } \\ & \text { Foot } \\ & \hline \end{aligned}$
I	Width at Least 45 feet	$\begin{array}{\|l\|} \hline 0 \text { to } 40 \\ \text { Degrees } \end{array}$	No Piles	134.75
			Piles at Stub Abut.	159.75
			Piles at Piers \& Stu	174.75
		40 to 60 Degrees	No Piles	145.00
			Piles at Stub Abut.	168.25
			Piles at Piers \& Stu	181.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet) (3)
$\mathrm{H}=$ Clear Height 14 feet (4)
$L=$ under 400 feet

Class	Layout	Skew (1)	Foundation (2)	Cost per Sq. Foot
II	L exceeds W Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	176.50
		Degrees	On Piles	187.25
		40 to 60	No Piles	219.75
		Degrees	On Piles	273.25
III	W exceeds L Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	226.75
		Degrees	On Piles	299.25
		40 to 60	No Piles	241.50
		Degrees	On Piles	310.00
IV	Width 30 -45 feetArea W \times L under4500 Sq. Foot	0 to 40	No Piles	295.50
		Degrees	On Piles	396.75
		40 to 60	No Piles	318.25
		Degrees	On Piles	416.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 2 spans (Max. Span 125 feet)
H = Clear Height 14 feet (4)
$L=100$ to 250 feet

1. For skews over 60 degrees it will be necessary to make a special analysis and establish a square foot price comparable to above.
2. For very bad foundation conditions requiring unusual lengths or spacing of piles, it will be necessary to establish a square foot price.
3. For longer spans, adjust the cost per square foot to reflect increased cost of structural members.
4. For span bridges, it is expected the length of the side span will be in- creased in proportion to any increase in height. Because of the resultant increase in deck area, the square foot price will remain approximately the same in the range of heights shown. For extremely high structures (particularly for viaducts), square foot prices will have to be increased.
5. For structures over 400 foot long (viaducts), reduce the cost per square foot if repetitive span length and forming can be used. Reduce by $\$ 0.50$ for lengths from 400 to 600 feet and by $\$ 1.00$ for lengths over 600 feet. (Do not forget adjustments (3) and (4) above on viaducts).
6. For statically indeterminate structures, square foot prices will have to be established.

*Pick appropriate percent based on the size, type and materials of existing structure

DRAINAGE (includes inlets and cross drains)

Rural		0	364356		0
	project length (miles)	x cost per mile		= Amount	
Urban		0	544280		

The above are the total costs of basins, manholes, longitudinal and transverse pipes, underdrains, headwalls, protecting curbs, aprons, etc. for a divided highway with a depressed median. The costs are assumed to apply to 4, 6 or 8 lane sections since there will be no appreciable difference in the number of basins or the sizes or lengths of pipes.

Frontage Road \& Ramp Drainage

	56,672		55	3,116,960
length of ramp or frontage rd. in feet		x cost per foot		= Amount
DRAINAGE TOTAL		=		\$3,116,960

INCIDENTAL ITEMS

Item	Cost / L.F.	X Quantity	$=$ Amount
Beam Guide Rail	16.75	78,336	$1,312,128$
Fence 6 Foot High	18.25	0	0
$9 "$ X 16" Conc. Vertical Curb	13.75	113,344	$1,558,480$
$15 "$ X 41" Conc. Barrier Curb	50.25	0	0
$24 "$ X 41" Conc. Barrier Curb	73.25	0	0
24" X Variable Conc. Barrier Curb	46	0	0
Sign Bridge	308,000	0	0
Cantilever Sign Structure	60,500	0	0
INCIDENTAL ITEMS TOTAL	$=$		$\$ 2,870,608$

LANDSCAPE

	Quantity		x Unit Prices	= Amount
Topsoil and Seeding (Mainline) Length of Project in miles		0	112,815	0
Planting (Mainline) Length of Project in miles		0	64,500	0
Topsoil, Seeding, Planting (Finger Ramp Number of Finger Ramps 0 12,500				
Topsoil, Seeding, Planting (Loop Ramp)				
Topsoil, Seeding (Access Road) Length of Access Road in Feet		56,672	7.9	447,709
LANDSCAPE TOTAL				\$447,709

NOISE ABATEMENT

	Unit	Quantity	x Cost	$=$ Amount	
	L.F.		0	305	0
				0	
				0	
				0	
			0		

GENERAL ITEMS

Item	Project Length (miles)	x Cost/Mile	$=$ Amount
Field Office	10.7	44,260	473,582
Materials Field Laboratory		10.7	28,970
Erosion Control during Constructio	10.7	64,375	309,979
GENERAL ITEMS TOTAL	$=$		688,813

SUMMARY

		NORTHERN	
Route	PORTWAY EXTENSIONS	Section/Contract \#	EXTENSIONS
PM		0 UPC No.	0

Work Type	Totals from other		
pages		,	$1,364,676$
:---			
Earthwork			
Pavement			
Context Sensitive Design			
Culverts			
Bridges			
Drainage			
Incidental Items			
Landscape			
Noise Abatement			
General Items			

Class 1 - New Construction

Other Items	Proj. Subtotal Range	Choice	Amount	
Lighting, Traffic Stripes, Signs and Delineators		3\% of Proj. Subtotal	1,339,074	
Maintenance of Traffic		$\begin{aligned} & 1.5 \% \text { of Proj. } \\ & \text { Subtotal } \end{aligned}$	669,537	
Training		$1 \% \text { of Proj. }$ Subtotal	446,358	
Mobilization			4,463,579	
	Project Cost < 5.0 (Mil.)	9\% of Proj. Subtotal		0
	Project Cost 5.0 \& above	$10 \% \text { of Proj. }$ Subtotal		4463579
Progress Schedule	Project Cost(Mil.)	\$	58,000	
	Less than 2.0	0		0
	2.0 to 5.0	6,000		0
	5.0 to 10.0	8,000		0
	10.0 to 20.0	15,000		0
	20.0 to 30.0	30,000		0
	30.0 to 40.0	40,000		0
	40.0 \& above	58,000		58000
Clearing Site	Project Cost (Mil.)	\$	490,000	
	Less than 1.0	15,000		0
	1.0 to 2.0	30,000		0
	2.0 to 5.0	45,000		0
	5.0 to 10.0	115,000		0
	10.0 to 20.0	220,000		0
	20.0 to 30.0	240,000		0
	30.0 to 40.0	250,000		0
	40.0 \& above	490,000		490000
Construction Layout	Project Cost(Mil.)	\$	890,000	
	Less than 1.0	7,000		0
	1.0 to 2.0	20,000		0
	2.0 to 5.0	42,000		0
	5.0 to 10.0	87,000		0
	10.0 to 20.0	160,000		0
	20.0 to 30.0	220,000		0
	30.0 to 40.0	490,000		0
	40.0 \& above	890,000		890000

	Contingencies (C) Percent	Average Construction Duration in Years
Project Cost(Mil.)	3%	1
$0-10$	2.50%	2
$10-20$	2%	3
$20-50$	1.50%	4
Over 50		4

CONSTRUCTION ENGINEERING (CE)

Project Cost (Mil.)		\% of Construction Cost
Less than 1.0		28.40%
1.0 to 5.0		17.60%
5.0 to 10.0		12.20%
$10.0 \&$ above		9.50%
CONSTRUCTION ENGINEERING AMOUNT		$\$ 5,109,785.66$

CONSTRUCTION CHANGE ORDER CONTINGENCIES
Total Federal Participating Items
in Millions of $\$$

in Millions of \$	Construction Change Order Contingency Amount	
\$0 to 0.1	\$6,000	0
0.1 to 0.5	25,000	0
0.5 to 5.0	25,000 + 4\% of amount in excess of \$500,000	0
5.0 to 10.0	205,000 $+3 \%$ of amount in excess of \$5,000,000	0
10.0 to 15.0	$355,000+2 \%$ of amount in excess of \$10,000,000	0
15.0 and above	$455,000+1.5 \%$ of amount in excess of \$15,000,000-\$500,000 max	500000
		1036800

For State Funded Projects, Contingencies for Change orders $=0$

UTILITIES RELOCATIONS BY COMPANIES/OWNERS

$\$ 53,787,217$			0.09
	x \% or + Estimate	$=$	
		Utility Relocation	
Construction Cost for Initial	Use \% or utilities detailed estimate	Cost for Initial Estimate	Estimate

If there are no utility relocations on the project indicate "No Utilities" in the box above.
RIGHT OF WAY COST
If there is no ROW cost on the project indicate "No ROW" the box
SUMMARY

Construction Estimate for Initial	53,787,217
Construction Engineering (CE)	5,109,786
Contingencies	500,000
Utilities Relocations	4,840,850
Total Construction Cost	\$64,237,853

Right of Way Cost
0

Classification Number 1 - NEW CONSTRUCTION - English
Route PORTWAY EXTENSIONS Section/Contract \# NJ TURNPIKE INTERCHANGE 15W PM UPC No.

EARTHWORK (must be calculated)

	Unit	Quantity	x Unit Price	Amount
Stripping (4-6" Depth)	Acre	17.8	4,050	72,090
Roadway Exc. Unclassified, See (J)	C.Y.	113,472	15	1,702,080
Removal of Conc. Base \& Conc. Surface Courses, See (K)	S.Y.	0		0
Channel Excavation	C.Y.	0	12.25	0
Ditch Excavation	C.Y.	0	10	0
Borrow Excavation Zone 3, See (J)	C.Y.	57,778	12	693,336
		0		0
EARTHWORK TOTAL	=			\$2,467,506

Suggested procedure for calculating earthwork:
A) Determine Typical section (number of lanes, median widths, side slopes, etc.).
B) Get latest topography map available.
C) Plot proposed alignment on topo map.
D) Develop profile using topo controls such as existing roads, streams, rivers and design manual.
E) Calculate Areas for the typical section in 1 foot increments of cut or fill.
F) At 10 to 60 foot intervals (depending on frequency of X-section changes) calculate the earthwork.
G) Calculate any other significant earthwork (ramps, cross-roads, etc.).
H) Make appropriate earthwork corrections for the pavement box and striping. Use 21 inch depth for rigid pavement, 26 inch depth for all flexible pavement and 4 inch depth for stripping.
I) Deduct any roadway excavation from borrow required to calculate Borrow Excavation Zone 3.
J) See Construction Cost Estimate Work Sheet (Section 3.1). This worksheet must be utilized for the most recent price information.
K) 11.2 to 12.5 , based on the quantity, location and type of project.

PAVEMENT

12 FOOT WIDE LANE (from subgrade up)

Pav't. Type	Description of Pavement	Cost/Linear Foot
A	10 inch R.C. Pavement	156
B	2 inch HMA Surf. Crs. \& 8 inch HMA Base	61
C	3 inch HMA Surf. Crs. \& 4 inch HMA Base	46
D	2 inch HMA Surf. Crs. \& 2 inch HMA Base	22
E	Bridge Approach \& Transition Slabs	156

Computation Table for Pavement. Cost

Type	Cost from table above	x Length	x Pavement *W.F.	$=$ Amount
B	61	31,914	4	$7,787,016$
B	61	6,888	2.08	873,949
E		156	800	4
			499,200	
				0
				0
				0
				0
			0	

*Width Factors = Ratio of 12 foot wide lane to actual pavement width.
Example $=$ actual pavement width $=25$ foot $=25 / 12=2.08$ W.F.

CONTEXT SENSITIVE DESIGN

Attach additional sheet detailing items and costs of context sensitive design work

CULVERTS

COVER

Type	Layout (3)	Skew (1)	Cover (2)	Cost Per Sq. Foot
Type 1	Area w x L exceeds 1000 Sq. Feet	$\begin{array}{\|l\|} \hline 0-60 \\ \text { degrees } \end{array}$	0 to 10'	114.75
			10' to 20'	147.25
	Short Culverts Difficult Conditions under 1000 Square Feet	0-60degrees	0 to 10'	203.50
			10' to 20'	235.00
Type 2	Area w x L exceeds 1000 Sq. Feet	0-60	0 to 10'	121.75
		degrees	10' to 20'	152.50
	Short Culverts Difficult Conditions under 1000 Square Feet	$\begin{aligned} & \hline 0-60 \\ & \text { degrees } \\ & \hline \end{aligned}$	0 to 10'	203.50
			10' to 20'	235.00

For skews over 60 degrees it will be necessary to make a special analysis and establish a square meter price comparable to above.

Description	Area Computation	x Cost per Sq. Foot	$=$ Amount
			0
			0
			0
			0

BRIDGES

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet)
H = Clear Height 14 To 23 feet (4)
$\mathrm{L}=100$ to 400 feet \& all viaducts over 400 feet (5)

Class	Layout	Skew (1)	Foundation (2)	Cost per Sq. Foot
I	Width at Least 45 feet	0 to 40 Degrees	No Piles	134.75
			Piles at Stub Abut.	159.75
			Piles at Piers \& Stu	174.75
		40 to 60 Degrees	No Piles	145.00
			Piles at Stub Abut.	168.25
			Piles at Piers \& Stu	181.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet) (3)
$\mathrm{H}=$ Clear Height 14 feet (4)
$L=$ under 400 feet

Class	Layout	Skew (1)	Foundation (2)	$\begin{aligned} & \text { Cost per Sq. } \\ & \text { Foot } \end{aligned}$
II	L exceeds W Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	176.50
		Degrees	On Piles	187.25
		40 to 60	No Piles	219.75
		Degrees	On Piles	273.25
III	W exceeds L Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	226.75
		Degrees	On Piles	299.25
		40 to 60	No Piles	241.50
		Degrees	On Piles	310.00
IV	Width 30 -45 feetArea $W \times L$ under4500 Sq. Foot	0 to 40	No Piles	295.50
		Degrees	On Piles	396.75
		40 to 60	No Piles	318.25
		Degrees	On Piles	416.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 2 spans (Max. Span 125 feet)
H = Clear Height 14 feet (4)
$L=100$ to 250 feet

1. For skews over 60 degrees it will be necessary to make a special analysis and establish a square foot price comparable to above.
2. For very bad foundation conditions requiring unusual lengths or spacing of piles, it will be necessary to establish a square foot price.
3. For longer spans, adjust the cost per square foot to reflect increased cost of structural members.
4. For span bridges, it is expected the length of the side span will be in- creased in proportion to any increase in height. Because of the resultant increase in deck area, the square foot price will remain approximately the same in the range of heights shown. For extremely high structures (particularly for viaducts), square foot prices will have to be increased.
5. For structures over 400 foot long (viaducts), reduce the cost per square foot if repetitive span length and forming can be used. Reduce by $\$ 0.50$ for lengths from 400 to 600 feet and by $\$ 1.00$ for lengths over 600 feet. (Do not forget adjustments (3) and (4) above on viaducts).
6. For statically indeterminate structures, square foot prices will have to be established.

*Pick appropriate percent based on the size, type and materials of existing structure

DRAINAGE (includes inlets and cross drains)

Rural		0	364356	0						
								project length (miles)	x cost per mile	$=$ Amount

The above are the total costs of basins, manholes, longitudinal and transverse pipes, underdrains, headwalls, protecting curbs, aprons, etc. for a divided highway with a depressed median. The costs are assumed to apply to 4, 6 or 8 lane sections since there will be no appreciable difference in the number of basins or the sizes or lengths of pipes.

Frontage Road \& Ramp Drainage

	6,888		55		378,840
length of ramp or frontage rd. in feet		x cost per foot		= Amount	
DRAINAGE TOTAL		=			3,644,520

INCIDENTAL ITEMS

Item	Cost / L.F.	X Quantity	$=$ Amount
Beam Guide Rail	16.75	38,802	649,934
Fence 6 Foot High	18.25	0	0
$9 "$ X 16" Conc. Vertical Curb	13.75	77,604	$1,067,055$
$15 "$ X 41" Conc. Barrier Curb	50.25	0	0
24" X 41" Conc. Barrier Curb	73.25	0	0
24" X Variable Conc. Barrier Curb	46	0	0
Sign Bridge	308,000	0	0
Cantilever Sign Structure	60,500	0	0
INCIDENTAL ITEMS TOTAL	$=$		$\$ 1,716,989$

LANDSCAPE

	Quantity	x Unit Prices	$=$ Amount
Topsoil and Seeding (Mainline) Length of Project in miles		6	112,815

NOISE ABATEMENT

	Unit	Quantity	x Cost	$=$ Amount	
	L.F.		0	305	0
				0	
				0	
				0	
			0		

GENERAL ITEMS

Item	Project Length (miles)	x Cost/Mile	$=$ Amount
Field Office	7.3	44,260	323,098
Materials Field Laboratory		7.3	28,970
Erosion Control during Constructio	7.3	64,375	211,481
GENERAL ITEMS TOTAL	$=$		469,938

SUMMARY

$\left.\begin{array}{lllll} & & & & \\ & & & \text { NJ TURNPIKE } \\ \text { INTERCHANGE }\end{array}\right)$

Work Type	Totals from other		
pages		,	$2,467,506$
:---			
Earthwork			
Pavement			
Context Sensitive Design			
Culverts			
Bridges			
Drainage			
Incidental Items			
Landscape			
Noise Abatement			
General Items			
PROJECT SUBTOTAL			

Class 1 - New Construction

	Contingencies (C) Percent	Average Construction Duration in Years
Project Cost(Mil.)	3%	1
$0-10$	2.50%	2
$10-20$	2%	3
$20-50$	1.50%	4
Over 50		4

CONSTRUCTION ENGINEERING (CE)

Project Cost (Mil.)		\% of Construction Cost
Less than 1.0		28.40%
1.0 to 5.0		17.60%
5.0 to 10.0		12.20%
$10.0 \&$ above		9.50%
CONSTRUCTION ENGINEERING AMOUNT		

CONSTRUCTION CHANGE ORDER CONTINGENCIES

Total Federal Participating Items

in Millions of \$	Construction Change Order Contingency Amount	
\$0 to 0.1	\$6,000	0
0.1 to 0.5	25,000	0
0.5 to 5.0	25,000 + 4\% of amount in excess of \$500,000	0
5.0 to 10.0	205,000 $+3 \%$ of amount in excess of \$5,000,000	0
10.0 to 15.0	$355,000+2 \%$ of amount in excess of \$10,000,000	0
15.0 and above	$455,000+1.5 \%$ of amount in excess of \$15,000,000-\$500,000 max	500000
		1590900

For State Funded Projects, Contingencies for Change orders $=0$

UTILITIES RELOCATIONS BY COMPANIES/OWNERS

$\$ 90,723,428$		0.09	$\$ 8,165,108$
	$\mathrm{x} \%$ or + Estimate	$=$	Utility Relocation
Construction Cost for Initial	Use \% or utilities detailed estimate	Cost for Initial	
Estimate	Estimate		

If there are no utility relocations on the project indicate "No Utilities" in the box above.
RIGHT OF WAY COST
If there is no ROW cost on the project indicate "No ROW" the box
SUMMARY

Construction Estimate for Initial	90,723,428
Construction Engineering (CE)	8,618,726
Contingencies	500,000
Utilities Relocations	8,165,108
Total Construction Cost	\$108,007,262

Right of Way Cost
0

Classification Number 1 - NEW CONSTRUCTION - English

Route	PORTWAY EXTENSIONS	Section/Contract \# HACKENSACK RIVER BRIDGE
PM	UPC No.	

EARTHWORK (must be calculated)

	Unit	Quantity	x Unit Price	Amount
Stripping (4-6" Depth)	Acre	\bigcirc	4,050	0
Roadway Exc. Unclassified, See (J)	C.Y.	0		0
Removal of Conc. Base \& Conc. Surface Courses, See (K)	S.Y.	0		0
Channel Excavation	C.Y.	0	12.25	0
Ditch Excavation	C.Y.	0	10	0
Borrow Excavation Zone 3, See (J)	C.Y.	0		0
		0		0
EARTHWORK TOTAL	=			0

Suggested procedure for calculating earthwork:
A) Determine Typical section (number of lanes, median widths, side slopes, etc.).
B) Get latest topography map available.
C) Plot proposed alignment on topo map.
D) Develop profile using topo controls such as existing roads, streams, rivers and design manual.
E) Calculate Areas for the typical section in 1 foot increments of cut or fill.
F) At 10 to 60 foot intervals (depending on frequency of X-section changes) calculate the earthwork.
G) Calculate any other significant earthwork (ramps, cross-roads, etc.).
H) Make appropriate earthwork corrections for the pavement box and striping. Use 21 inch depth for rigid pavement, 26 inch depth for all flexible pavement and 4 inch depth for stripping.
I) Deduct any roadway excavation from borrow required to calculate Borrow Excavation Zone 3.
J) See Construction Cost Estimate Work Sheet (Section 3.1). This worksheet must be utilized for the most recent price information.
K) 11.2 to 12.5 , based on the quantity, location and type of project.

PAVEMENT

12 FOOT WIDE LANE (from subgrade up)

Pav't. Type	Description of Pavement	Cost/Linear Foot
A	10 inch R.C. Pavement	156
B	2 inch HMA Surf. Crs. \& 8 inch HMA Base	61
C	3 inch HMA Surf. Crs. \& 4 inch HMA Base	46
D	2 inch HMA Surf. Crs. \& 2 inch HMA Base	22
E	Bridge Approach \& Transition Slabs	156

Computation Table for Pavement. Cost

Type	Cost from table above	x Length	x Pavement *W.F.	$=$ Amount
E		156	200	6
				187,200
				0
				0
				0
				0
			0	
			0	
			0	

*Width Factors = Ratio of 12 foot wide lane to actual pavement width.
Example $=$ actual pavement width $=25$ foot $=25 / 12=2.08$ W.F.

CONTEXT SENSITIVE DESIGN

Attach additional sheet detailing items and costs of context sensitive design work

CULVERTS

COVER

Type	Layout (3)	Skew (1)	Cover (2)	Cost Per Sq. Foot
Type 1	Area w x L exceeds 1000 Sq. Feet	$\begin{array}{\|l\|} \hline 0-60 \\ \text { degrees } \end{array}$	0 to 10'	114.75
			10' to 20'	147.25
	Short Culverts Difficult Conditions under 1000 Square Feet	0-60degrees	0 to 10'	203.50
			10' to 20'	235.00
Type 2	Area w x L exceeds 1000 Sq. Feet	0-60	0 to 10'	121.75
		degrees	10' to 20'	152.50
	Short Culverts Difficult Conditions under 1000 Square Feet	$\begin{aligned} & \hline 0-60 \\ & \text { degrees } \\ & \hline \end{aligned}$	0 to 10'	203.50
			10' to 20'	235.00

For skews over 60 degrees it will be necessary to make a special analysis and establish a square meter price comparable to above.

Description	Area Computation	x Cost per Sq. Foot	$=$ Amount
			0
			0
			0
			0

BRIDGES

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet)
H = Clear Height 14 To 23 feet (4)
$\mathrm{L}=100$ to 400 feet \& all viaducts over 400 feet (5)

Class	Layout	Skew (1)	Foundation (2)	Cost per Sq. Foot
I	Width at Least 45 feet	0 to 40 Degrees	No Piles	134.75
			Piles at Stub Abut.	159.75
			Piles at Piers \& Stu	174.75
		40 to 60 Degrees	No Piles	145.00
			Piles at Stub Abut.	168.25
			Piles at Piers \& Stu	181.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet) (3)
$\mathrm{H}=$ Clear Height 14 feet (4)
$L=$ under 400 feet

Class	Layout	Skew (1)	Foundation (2)	$\begin{aligned} & \text { Cost per Sq. } \\ & \text { Foot } \end{aligned}$
II	L exceeds W Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	176.50
		Degrees	On Piles	187.25
		40 to 60	No Piles	219.75
		Degrees	On Piles	273.25
III	W exceeds L Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	226.75
		Degrees	On Piles	299.25
		40 to 60	No Piles	241.50
		Degrees	On Piles	310.00
IV	Width 30 -45 feetArea $W \times L$ under4500 Sq. Foot	0 to 40	No Piles	295.50
		Degrees	On Piles	396.75
		40 to 60	No Piles	318.25
		Degrees	On Piles	416.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 2 spans (Max. Span 125 feet)
H = Clear Height 14 feet (4)
$L=100$ to 250 feet

1. For skews over 60 degrees it will be necessary to make a special analysis and establish a square foot price comparable to above.
2. For very bad foundation conditions requiring unusual lengths or spacing of piles, it will be necessary to establish a square foot price.
3. For longer spans, adjust the cost per square foot to reflect increased cost of structural members.
4. For span bridges, it is expected the length of the side span will be in- creased in proportion to any increase in height. Because of the resultant increase in deck area, the square foot price will remain approximately the same in the range of heights shown. For extremely high structures (particularly for viaducts), square foot prices will have to be increased.
5. For structures over 400 foot long (viaducts), reduce the cost per square foot if repetitive span length and forming can be used. Reduce by $\$ 0.50$ for lengths from 400 to 600 feet and by $\$ 1.00$ for lengths over 600 feet. (Do not forget adjustments (3) and (4) above on viaducts).
6. For statically indeterminate structures, square foot prices will have to be established.

Structure Description	Calculated Sq. Foot of Bridge Deck	x Cost Per Square Foot	= Amount
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
Clearing Site Bridge *0-3\% of Sub Total $\%$		Sub Total	0
		0	
		BRIDGE TOTAL	0

*Pick appropriate percent based on the size, type and materials of existing structure

DRAINAGE (includes inlets and cross drains)

Rural		0	364356		0
	project length (miles)		mile	= Amount	
Urban		0	544280\|		0

The above are the total costs of basins, manholes, longitudinal and transverse pipes, underdrains, headwalls, protecting curbs, aprons, etc. for a divided highway with a depressed median. The costs are assumed to apply to 4, 6 or 8 lane sections since there will be no appreciable difference in the number of basins or the sizes or lengths of pipes.

Frontage Road \& Ramp Drainage

	0			0
length of ramp or frontage rd. in feet		x cost per foot	= Amount	
DRAINAGE TOTAL				0

INCIDENTAL ITEMS

Item	Cost / L.F.	x Quantity	$=$ Amount
Beam Guide Rail	16.75	0	0
Fence 6 Foot High	18.25	0	0
$9 "$ X 16" Conc. Vertical Curb	13.75	0	0
$15^{\prime \prime} \times 41^{\prime \prime}$ Conc. Barrier Curb	50.25	0	0
24" X 41" Conc. Barrier Curb	73.25	0	0
24" X Variable Conc. Barrier Curb	46	0	0
Sign Bridge	308,000	0	0
Cantilever Sign Structure	60,500	0	0
INCIDENTAL ITEMS TOTAL	$=$		0

LANDSCAPE

	Quantity	x Unit Prices	$=$ Amount	
Topsoil and Seeding (Mainline) Length of Project in miles		0	112,815	
Planting (Mainline) Length of Project in miles		0		
Topsoil, Seeding, Planting (Finger Ramp Number of Finger Ramps		64,500		
Topsoil, Seeding, Planting (Loop Ramp) Number of Loop Ramps	0	12,500	0	
Topsoil, Seeding (Access Road) Length of Access Road in Feet	0		0	
LANDSCAPE TOTAL	0	20,000		

NOISE ABATEMENT

	Unit	Quantity	x Cost	$=$ Amount	
	L.F.		0	305	0
				0	
				0	
				0	
			0		

GENERAL ITEMS

Item	Project Length (miles)	x Cost/Mile	$=$ Amount						
Field Office	1	44,260	44260						
Materials Field Laboratory	1	28,970	28970						
Erosion Control during Constructio	1	64,375	64375						
GENERAL ITEMS TOTAL							$=$		$\$ 137,605$

SUMMARY

			HACKENSACK Route
PORTWAY EXTENSIONS	Section/Contract \#	RIVER BRIDGE	
		0 UPC No.	0

Work Type	Totals from other pages
Earthwork	0
Pavement	187,200
Context Sensitive Design	0
Culverts	0
Bridges	$113,680,800$
Drainage	0
Incidental Items	0
Landscape	0
Noise Abatement	0
General Items	137,605
	$\$ 114,005,605$

Class 1 - New Construction

Other Items	Proj. Subtotal Range	Choice	Amount	
Lighting, Traffic Stripes, Signs and Delineators		$3 \% \text { of Proj. }$ Subtotal	3,420,168	
Maintenance of Traffic		1.5% of Proj. Subtotal	1,710,084	
Training		1% of Proj. Subtotal	1,140,056	
Mobilization			11,400,561	
	Project Cost < 5.0 (Mil.)	9\% of Proj. Subtotal		0
	Project Cost 5.0 \& above	$10 \% \text { of Proj. }$ Subtotal		11400561
Progress Schedule	Project Cost(Mil.)	\$	58,000	
	Less than 2.0	0		0
	2.0 to 5.0	6,000		0
	5.0 to 10.0	8,000		0
	10.0 to 20.0	15,000		0
	20.0 to 30.0	30,000		0
	30.0 to 40.0	40,000		0
	40.0 \& above	58,000		58000
Clearing Site	Project Cost (Mil.)	\$	490,000	
	Less than 1.0	15,000		0
	1.0 to 2.0	30,000		0
	2.0 to 5.0	45,000		0
	5.0 to 10.0	115,000		0
	10.0 to 20.0	220,000		0
	20.0 to 30.0	240,000		0
	30.0 to 40.0	250,000		0
	40.0 \& above	490,000		490000
Construction Layout	Project Cost(Mil.)	\$	890,000	
	Less than 1.0	7,000		0
	1.0 to 2.0	20,000		0
	2.0 to 5.0	42,000		0
	5.0 to 10.0	87,000		0
	10.0 to 20.0	160,000		0
	20.0 to 30.0	220,000		0
	30.0 to 40.0	490,000		0
	40.0 \& above	890,000		890000
		PROJECT TOTAL	\$133,114,474	

CONTINGENCIES \& ESCALATION	Y	
$\mathrm{Y}=$ Number of Years until midpoint of construction duration plus number of years until construction start. If midpoint is less than 2 years from the date of this estimate, no escalation is required. Maximum value $=10 \%$	0.00	
133114473.8 1.015	1.00	\$135,111,191
Project Total Contingencies (1+C)	$\begin{aligned} & 1+[0.01(\mathrm{Y}+1)(\mathrm{Y}- \\ & 2)] \end{aligned}$	struction mate for PD

	Contingencies (C) Percent	Average Construction Duration in Years
Project Cost(Mil.)	3%	1
$0-10$	2.50%	2
$10-20$	2%	3
$20-50$	1.50%	4
Over 50		4

CONSTRUCTION ENGINEERING (CE)

Project Cost (Mil.)		\% of Construction Cost
Less than 1.0		28.40%
1.0 to 5.0		17.60%
5.0 to 10.0		12.20%
10.0 \& above		9.50%
CONSTRUCTION ENGINEERING AMOUNT		$\$ 12,835,563.13$

CONSTRUCTION CHANGE ORDER CONTINGENCIES

Total Federal Participating Items

in Millions of \$	Construction Change Order Contingency Amount	
\$0 to 0.1	\$6,000	0
0.1 to 0.5	25,000	0
0.5 to 5.0	25,000 + 4\% of amount in excess of \$500,000	0
5.0 to 10.0	205,000 $+3 \%$ of amount in excess of \$5,000,000	0
10.0 to 15.0	$355,000+2 \%$ of amount in excess of \$10,000,000	0
15.0 and above	$455,000+1.5 \%$ of amount in excess of \$15,000,000-\$500,000 max	500000
		2256700

For State Funded Projects, Contingencies for Change orders $=0$

UTILITIES RELOCATIONS BY COMPANIES/OWNERS

$\$ 135,111,191$			0.09
	x \% or + Estimate	=	
		Utility Relocation	
Construction Cost for Initial	Use \% or utilities detailed		Cost for Initial Estimate
	estimate	Estimate	

If there are no utility relocations on the project indicate "No Utilities" in the box above.
RIGHT OF WAY COST
If there is no ROW cost on the project indicate "No ROW" the box
SUMMARY

Construction Estimate for Initial	$135,111,191$
Construction Engineering (CE)	$12,835,563$
Contingencies	500,000
Utilities Relocations	$12,160,007$
	$\$ 160,606,761$

Right of Way Cost \qquad
0

Classification Number 1 - NEW CONSTRUCTION - English

Route	PORTWAY EXTENSIONS	Section/Contract \#	NJTP INT 14A - SCHEME 1
PM	UPC No.		

EARTHWORK (must be calculated)

	Unit	Quantity	x Unit Price	Amount
Stripping (4-6" Depth)	Acre	22.9	4,050	92,745
Roadway Exc. Unclassified, See (J)	C.Y.	110,672	15	1,660,080
Removal of Conc. Base \& Conc. Surface Courses, See (K)	S.Y.	0		0
Channel Excavation	C.Y.	0	12.25	0
Ditch Excavation	C.Y.	0	10	0
Borrow Excavation Zone 3, See (J)	C.Y.	90,130	12	1,081,560
		0		0
EARTHWORK TOTAL	$=$			\$2,834,385

Suggested procedure for calculating earthwork:
A) Determine Typical section (number of lanes, median widths, side slopes, etc.).
B) Get latest topography map available.
C) Plot proposed alignment on topo map.
D) Develop profile using topo controls such as existing roads, streams, rivers and design manual.
E) Calculate Areas for the typical section in 1 foot increments of cut or fill.
F) At 10 to 60 foot intervals (depending on frequency of X -section changes) calculate the earthwork.
G) Calculate any other significant earthwork (ramps, cross-roads, etc.).
H) Make appropriate earthwork corrections for the pavement box and striping. Use 21 inch depth for rigid pavement, 26 inch depth for all flexible pavement and 4 inch depth for stripping.
I) Deduct any roadway excavation from borrow required to calculate Borrow Excavation Zone 3.
J) See Construction Cost Estimate Work Sheet (Section 3.1). This worksheet must be utilized for the most recent price information.
K) 11.2 to 12.5 , based on the quantity, location and type of project.

PAVEMENT

12 FOOT WIDE LANE (from subgrade up)

Pav't. Type	Description of Pavement	Cost/Linear Foot
A	10 inch R.C. Pavement	156
B	2 inch HMA Surf. Crs. \& 8 inch HMA Base	61
C	3 inch HMA Surf. Crs. \& 4 inch HMA Base	46
D	2 inch HMA Surf. Crs. \& 2 inch HMA Base	22
E	Bridge Approach \& Transition Slabs	156

Computation Table for Pavement. Cost

Type	Cost from table above	x Length	x Pavement *W.F.	$=$ Amount	
B	60	900	20.83	$1,125,000$	
B		60	620	6.25	232,500
B	60	7,010	4.17	$1,752,500$	
B		60	11,888	2.08	$1,486,000$
				0	
				0	
				0	
				0	
				0	

PAVEMENT TOTAL

*Width Factors = Ratio of 12 foot wide lane to actual pavement width.
Example $=$ actual pavement width $=25$ foot $=25 / 12=2.08$ W.F.

CONTEXT SENSITIVE DESIGN

Attach additional sheet detailing items and costs of context sensitive design work

CULVERTS

|/

|/

COVER

Type $1 \mathrm{~W}<20$ Feet

Type $2 W>20$ feet

Type	Layout (3)	Skew (1)	Cover (2)	$\begin{aligned} & \text { Cost Per Sq. } \\ & \text { Foot } \\ & \hline \end{aligned}$
Type 1	Area w x L exceeds 1000 Sq. Feet	$0-60$ degrees	0 to 10'	114.75
			10' to 20'	147.25
	Short Culverts Difficult Conditions under 1000 Square Feet	$0-60$ degrees	0 to 10'	203.50
			10' to 20'	235.00
Type 2	Area w x L exceeds 1000 Sq. Feet	0-60	0 to 10'	121.75
		degrees	10' to 20'	152.50
	Short Culverts Difficult Conditions under 1000 Square Feet	$\begin{aligned} & 0-60 \\ & \text { degrees } \\ & \hline \end{aligned}$	0 to 10'	203.50
			10' to 20'	235.00

For skews over 60 degrees it will be necessary to make a special analysis and establish a square meter price comparable to above.

Description	Area Computation	x Cost per Sq. Foot	$=$ Amount
			0
			0
			0
			0

BRIDGES

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet)
$\mathrm{H}=$ Clear Height 14 To 23 feet (4)
$\mathrm{L}=100$ to 400 feet \& all viaducts over 400 feet (5)

Class	Layout	Skew (1)	Foundation (2)	Cost per Sq. Foot
I	Width at Least 45 feet	0 to 40 Degrees	No Piles	134.75
			Piles at Stub Abut.	159.75
			Piles at Piers \& Stul	174.75

Class 1 - New Construction

40 to 60	No Piles	145.00
Degrees	Piles at Stub Abut.	168.25
	Piles at Piers \& Stul	181.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet) (3)
$\mathrm{H}=$ Clear Height 14 feet (4)
$L=$ under 400 feet

Class	Layout	Skew (1)	Foundation (2)	$\begin{array}{\|l\|} \hline \text { Cost per Sq. } \\ \text { Foot } \\ \hline \end{array}$
II	L exceeds W Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	176.50
		Degrees	On Piles	187.25
		40 to 60	No Piles	219.75
		Degrees	On Piles	273.25
III	W exceeds LArea L x Wexceeds 4500Sq. Feet	0 to 40	No Piles	226.75
		Degrees	On Piles	299.25
		40 to 60	No Piles	241.50
		Degrees	On Piles	310.00
IV	Width 30 -45 feetArea W x L under4500 Sq. Foot	0 to 40	No Piles	295.50
		Degrees	On Piles	396.75
		40 to 60	No Piles	318.25
		Degrees	On Piles	416.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 2 spans (Max. Span 125 feet)
H = Clear Height 14 feet (4)
L = 100 to 250 feet

1. For skews over 60 degrees it will be necessary to make a special analysis and establish a square foot price comparable to above.
2. For very bad foundation conditions requiring unusual lengths or spacing of piles, it will be necessary to establish a square foot price.
3. For longer spans, adjust the cost per square foot to reflect increased cost of structural members.
4. For span bridges, it is expected the length of the side span will be in- creased in proportion to any increase in height. Because of the resultant increase in deck area, the square foot price will remain approximately the same in the range of heights shown. For extremely high structures (particularly for viaducts), square foot prices will have to be increased.
5. For structures over 400 foot long (viaducts), reduce the cost per square foot if repetitive span length and forming can be used. Reduce by $\$ 0.50$ for lengths from 400 to 600 feet and by $\$ 1.00$ for lengths over 600 feet. (Do not forget adjustments (3) and (4) above on viaducts).
6. For statically indeterminate structures, square foot prices will have to be established.

*Pick appropriate percent based on the size, type and materials of existing structure

DRAINAGE (includes inlets and cross drains)

Rural	project length (miles)	0	364356	0	
			x cost per mile	= Amount	
Urban		1.6	544280		870,848

The above are the total costs of basins, manholes, longitudinal and transverse pipes, underdrains, headwalls, protecting curbs, aprons, etc. for a divided highway with a depressed median. The costs are assumed to apply to 4,6 or 8 lane sections since there will be no appreciable difference in the number of basins or the sizes or lengths of pipes.

Frontage Road \& Ramp Drainage

length of ramp or frontage rd. in feet	12,338	55	678,590
DRAINAGE TOTAL	\times cost per foot	$=$ Amount	

INCIDENTAL ITEMS

Item	Cost / L.F.	x Quantity	$=$ Amount
Beam Guide Rail	16.75	2500	41,875
Fence 6 Foot High	18.25		0
$9 "$ X 16" Conc. Vertical Curb	13.75	22,970	315,838
$15^{\prime \prime}$ X 41" Conc. Barrier Curb	50.25		0
$24 "$ X 41" Conc. Barrier Curb	73.25	4410	323,033
24" X Variable Conc. Barrier Curb	46		0

Class 1 - New Construction

Sign Bridge	308,000	5	1540000
Cantilever Sign Structure	60,500	3	181500
INCIDENTAL ITEMS TOTAL	$=$		$\$ 2,402,245$

LANDSCAPE

	Quantity	x Unit Prices	= Amount
Topsoil and Seeding (Mainline) Length of Project in miles	1.6	112,815	180,504
Planting (Mainline) Length of Project in miles	1.6	64,500	103,200
Topsoil, Seeding, Planting (Finger Ramp			
Topsoil, Seeding, Planting (Loop Ramp) Number of Loop Ramps			
Topsoil, Seeding (Access Road) Length of Access Road in Feet		7.9	0
LANDSCAPE TOTAL			\$361,204

NOISE ABATEMENT

| | Unit | Quantity | x Cost | $=$ Amount |
| :--- | :--- | :--- | :--- | ---: | ---: |
| | L.F. | | 0 | 0 |
| | | | | 0 |
| | | | | 0 |
| | | | 0 | |
| | | | 0 | |

GENERAL ITEMS

Item	Project Length (miles)	x Cost/Mile	$=$ Amount
Field Office	3.9	44,260	172,614
Materials Field Laboratory	3.9	28,970	112,983
Erosion Control during Constructio	3.9	64,375	251,063
GENERAL ITEMS TOTAL	$=$		$\$ 536,660$

SUMMARY

			NJTP INT 14A -	
Route	PORTWAY EXTENSIONS	Section/Contract \#	SCHEME 1	0
PM	0 UPC No.			

Work Type	Totals from other pages
Earthwork	$2,834,385$
Pavement	$4,596,000$
Context Sensitive Design	0
Culverts	0
Bridges	$5,850,000$
Drainage	$1,549,438$
Incidental Items	$2,402,245$
Landscape	361,204

Class 1 - New Construction

	$12500^{*} 675+2290^{*} 1$	
Walls	710	$12,353,400$
General Items	$4^{*} 120000+150000$	536,660
Traffic Signals	$15^{*} 900000$	630,000
Toll		$\$ 3,500,000$
PROJECT SUBTOTAL		$\$ 44,613,332$

Class 1 - New Construction

		Average Construction Duration in Years
Project Cost(Mil.)	Contingencies (C) Percent	3%
$0-10$	2.50%	1
$10-20$	2%	2
$20-50$	1.50%	3
Over 50	4	

0.000
0.000
0.000
0.015

CONSTRUCTION ENGINEERING (CE)

Project Cost (Mil.)		\% of Construction Cost
Less than 1.0		28.40%
1.0 to 5.0		17.60%
5.0 to 10.0		12.20%
$10.0 \&$ above		9.50%

0
0
0

CONSTRUCTION CHANGE ORDER CONTINGENCIES
Total Federal Participating Items
in Millions of \$
$\$ 0$ to 0.1
0.1 to 0.5

Construction Change Order Contingency Amount

\$6,000

25,0000
5.0 to 10.0
10.0 to 15.0
15.0 and above

For State Funded Projects, Contingencies for Change orders $=0$
CHANGE ORDER CONTINGENCY AMOUNT $=\quad \$ 500,000$
UTILITIES RELOCATIONS BY COMPANIES/OWNERS

$\$ 53,760,894$		0.09	$\$ 4,838,480$
	$x \%$ or + Estimate	$=$	Utility Relocation
Construction Cost for Initial	Use \% or utilities detailed Estimate	Cost for Initial estimate	Estimate

If there are no utility relocations on the project indicate "No Utilities" in the box above.
RIGHT OF WAY COST
If there is no ROW cost on the project indicate "No ROW" the box
SUMMARY
Construction Estimate for Initial
Construction Engineering (CE)
Contingencies
Utilities Relocations
Total Construction Cost

$53,760,894$
$5,107,285$
500,000
$4,838,480$
$\$ 64,206,659$

Right of Way Cost

Classification Number 1 - NEW CONSTRUCTION - English

Route	PORTWAY EXTENSIONS	Section/Contract \#	NJTP INT 14A - SCHEME 2
PM	UPC No.		

EARTHWORK (must be calculated)

	Unit	Quantity	x Unit Price	Amount
Stripping (4-6" Depth)	Acre	32.1	4,050	130,005
Roadway Exc. Unclassified, See (J)	C.Y.	155,579	15	2,333,685
Removal of Conc. Base \& Conc. Surface Courses, See (K)	S.Y.	0		0
Channel Excavation	C.Y.	0	12.25	0
Ditch Excavation	C.Y.	0	10	0
Borrow Excavation Zone 3, See (J)	C.Y.	113,999	12	1,367,988
		0		0
EARTHWORK TOTAL	$=$			\$3,831,678

Suggested procedure for calculating earthwork:
A) Determine Typical section (number of lanes, median widths, side slopes, etc.).
B) Get latest topography map available.
C) Plot proposed alignment on topo map.
D) Develop profile using topo controls such as existing roads, streams, rivers and design manual.
E) Calculate Areas for the typical section in 1 foot increments of cut or fill.
F) At 10 to 60 foot intervals (depending on frequency of X -section changes) calculate the earthwork.
G) Calculate any other significant earthwork (ramps, cross-roads, etc.).
H) Make appropriate earthwork corrections for the pavement box and striping. Use 21 inch depth for rigid pavement, 26 inch depth for all flexible pavement and 4 inch depth for stripping.
I) Deduct any roadway excavation from borrow required to calculate Borrow Excavation Zone 3.
J) See Construction Cost Estimate Work Sheet (Section 3.1). This worksheet must be utilized for the most recent price information.
K) 11.2 to 12.5 , based on the quantity, location and type of project.

PAVEMENT

12 FOOT WIDE LANE (from subgrade up)

Pav't. Type	Description of Pavement	Cost/Linear Foot
A	10 inch R.C. Pavement	156
B	2 inch HMA Surf. Crs. \& 8 inch HMA Base	61
C	3 inch HMA Surf. Crs. \& 4 inch HMA Base	46
D	2 inch HMA Surf. Crs. \& 2 inch HMA Base	22
E	Bridge Approach \& Transition Slabs	156

Computation Table for Pavement. Cost

Type	Cost from table above	x Length	x Pavement *W.F.	$=$ Amount	
B	60	940	20.83	$1,175,000$	
B		60	1100	6.25	412,500
B	60	9200	4.17	$2,300,000$	
B	60	2552	2.50	382,800	
B		60	17752	2.08	$2,219,000$
				0	
				0	
				0	
				0	

Class 1 - New Construction
\square
\square
*Width Factors = Ratio of 12 foot wide lane to actual pavement width.
Example $=$ actual pavement width $=25$ foot $=25 / 12=2.08$ W.F.

CONTEXT SENSITIVE DESIGN

Attach additional sheet detailing items and costs of context sensitive design work

CULVERTS

|/

COVER

Type $1 \mathrm{~W}<20$ Feet

Type $2 W>20$ feet

Type	Layout (3)	Skew (1)	Cover (2)	$\begin{aligned} & \text { Cost Per Sq. } \\ & \text { Foot } \end{aligned}$
Type 1	$\begin{aligned} & \hline \text { Area w x L exceeds } \\ & 1000 \text { Sq. Feet } \\ & \hline \end{aligned}$	$0-60$ degrees	0 to 10'	114.75
			10' to 20'	147.25
	Short Culverts Difficult Conditions under 1000 Square Feet	$\begin{aligned} & 0-60 \\ & \text { degrees } \\ & \hline \end{aligned}$	0 to 10'	203.50
			10' to 20'	235.00
Type 2	Area w x L exceeds 1000 Sq. Feet	0-60	0 to 10'	121.75
		degrees	10' to 20'	152.50
	Short Culverts Difficult Conditions under 1000 Square Feet	$\begin{aligned} & 0-60 \\ & \text { degrees } \\ & \hline \end{aligned}$	0 to 10'	203.50
			10' to 20'	235.00

For skews over 60 degrees it will be necessary to make a special analysis and establish a square meter price comparable to above.

Description	Area Computation	x Cost per Sq. Foot	$=$ Amount
			0
			0
			0
			0

BRIDGES

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet)
H = Clear Height 14 To 23 feet (4)
$\mathrm{L}=100$ to 400 feet \& all viaducts over 400 feet (5)

Class	Layout	Skew (1)	Foundation (2)	Cost per Sq. Foot
I	Width at Least 45 feet	0 to 40 Degrees	No Piles	134.75
			Piles at Stub Abut.	159.75
			Piles at Piers \& Stul	174.75

Class 1 - New Construction

40 to 60	No Piles	145.00
Degrees	Piles at Stub Abut.	168.25
	Piles at Piers \& Stul	181.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet) (3)
$\mathrm{H}=$ Clear Height 14 feet (4)
$L=$ under 400 feet

Class	Layout	Skew (1)	Foundation (2)	$\begin{array}{\|l\|} \hline \text { Cost per Sq. } \\ \text { Foot } \\ \hline \end{array}$
II	L exceeds W Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	176.50
		Degrees	On Piles	187.25
		40 to 60	No Piles	219.75
		Degrees	On Piles	273.25
III	W exceeds LArea L x Wexceeds 4500Sq. Feet	0 to 40	No Piles	226.75
		Degrees	On Piles	299.25
		40 to 60	No Piles	241.50
		Degrees	On Piles	310.00
IV	Width 30 -45 feetArea W x L under4500 Sq. Foot	0 to 40	No Piles	295.50
		Degrees	On Piles	396.75
		40 to 60	No Piles	318.25
		Degrees	On Piles	416.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 2 spans (Max. Span 125 feet)
H = Clear Height 14 feet (4)
L = 100 to 250 feet

1. For skews over 60 degrees it will be necessary to make a special analysis and establish a square foot price comparable to above.
2. For very bad foundation conditions requiring unusual lengths or spacing of piles, it will be necessary to establish a square foot price.
3. For longer spans, adjust the cost per square foot to reflect increased cost of structural members.
4. For span bridges, it is expected the length of the side span will be in- creased in proportion to any increase in height. Because of the resultant increase in deck area, the square foot price will remain approximately the same in the range of heights shown. For extremely high structures (particularly for viaducts), square foot prices will have to be increased.
5. For structures over 400 foot long (viaducts), reduce the cost per square foot if repetitive span length and forming can be used. Reduce by $\$ 0.50$ for lengths from 400 to 600 feet and by $\$ 1.00$ for lengths over 600 feet. (Do not forget adjustments (3) and (4) above on viaducts).
6. For statically indeterminate structures, square foot prices will have to be established.

Structure Description	Calculated Sq. Foot of Bridge Deck	x Cost Per Square Foot	= Amount
	140,000	225	31,500,000
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
Clearing Site Bridge *0-3\% of Sub Total \%		Sub Total	\$31,500,000
		0	
		BRIDGE TOTAL	\$31,500,000

*Pick appropriate percent based on the size, type and materials of existing structure

DRAINAGE (includes inlets and cross drains)

Rural	project length (miles)	0	364356	0	
			x cost per mile	= Amount	
Urban		2.7	544280\|		1,469,556

The above are the total costs of basins, manholes, longitudinal and transverse pipes, underdrains, headwalls, protecting curbs, aprons, etc. for a divided highway with a depressed median. The costs are assumed to apply to 4,6 or 8 lane sections since there will be no appreciable difference in the number of basins or the sizes or lengths of pipes.

Frontage Road \& Ramp Drainage

length of ramp or frontage rd. in feet	14,800	55	814,000
DRAINAGE TOTAL	\times cost per foot	$=$ Amount	

INCIDENTAL ITEMS

Item	Cost / L.F.	X Quantity	$=$ Amount
Beam Guide Rail	16.75	2200	36,850
Fence 6 Foot High	18.25		0
$9^{\prime \prime}$ X 16" Conc. Vertical Curb	13.75	37,164	511,005
$15^{\prime \prime}$ X 41" Conc. Barrier Curb	50.25		0
$24^{\prime \prime}$ X 41" Conc. Barrier Curb	73.25	2750	201,438
24" X Variable Conc. Barrier Curb	46		0

Class 1 - New Construction

Sign Bridge	308,000	11	3388000
Cantilever Sign Structure	60,500	0	
INCIDENTAL ITEMS TOTAL	$=$	$\$ 4,137,293$	

LANDSCAPE

	Quantity	x Unit Prices	$=$ Amount
Topsoil and Seeding (Mainline) Length of Project in miles		2.7	112,815

NOISE ABATEMENT

| | Unit | Quantity | x Cost | $=$ Amount |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | L.F. | | 305 | 0 |
| | | | | 0 |
| | | | | 0 |
| | | | | 0 |
| Noise Wall | | 0 | | |

GENERAL ITEMS

| Item | Project Length (miles) | x Cost/Mile | $=$ Amount |
| :--- | :--- | :--- | ---: | ---: |
| Field Office | 5.4 | 44,260 | 239,004 |
| Materials Field Laboratory | 5.4 | 28,970 | 156,438 |
| Erosion Control during Constructio | 5.4 | 64,375 | 347,625 |
| GENERAL ITEMS TOTAL | $=$ | | $\$ 743,067$ |

SUMMARY
NJTP INT 14A -
Route
PM
PORTWAY EXTENSIONS Section/Contract \# SCHEME 2

Work Type	Totals from other pages
Earthwork	$3,831,678$
Pavement	$6,489,300$
Context Sensitive Design	0
Culverts	0
Bridges	$31,500,000$
Drainage	$2,283,556$
Incidental Items	$4,137,293$
Landscape	553,751

Class 1-New Construction

	$10700^{*} 675+3560^{*} 1$	
Walls	710	$13,310,100$
General Items	$3^{*} 120000+150000$	743,067
Traffic Signals	$15^{*} 900000$	510,000
Toll		$\$ 76500000$
PROJECT SUBTOTAL		

Class 1 - New Construction

		Average Construction Duration in Years
Project Cost(Mil.)	Contingencies (C) Percent	3%
$0-10$	2.50%	1
$10-20$	2%	2
$20-50$	1.50%	3
Over 50	4	

0.000
0.000
0.000
0.015

CONSTRUCTION ENGINEERING (CE)

Project Cost (Mil.)		\% of Construction Cost
Less than 1.0		28.40%
1.0 to 5.0		17.60%
5.0 to 10.0		12.20%
$10.0 \&$ above		9.50%

0
0

25,000 0
$25,000+4 \%$ of amount in excess of $\$ 500,000$
$205,000+3 \%$ of amount in excess of $\$ 5,000,000$
$355,000+2 \%$ of amount in excess of \$10,000,000 0
$455,000+1.5 \%$ of amount in excess of \$15,000,000-\$500,000 max 500000
1603400
Total Federal Participating Items in Millions of \$
$\$ 0$ to 0.1
0.1 to 0.5

Construction Change Order Contingency Amount

$\$ 6,000$	0
25,000	0
nt in excess of $\$ 500,000$	0
unt in excess of $\$ 5,000,000$	0
unt in excess of $\$ 10,000,000$	0
ount in excess of $\$ 15,000,000-\$ 500,000$ max	500000
	1603400

For State Funded Projects, Contingencies for Change orders $=0$
CHANGE ORDER CONTINGENCY AMOUNT $=\quad \$ 500,000$
UTILITIES RELOCATIONS BY COMPANIES/OWNERS

$\$ 91,562,997$			0.09
	x \% or + Estimate	$=$	U8,240,670
		Utility Relocation	
Construction Cost for Initial	Use \% or utilities detailed estimate	Cost for Initial	
Estimate	Estimate		

If there are no utility relocations on the project indicate "No Utilities" in the box above.
RIGHT OF WAY COST
If there is no ROW cost on the project indicate "No ROW" the box
SUMMARY
Construction Estimate for Initial
Construction Engineering (CE)
Contingencies
Utilities Relocations
Total Construction Cost

$91,562,997$
$8,698,485$
500,000
$8,240,670$
$\$ 109,002,152$

Right of Way Cost

EARTHWORK (must be calculated)

	Unit	Quantity	x Unit Price	Amount
Stripping (4-6" Depth)	Acre	3.5	4,050	14,175
Roadway Exc. Unclassified, See				
(J)	C.Y.	0	15	0
Removal of Conc. Base \& Conc.		0		
Surface Courses, See (K)	S.Y.	0	12.25	0
Channel Excavation	C.Y.	0	10	0
Ditch Excavation	C.Y.	57,037	0	
Borrow Excavation Zone 3, See (J)	C.Y.	0	12	684,444
			0	
EARTHWORK TOTAL	$=$		$\$ 698,619$	

Suggested procedure for calculating earthwork:
A) Determine Typical section (number of lanes, median widths, side slopes, etc.).
B) Get latest topography map available.
C) Plot proposed alignment on topo map.
D) Develop profile using topo controls such as existing roads, streams, rivers and design manual.
E) Calculate Areas for the typical section in 1 foot increments of cut or fill.
F) At 10 to 60 foot intervals (depending on frequency of X-section changes) calculate the earthwork.
G) Calculate any other significant earthwork (ramps, cross-roads, etc.).
H) Make appropriate earthwork corrections for the pavement box and striping. Use 21 inch depth for rigid pavement, 26 inch depth for all flexible pavement and 4 inch depth for stripping.
I) Deduct any roadway excavation from borrow required to calculate Borrow Excavation Zone 3.
J) See Construction Cost Estimate Work Sheet (Section 3.1). This worksheet must be utilized for the most recent price information.
K) 11.2 to 12.5 , based on the quantity, location and type of project.

PAVEMENT

12 FOOT WIDE LANE (from subgrade up)

Pav't. Type	Description of Pavement	Cost/Linear Foot
A	10 inch R.C. Pavement	156
B	2 inch HMA Surf. Crs. \& 8 inch HMA Base	61
C	3 inch HMA Surf. Crs. \& 4 inch HMA Base	46
D	2 inch HMA Surf. Crs. \& 2 inch HMA Base	22
E	Bridge Approach \& Transition Slabs	156

Computation Table for Pavement. Cost

Type	Cost from table above	x Length	x Pavement *W.F.	$=$ Amount
B		61	7,700	2.08
			976,976	
				0
				0
				0
				0
				0
			0	
			0	

*Width Factors = Ratio of 12 foot wide lane to actual pavement width.
Example $=$ actual pavement width $=25$ foot $=25 / 12=2.08$ W.F.

CONTEXT SENSITIVE DESIGN

Attach additional sheet detailing items and costs of context sensitive design work

CULVERTS

COVER

Type	Layout (3)	Skew (1)	Cover (2)	Cost Per Sq. Foot
Type 1	Area w x L exceeds 1000 Sq. Feet	$\begin{array}{\|l\|} \hline 0-60 \\ \text { degrees } \end{array}$	0 to 10'	114.75
			10' to 20'	147.25
	Short Culverts Difficult Conditions under 1000 Square Feet	0-60degrees	0 to 10'	203.50
			10' to 20'	235.00
Type 2	Area w x L exceeds 1000 Sq. Feet	0-60	0 to 10'	121.75
		degrees	10' to 20'	152.50
	Short Culverts Difficult Conditions under 1000 Square Feet	$\begin{aligned} & \hline 0-60 \\ & \text { degrees } \\ & \hline \end{aligned}$	0 to 10'	203.50
			10' to 20'	235.00

For skews over 60 degrees it will be necessary to make a special analysis and establish a square meter price comparable to above.

Description	Area Computation	x Cost per Sq. Foot	$=$ Amount
			0
			0
			0
			0

BRIDGES

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet)
H = Clear Height 14 To 23 feet (4)
$\mathrm{L}=100$ to 400 feet \& all viaducts over 400 feet (5)

Class	Layout	Skew (1)	Foundation (2)	Cost per Sq. Foot
I	Width at Least 45 feet	0 to 40 Degrees	No Piles	134.75
			Piles at Stub Abut.	159.75
			Piles at Piers \& Stu	174.75
		40 to 60 Degrees	No Piles	145.00
			Piles at Stub Abut.	168.25
			Piles at Piers \& Stu	181.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet) (3)
$\mathrm{H}=$ Clear Height 14 feet (4)
$L=$ under 400 feet

Class	Layout	Skew (1)	Foundation (2)	Cost per Sq. Foot
II	L exceeds W Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	176.50
		Degrees	On Piles	187.25
		40 to 60	No Piles	219.75
		Degrees	On Piles	273.25
III	W exceeds L Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	226.75
		Degrees	On Piles	299.25
		40 to 60	No Piles	241.50
		Degrees	On Piles	310.00
IV	Width 30 -45 feetArea W \times L under4500 Sq. Foot	0 to 40	No Piles	295.50
		Degrees	On Piles	396.75
		40 to 60	No Piles	318.25
		Degrees	On Piles	416.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 2 spans (Max. Span 125 feet)
H = Clear Height 14 feet (4)
$L=100$ to 250 feet

1. For skews over 60 degrees it will be necessary to make a special analysis and establish a square foot price comparable to above.
2. For very bad foundation conditions requiring unusual lengths or spacing of piles, it will be necessary to establish a square foot price.
3. For longer spans, adjust the cost per square foot to reflect increased cost of structural members.
4. For span bridges, it is expected the length of the side span will be in- creased in proportion to any increase in height. Because of the resultant increase in deck area, the square foot price will remain approximately the same in the range of heights shown. For extremely high structures (particularly for viaducts), square foot prices will have to be increased.
5. For structures over 400 foot long (viaducts), reduce the cost per square foot if repetitive span length and forming can be used. Reduce by $\$ 0.50$ for lengths from 400 to 600 feet and by $\$ 1.00$ for lengths over 600 feet. (Do not forget adjustments (3) and (4) above on viaducts).
6. For statically indeterminate structures, square foot prices will have to be established.

Structure Description	Calculated Sq. Foot of Bridge Deck	x Cost Per Square Foot	= Amount
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
Clearing Site Bridge *0-3\% of Sub Total $\%$		Sub Total	\$0
		0	
		BRIDGE TOTAL	\$0

*Pick appropriate percent based on the size, type and materials of existing structure

DRAINAGE (includes inlets and cross drains)

Rural		0	364356		0
	project length (miles)		mile	= Amount	
Urban		0	544280\|		0

The above are the total costs of basins, manholes, longitudinal and transverse pipes, underdrains, headwalls, protecting curbs, aprons, etc. for a divided highway with a depressed median. The costs are assumed to apply to 4, 6 or 8 lane sections since there will be no appreciable difference in the number of basins or the sizes or lengths of pipes.

Frontage Road \& Ramp Drainage

INCIDENTAL ITEMS

Item	Cost / L.F.	X Quantity	$=$ Amount
Beam Guide Rail	16.75	3,850	64,488
Fence 6 Foot High	18.25	0	0
$9 "$ X 16" Conc. Vertical Curb	13.75	15,400	211,750
15" X 41" Conc. Barrier Curb	50.25	0	0
24" X 41" Conc. Barrier Curb	73.25	0	0
24" X Variable Conc. Barrier Curb	46	0	0
Sign Bridge	308,000	0	0
Cantilever Sign Structure	60,500	0	0
INCIDENTAL ITEMS TOTAL	$=$		$\$ 276,238$

LANDSCAPE

	Quantity	x Unit Prices	$=$ Amount	
Topsoil and Seeding (Mainline) Length of Project in miles		0	112,815	
Planting (Mainline) Length of Project in miles		0		
Topsoil, Seeding, Planting (Finger Ramp Number of Finger Ramps		64,500		
Topsoil, Seeding, Planting (Loop Ramp) Number of Loop Ramps	0	12,500	0	
Topsoil, Seeding (Access Road) Length of Access Road in Feet	5		0	
LANDSCAPE TOTAL	0	20,000		

NOISE ABATEMENT

	Unit	Quantity	x Cost	$=$ Amount	
	L.F.		0	305	0
				0	
				0	
				0	
			0		

GENERAL ITEMS

Item	Project Length (miles)	\times Cost/Mile	$=$ Amount
Field Office	1.46	44,260	64,620
Materials Field Laboratory	1.46	28,970	42,296
Erosion Control during Constructio	1.46	64,375	93,988
GENERAL ITEMS TOTAL	$=$		$\$ 200,903$

SUMMARY

		NJ TURNPIKE		
			INTERCHANGE	
Route	PORTWAY EXTENSIONS	Section/Contract \#	14	
PM		0 UPC No.	0	

Work Type	Totals from other pages
Earthwork	698,619
Pavement	976,976
Context Sensitive Design	0
Culverts	0
Bridges	0
Drainage	423,500
Incidental Items	276,238
Landscape	100,000
Noise Abatement	0
General Items	200,903
	$\$ 2,676,236$

Class 1 - New Construction

Other Items	Proj. Subtotal Range	Choice	Amount
Lighting, Traffic Stripes, Signs and Delineators		3\% of Proj. Subtotal	80,287
Maintenance of Traffic		$\begin{array}{\|l\|} \hline 1.5 \% \text { of Proj. } \\ \text { Subtotal } \end{array}$	40,144
Training		$\begin{array}{\|l\|} \hline 1 \% \text { of Proj. } \\ \text { Subtotal } \\ \hline \end{array}$	26,762
Mobilization			240,861
	Project Cost < 5.0 (Mil.)	9% of Proj. Subtotal	
	Project Cost 5.0 \& above	10\% of Proj. Subtotal	
Progress Schedule	Project Cost(Mil.)	\$	6,000
	Less than 2.0	0	
	2.0 to 5.0	6,000	
	5.0 to 10.0	8,000	
	10.0 to 20.0	15,000	
	20.0 to 30.0	30,000	
	30.0 to 40.0	40,000	
	40.0 \& above	58,000	
Clearing Site	Project Cost (Mil.)	\$	45,000
	Less than 1.0	15,000	
	1.0 to 2.0	30,000	
	2.0 to 5.0	45,000	
	5.0 to 10.0	115,000	
	10.0 to 20.0	220,000	
	20.0 to 30.0	240,000	
	30.0 to 40.0	250,000	
	40.0 \& above	490,000	
Construction Layout	Project Cost(Mil.)	\$	42,000
	Less than 1.0	7,000	
	1.0 to 2.0	20,000	
	2.0 to 5.0	42,000	
	5.0 to 10.0	87,000	
	10.0 to 20.0	160,000	
	20.0 to 30.0	220,000	
	30.0 to 40.0	490,000	
	40.0 \& above	890,000	
		PROJECT TOTAL	\$3,157,290

		Average Construction
Project Cost(Mil.)	Contingencies (C) Percent	Duration in Years
$0-10$	3%	1
$10-20$	2.50%	2
$20-50$	2%	3
Over 50	1.50%	4

CONSTRUCTION ENGINEERING (CE)

Project Cost (Mil.)		\% of Construction Cost
Less than 1.0		28.40%
1.0 to 5.0		17.60%
5.0 to 10.0		12.20%
10.0 \& above		9.50%
CONSTRUCTION ENGINEERING AMOUNT		

CONSTRUCTION CHANGE ORDER CONTINGENCIES

Total Federal Participating Items

in Millions of $\$$	Construction Change Order Contingency Amount	
$\$ 0$ to 0.1	$\$ 000$	
0.1 to 0.5		25,000
0.5 to 5.0	$25,000+4 \%$ of amount in excess of $\$ 500,000$	0
5.0 to 10.0	$205,000+3 \%$ of amount in excess of $\$ 5,000,000$	0
10.0 to 15.0	$355,000+2 \%$ of amount in excess of $\$ 10,000,000$	135100
15.0 and above	$455,000+1.5 \%$ of amount in excess of $\$ 15,000,000-\$ 500,000$ max	0
		0
		0

For State Funded Projects, Contingencies for Change orders $=0$
CHANGE ORDER CONTINGENCY AMOUNT $=\quad \$ 135,100$

UTILITIES RELOCATIONS BY COMPANIES/OWNERS

$\$ 3,252,009$			0.09
	x \% or + Estimate	$=$	U292,681
		Utility Relocation	
Construction Cost for Initial	Use \% or utilities detailed estimate	Cost for Initial	
Estimate	Estimate		

If there are no utility relocations on the project indicate "No Utilities" in the box above.
RIGHT OF WAY COST
If there is no ROW cost on the project indicate "No ROW" the box
SUMMARY

Construction Estimate for Initial	
Construction Engineering (CE)	$3,252,009$
Contingencies	572,354
Utilities Relocations	135,100
Total Construction Cost	292,681

Right of Way Cost
0

Classification Number 1 - NEW CONSTRUCTION - English
Route PORTWAY EXTENSIONS Section/Contract \# NEWARK BAY BRIDGE PM UPC No.

EARTHWORK (must be calculated)

	Unit	Quantity	x Unit Price	Amount
Stripping (4-6" Depth)	Acre	0	4,050	0
Roadway Exc. Unclassified, See (J)	C.Y.	0		0
Removal of Conc. Base \& Conc. Surface Courses, See (K)	S.Y.	0		0
Channel Excavation	C.Y.	0	12.25	0
Ditch Excavation	C.Y.	0	10	0
Borrow Excavation Zone 3, See (J)	C.Y.	0		0
		0		0
EARTHWORK TOTAL	=			0

Suggested procedure for calculating earthwork:
A) Determine Typical section (number of lanes, median widths, side slopes, etc.).
B) Get latest topography map available.
C) Plot proposed alignment on topo map.
D) Develop profile using topo controls such as existing roads, streams, rivers and design manual.
E) Calculate Areas for the typical section in 1 foot increments of cut or fill.
F) At 10 to 60 foot intervals (depending on frequency of X-section changes) calculate the earthwork.
G) Calculate any other significant earthwork (ramps, cross-roads, etc.).
H) Make appropriate earthwork corrections for the pavement box and striping. Use 21 inch depth for rigid pavement, 26 inch depth for all flexible pavement and 4 inch depth for stripping.
I) Deduct any roadway excavation from borrow required to calculate Borrow Excavation Zone 3.
J) See Construction Cost Estimate Work Sheet (Section 3.1). This worksheet must be utilized for the most recent price information.
K) 11.2 to 12.5 , based on the quantity, location and type of project.

PAVEMENT

12 FOOT WIDE LANE (from subgrade up)

Pav't. Type	Description of Pavement	Cost/Linear Foot
A	10 inch R.C. Pavement	156
B	2 inch HMA Surf. Crs. \& 8 inch HMA Base	61
C	3 inch HMA Surf. Crs. \& 4 inch HMA Base	46
D	2 inch HMA Surf. Crs. \& 2 inch HMA Base	22
E	Bridge Approach \& Transition Slabs	156

Computation Table for Pavement. Cost

Type	Cost from table above	x Length	x Pavement *W.F.	$=$ Amount
E		200	8	249,600
				0
				0
				0
				0
				0
			0	
			0	
			0	

*Width Factors = Ratio of 12 foot wide lane to actual pavement width.
Example $=$ actual pavement width $=25$ foot $=25 / 12=2.08$ W.F.

CONTEXT SENSITIVE DESIGN

Attach additional sheet detailing items and costs of context sensitive design work

CULVERTS

COVER

Type	Layout (3)	Skew (1)	Cover (2)	Cost Per Sq. Foot
Type 1	Area w x L exceeds 1000 Sq. Feet	$\begin{array}{\|l\|} \hline 0-60 \\ \text { degrees } \end{array}$	0 to 10'	114.75
			10' to 20'	147.25
	Short Culverts Difficult Conditions under 1000 Square Feet	0-60degrees	0 to 10'	203.50
			10' to 20'	235.00
Type 2	Area w x L exceeds 1000 Sq. Feet	0-60	0 to 10'	121.75
		degrees	10' to 20'	152.50
	Short Culverts Difficult Conditions under 1000 Square Feet	$\begin{aligned} & \hline 0-60 \\ & \text { degrees } \\ & \hline \end{aligned}$	0 to 10'	203.50
			10' to 20'	235.00

For skews over 60 degrees it will be necessary to make a special analysis and establish a square meter price comparable to above.

Description	Area Computation	x Cost per Sq. Foot	$=$ Amount
			0
			0
			0
			0

BRIDGES

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet)
H = Clear Height 14 To 23 feet (4)
$\mathrm{L}=100$ to 400 feet \& all viaducts over 400 feet (5)

Class	Layout	Skew (1)	Foundation (2)	Cost per Sq. Foot
I	Width at Least 45 feet	0 to 40 Degrees	No Piles	134.75
			Piles at Stub Abut.	159.75
			Piles at Piers \& Stu	174.75
		40 to 60 Degrees	No Piles	145.00
			Piles at Stub Abut.	168.25
			Piles at Piers \& Stu	181.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet) (3)
$\mathrm{H}=$ Clear Height 14 feet (4)
$L=$ under 400 feet

Class	Layout	Skew (1)	Foundation (2)	Cost per Sq. Foot
II	L exceeds W Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	176.50
		Degrees	On Piles	187.25
		40 to 60	No Piles	219.75
		Degrees	On Piles	273.25
III	W exceeds L Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	226.75
		Degrees	On Piles	299.25
		40 to 60	No Piles	241.50
		Degrees	On Piles	310.00
IV	Width 30 -45 feetArea W \times L under4500 Sq. Foot	0 to 40	No Piles	295.50
		Degrees	On Piles	396.75
		40 to 60	No Piles	318.25
		Degrees	On Piles	416.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 2 spans (Max. Span 125 feet)
H = Clear Height 14 feet (4)
$L=100$ to 250 feet

1. For skews over 60 degrees it will be necessary to make a special analysis and establish a square foot price comparable to above.
2. For very bad foundation conditions requiring unusual lengths or spacing of piles, it will be necessary to establish a square foot price.
3. For longer spans, adjust the cost per square foot to reflect increased cost of structural members.
4. For span bridges, it is expected the length of the side span will be in- creased in proportion to any increase in height. Because of the resultant increase in deck area, the square foot price will remain approximately the same in the range of heights shown. For extremely high structures (particularly for viaducts), square foot prices will have to be increased.
5. For structures over 400 foot long (viaducts), reduce the cost per square foot if repetitive span length and forming can be used. Reduce by $\$ 0.50$ for lengths from 400 to 600 feet and by $\$ 1.00$ for lengths over 600 feet. (Do not forget adjustments (3) and (4) above on viaducts).
6. For statically indeterminate structures, square foot prices will have to be established.

Structure Description	Calculated Sq. Foot of Bridge Deck	\times Cost Per Square Foot	= Amount
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
Clearing Site Bridge *0-3\% of Sub Total $\%$		Sub Total	0
		0	
		BRIDGE TOTAL	0

*Pick appropriate percent based on the size, type and materials of existing structure

DRAINAGE (includes inlets and cross drains)

Rural		0	364356		0
	project length (miles)		mile	= Amount	
Urban		0	544280\|		0

The above are the total costs of basins, manholes, longitudinal and transverse pipes, underdrains, headwalls, protecting curbs, aprons, etc. for a divided highway with a depressed median. The costs are assumed to apply to 4, 6 or 8 lane sections since there will be no appreciable difference in the number of basins or the sizes or lengths of pipes.

Frontage Road \& Ramp Drainage

	0			0
length of ramp or frontage rd. in feet		x cost per foot	= Amount	
DRAINAGE TOTAL				0

INCIDENTAL ITEMS

Item	Cost / L.F.	x Quantity	$=$ Amount
Beam Guide Rail	16.75	0	0
Fence 6 Foot High	18.25	0	0
$9 "$ X 16" Conc. Vertical Curb	13.75	0	0
$15^{\prime \prime} \times 41^{\prime \prime}$ Conc. Barrier Curb	50.25	0	0
24" X 41" Conc. Barrier Curb	73.25	0	0
24" X Variable Conc. Barrier Curb	46	0	0
Sign Bridge	308,000	0	0
Cantilever Sign Structure	60,500	0	0
INCIDENTAL ITEMS TOTAL	$=$		0

LANDSCAPE

	Quantity	x Unit Prices	$=$ Amount	
Topsoil and Seeding (Mainline) Length of Project in miles		0	112,815	
Planting (Mainline) Length of Project in miles		0		
Topsoil, Seeding, Planting (Finger Ramp Number of Finger Ramps		64,500		
Topsoil, Seeding, Planting (Loop Ramp) Number of Loop Ramps	0	12,500	0	
Topsoil, Seeding (Access Road) Length of Access Road in Feet	0		0	
LANDSCAPE TOTAL	0	20,000		

NOISE ABATEMENT

	Unit	Quantity	x Cost	$=$ Amount	
	L.F.		0	305	0
				0	
				0	
				0	
			0		

GENERAL ITEMS

Item	Project Length (miles)	x Cost/Mile	$=$ Amount						
Field Office	0.86	44,260	38063.6						
Materials Field Laboratory	0.86	28,970	24914.2						
Erosion Control during Constructio	0.86	64,375	55362.5						
GENERAL ITEMS TOTAL							$=$		$\$ 118,340$

SUMMARY

| | | NEWARK BAY | |
| :--- | :--- | :--- | :--- | :--- |
| Route | PORTWAY EXTENSIONS | Section/Contract \# | BRIDGE |
| PM | | 0 UPC No. | 0 |

Work Type	Totals from other pages
Earthwork	0
Pavement	249,600
Context Sensitive Design	0
Culverts	0
Bridges	$131,443,200$
Drainage	0
Incidental Items	0
Landscape	0
Noise Abatement	0
General Items	118,340
	$\$ 131,811,140$

Class 1 - New Construction

Other Items	Proj. Subtotal Range	Choice	Amount	
Lighting, Traffic Stripes, Signs and Delineators		3\% of Proj. Subtotal	3,954,334	
Maintenance of Traffic		$\begin{aligned} & 1.5 \% \text { of Proj. } \\ & \text { Subtotal } \end{aligned}$	1,977,167	
Training		$1 \% \text { of Proj. }$ Subtotal	1,318,111	
Mobilization			13,181,114	
	Project Cost < 5.0 (Mil.)	9\% of Proj. Subtotal		0
	Project Cost 5.0 \& above	$10 \% \text { of Proj. }$ Subtotal		13181114
Progress Schedule	Project Cost(Mil.)	\$	58,000	
	Less than 2.0	0		0
	2.0 to 5.0	6,000		0
	5.0 to 10.0	8,000		0
	10.0 to 20.0	15,000		0
	20.0 to 30.0	30,000		0
	30.0 to 40.0	40,000		0
	40.0 \& above	58,000		58000
Clearing Site	Project Cost (Mil.)	\$	490,000	
	Less than 1.0	15,000		0
	1.0 to 2.0	30,000		0
	2.0 to 5.0	45,000		0
	5.0 to 10.0	115,000		0
	10.0 to 20.0	220,000		0
	20.0 to 30.0	240,000		0
	30.0 to 40.0	250,000		0
	40.0 \& above	490,000		490000
Construction Layout	Project Cost(Mil.)	\$	890,000	
	Less than 1.0	7,000		0
	1.0 to 2.0	20,000		0
	2.0 to 5.0	42,000		0
	5.0 to 10.0	87,000		0
	10.0 to 20.0	160,000		0
	20.0 to 30.0	220,000		0
	30.0 to 40.0	490,000		0
	40.0 \& above	890,000		890000

		Average Construction
Project Cost(Mil.)	Contingencies (C) Percent	Duration in Years
$0-10$	3%	1
$10-20$	2.50%	2
$20-50$	2%	3
Over 50	1.50%	4

CONSTRUCTION ENGINEERING (CE)

Project Cost (Mil.)		\% of Construction Cost
Less than 1.0		28.40%
1.0 to 5.0		17.60%
5.0 to 10.0		12.20%
10.0 \& above		9.50%
CONSTRUCTION ENGINEERING AMOUNT		$\$ 14,818,581.18$

CONSTRUCTION CHANGE ORDER CONTINGENCIES

Total Federal Participating Items

in Millions of \$	Construction Change Order Contingency Amount	
\$0 to 0.1	\$6,000	0
0.1 to 0.5	25,000	0
0.5 to 5.0	25,000 + 4\% of amount in excess of \$500,000	0
5.0 to 10.0	205,000 $+3 \%$ of amount in excess of \$5,000,000	0
10.0 to 15.0	$355,000+2 \%$ of amount in excess of \$10,000,000	0
15.0 and above	$455,000+1.5 \%$ of amount in excess of \$15,000,000-\$500,000 max	500000
		2569800

For State Funded Projects, Contingencies for Change orders $=0$
CHANGE ORDER CONTINGENCY AMOUNT =
\$500,000
UTILITIES RELOCATIONS BY COMPANIES/OWNERS

$\$ 155,985,065$		0.09	$\$ 14,038,656$
	$\mathrm{x} \%$ or + Estimate	$=$	Utility Relocation
Construction Cost for Initial	Use \% or utilities detailed estimate	Cost for Initial	
Estimate	Estimate		

If there are no utility relocations on the project indicate "No Utilities" in the box above.
RIGHT OF WAY COST
If there is no ROW cost on the project indicate "No ROW" the box
SUMMARY

Construction Estimate for Initial	$155,985,065$
Construction Engineering (CE)	$14,818,581$
Contingencies	500,000
Utilities Relocations	$14,038,656$
Total Construction Cost	$\$ 185,342,302$

Right of Way Cost \qquad
0

Classification Number 1 - NEW CONSTRUCTION - English

EARTHWORK (must be calculated)

	Unit	Quantity	x Unit Price	Amount
Stripping (4-6" Depth)	Acre	0	4,050	0
Roadway Exc. Unclassified, See (J)	C.Y.	0		0
Removal of Conc. Base \& Conc. Surface Courses, See (K)	S.Y.	0		0
Channel Excavation	C.Y.	0	12.25	0
Ditch Excavation	C.Y.	0	10	0
Borrow Excavation Zone 3, See (J)	C.Y.	0		0
		0		0
EARTHWORK TOTAL	$=$			0

Suggested procedure for calculating earthwork:
A) Determine Typical section (number of lanes, median widths, side slopes, etc.).
B) Get latest topography map available.
C) Plot proposed alignment on topo map.
D) Develop profile using topo controls such as existing roads, streams, rivers and design manual.
E) Calculate Areas for the typical section in 1 foot increments of cut or fill.
F) At 10 to 60 foot intervals (depending on frequency of X-section changes) calculate the earthwork.
G) Calculate any other significant earthwork (ramps, cross-roads, etc.).
H) Make appropriate earthwork corrections for the pavement box and striping. Use 21 inch depth for rigid pavement, 26 inch depth for all flexible pavement and 4 inch depth for stripping.
I) Deduct any roadway excavation from borrow required to calculate Borrow Excavation Zone 3.
J) See Construction Cost Estimate Work Sheet (Section 3.1). This worksheet must be utilized for the most recent price information.
K) 11.2 to 12.5 , based on the quantity, location and type of project.

PAVEMENT

12 FOOT WIDE LANE (from subgrade up)

Pav't. Type	Description of Pavement	Cost/Linear Foot
A	10 inch R.C. Pavement	156
B	2 inch HMA Surf. Crs. \& 8 inch HMA Base	61
C	3 inch HMA Surf. Crs. \& 4 inch HMA Base	46
D	2 inch HMA Surf. Crs. \& 2 inch HMA Base	22
E	Bridge Approach \& Transition Slabs	156

Computation Table for Pavement. Cost

Type	Cost from table above	x Length	x Pavement *W.F.	$=$ Amount
E		156	200	8
				249,600
			0	
				0
				0
				0
			0	
			0	

*Width Factors = Ratio of 12 foot wide lane to actual pavement width.
Example $=$ actual pavement width $=25$ foot $=25 / 12=2.08$ W.F.

CONTEXT SENSITIVE DESIGN

Attach additional sheet detailing items and costs of context sensitive design work

CULVERTS

COVER

Type	Layout (3)	Skew (1)	Cover (2)	Cost Per Sq. Foot
Type 1	Area w x L exceeds 1000 Sq. Feet	$\begin{array}{\|l\|} \hline 0-60 \\ \text { degrees } \end{array}$	0 to 10'	114.75
			10' to 20'	147.25
	Short Culverts Difficult Conditions under 1000 Square Feet	0-60degrees	0 to 10'	203.50
			10' to 20'	235.00
Type 2	Area w x L exceeds 1000 Sq. Feet	0-60	0 to 10'	121.75
		degrees	10' to 20'	152.50
	Short Culverts Difficult Conditions under 1000 Square Feet	$\begin{aligned} & \hline 0-60 \\ & \text { degrees } \\ & \hline \end{aligned}$	0 to 10'	203.50
			10' to 20'	235.00

For skews over 60 degrees it will be necessary to make a special analysis and establish a square meter price comparable to above.

Description	Area Computation	x Cost per Sq. Foot	$=$ Amount
			0
			0
			0
			0

BRIDGES

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet)
H = Clear Height 14 To 23 feet (4)
$\mathrm{L}=100$ to 400 feet \& all viaducts over 400 feet (5)

Class	Layout	Skew (1)	Foundation (2)	$\begin{aligned} & \text { Cost per Sq. } \\ & \text { Foot } \end{aligned}$
I	Width at Least 45 feet	$\begin{array}{\|l\|} \hline 0 \text { to } 40 \\ \text { Degrees } \end{array}$	No Piles	134.75
			Piles at Stub Abut.	159.75
			Piles at Piers \& Stu	174.75
		40 to 60 Degrees	No Piles	145.00
			Piles at Stub Abut.	168.25
			Piles at Piers \& Stu	181.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet) (3)
$\mathrm{H}=$ Clear Height 14 feet (4)
$L=$ under 400 feet

Class	Layout	Skew (1)	Foundation (2)	Cost per Sq. Foot
II	L exceeds W Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	176.50
		Degrees	On Piles	187.25
		40 to 60	No Piles	219.75
		Degrees	On Piles	273.25
III	W exceeds L Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	226.75
		Degrees	On Piles	299.25
		40 to 60	No Piles	241.50
		Degrees	On Piles	310.00
IV	Width 30 -45 feetArea W \times L under4500 Sq. Foot	0 to 40	No Piles	295.50
		Degrees	On Piles	396.75
		40 to 60	No Piles	318.25
		Degrees	On Piles	416.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 2 spans (Max. Span 125 feet)
H = Clear Height 14 feet (4)
$L=100$ to 250 feet

1. For skews over 60 degrees it will be necessary to make a special analysis and establish a square foot price comparable to above.
2. For very bad foundation conditions requiring unusual lengths or spacing of piles, it will be necessary to establish a square foot price.
3. For longer spans, adjust the cost per square foot to reflect increased cost of structural members.
4. For span bridges, it is expected the length of the side span will be in- creased in proportion to any increase in height. Because of the resultant increase in deck area, the square foot price will remain approximately the same in the range of heights shown. For extremely high structures (particularly for viaducts), square foot prices will have to be increased.
5. For structures over 400 foot long (viaducts), reduce the cost per square foot if repetitive span length and forming can be used. Reduce by $\$ 0.50$ for lengths from 400 to 600 feet and by $\$ 1.00$ for lengths over 600 feet. (Do not forget adjustments (3) and (4) above on viaducts).
6. For statically indeterminate structures, square foot prices will have to be established.

Structure Description	Calculated Sq. Foot of Bridge Deck	x Cost Per Square Foot	= Amount
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
Clearing Site Bridge *0-3\% of Sub Total $\%$		Sub Total	0
		0	
		BRIDGE TOTAL	0

*Pick appropriate percent based on the size, type and materials of existing structure

DRAINAGE (includes inlets and cross drains)

Rural		0	364356		0
	project length (miles)		mile	= Amount	
Urban		0	544280\|		0

The above are the total costs of basins, manholes, longitudinal and transverse pipes, underdrains, headwalls, protecting curbs, aprons, etc. for a divided highway with a depressed median. The costs are assumed to apply to 4, 6 or 8 lane sections since there will be no appreciable difference in the number of basins or the sizes or lengths of pipes.

Frontage Road \& Ramp Drainage

	0			0
length of ramp or frontage rd. in feet		x cost per foot	= Amount	
DRAINAGE TOTAL				0

INCIDENTAL ITEMS

Item	Cost / L.F.	x Quantity	$=$ Amount
Beam Guide Rail	16.75	0	0
Fence 6 Foot High	18.25	0	0
$9 "$ X 16" Conc. Vertical Curb	13.75	0	0
$15^{\prime \prime} \times 41^{\prime \prime}$ Conc. Barrier Curb	50.25	0	0
24" X 41" Conc. Barrier Curb	73.25	0	0
24" X Variable Conc. Barrier Curb	46	0	0
Sign Bridge	308,000	0	0
Cantilever Sign Structure	60,500	0	0
INCIDENTAL ITEMS TOTAL	$=$		0

LANDSCAPE

	Quantity	x Unit Prices	$=$ Amount	
Topsoil and Seeding (Mainline) Length of Project in miles		0	112,815	
Planting (Mainline) Length of Project in miles		0		
Topsoil, Seeding, Planting (Finger Ramp Number of Finger Ramps		64,500		
Topsoil, Seeding, Planting (Loop Ramp) Number of Loop Ramps	0	12,500	0	
Topsoil, Seeding (Access Road) Length of Access Road in Feet	0		0	
LANDSCAPE TOTAL	0	20,000		

NOISE ABATEMENT

	Unit	Quantity	x Cost	$=$ Amount	
	L.F.		0	305	0
				0	
				0	
				0	
			0		

GENERAL ITEMS

Item	Project Length (miles)	\times Cost/Mile	$=$ Amount
Field Office	0.91	44,260	40276.6
Materials Field Laboratory	0.91	28,970	26362.7
Erosion Control during Constructio	0.91	64,375	58581.25
GENERAL ITEMS TOTAL	$=$		$\$ 125,221$

SUMMARY

| | BAYONNE | | |
| :--- | :--- | :--- | :--- | :--- |
| Route | PORTWAY EXTENSIONS | Section/Contract \# BRIDGE | |
| PM | | 0 UPC No. | 0 |

Work Type	Totals from other pages
Earthwork	0
Pavement	249,600
Context Sensitive Design	0
Culverts	0
Bridges	$138,758,400$
Drainage	0
Incidental Items	0
Landscape	0
Noise Abatement	0
General Items	125,221
	$\$ 139,133,221$

Class 1 - New Construction

Other Items	Proj. Subtotal Range	Choice	Amount	
Lighting, Traffic Stripes, Signs and Delineators		3% of Proj. Subtotal	4,173,997	
Maintenance of Traffic		1.5% of Proj. Subtotal	2,086,998	
Training		$1 \% \text { of Proj. }$ Subtotal	1,391,332	
Mobilization			13,913,322	
	Project Cost < 5.0 (Mil.)	$9 \% \text { of Proj. }$ Subtotal		0
	Project Cost 5.0 \& above	10% of Proj. Subtotal		13913322
Progress Schedule	Project Cost(Mil.)	\$	58,000	
	Less than 2.0	0		0
	2.0 to 5.0	6,000		0
	5.0 to 10.0	8,000		0
	10.0 to 20.0	15,000		0
	20.0 to 30.0	30,000		0
	30.0 to 40.0	40,000		0
	40.0 \& above	58,000		58000
Clearing Site	Project Cost (Mil.)	\$	490,000	
	Less than 1.0	15,000		0
	1.0 to 2.0	30,000		0
	2.0 to 5.0	45,000		0
	5.0 to 10.0	115,000		0
	10.0 to 20.0	220,000		0
	20.0 to 30.0	240,000		0
	30.0 to 40.0	250,000		0
	40.0 \& above	490,000		490000
Construction Layout	Project Cost(Mil.)	\$	890,000	
	Less than 1.0	7,000		0
	1.0 to 2.0	20,000		0
	2.0 to 5.0	42,000		0
	5.0 to 10.0	87,000		0
	10.0 to 20.0	160,000		0
	20.0 to 30.0	220,000		0
	30.0 to 40.0	490,000		0
	40.0 \& above	890,000		890000

CONTINGENCIES \& ESCALATION	Y	
$\mathrm{Y}=$ Number of Years until midpoint of construction duration plus number of years until construction start. If midpoint is less than 2 years from the date of this estimate, no escalation is required. Maximum value $=10 \%$	0.00	
162136869.7 1.015	1.00	\$164,568,923
Project Total Contingencies (1+C)	$\begin{aligned} & 1+[0.01(\mathrm{Y}+1)(\mathrm{Y}- \\ & 2)] \end{aligned}$	struction mate for PD

	Contingencies (C) Percent	Average Construction Duration in Years
Project Cost(Mil.)	3%	1
$0-10$	2.50%	2
$10-20$	2%	3
$20-50$	1.50%	4
Over 50		4

CONSTRUCTION ENGINEERING (CE)

Project Cost (Mil.)		$\%$ of Construction Cost
Less than 1.0		28.40%
1.0 to 5.0		17.60%
5.0 to 10.0		12.20%
$10.0 \&$ above		9.50%

CONSTRUCTION CHANGE ORDER CONTINGENCIES

Total Federal Participating Items

in Millions of \$	Construction Change Order Contingency Amount	
\$0 to 0.1	\$6,000	0
0.1 to 0.5	25,000	0
0.5 to 5.0	$25,000+4 \%$ of amount in excess of \$500,000	0
5.0 to 10.0	205,000 $+3 \%$ of amount in excess of \$5,000,000	0
10.0 to 15.0	$355,000+2 \%$ of amount in excess of \$10,000,000	0
15.0 and above	$455,000+1.5 \%$ of amount in excess of \$15,000,000-\$500,000 max	500000
		2698500

For State Funded Projects, Contingencies for Change orders $=0$
CHANGE ORDER CONTINGENCY AMOUNT $=\quad \$ 500,000$

UTILITIES RELOCATIONS BY COMPANIES/OWNERS

| $\$ 164,568,923$ | | 0.09 | $\$ 14,811,203$ |
| :--- | :--- | :--- | :--- | :--- |
| | $\mathrm{x} \%$ or + Estimate | $=$ | Utility Relocation |
| Construction Cost for Initial | Use \% or utilities detailed
 estimate | Cost for Initial | |
| Estimate | Estimate | | |

If there are no utility relocations on the project indicate "No Utilities" in the box above.
RIGHT OF WAY COST
If there is no ROW cost on the project indicate "No ROW" the box
SUMMARY

Construction Estimate for Initial	$164,568,923$
Construction Engineering (CE)	$15,634,048$
Contingencies	500,000
Utilities Relocations	$14,811,203$
Total Construction Cost	$\$ 195,514,173$

Right of Way Cost \qquad

Classification Number 1 - NEW CONSTRUCTION - English

EARTHWORK (must be calculated)

	Unit	Quantity	x Unit Price	Amount
Stripping (4-6" Depth)	Acre	2.5	4,050	10,125
Roadway Exc. Unclassified, See (J)	C.Y.			
Removal of Conc. Base \& Conc. Surface Courses, See (K)	S.Y.	0		
Channel Excavation	C.Y.	0		
Ditch Excavation	C.Y.	0	0	
Borrow Excavation Zone 3, See (\mathbf{J})	C.Y.	0	12.25	0
		37,667	0	0
EARTHWORK TOTAL	$=$	0	12	452,004

Suggested procedure for calculating earthwork:
A) Determine Typical section (number of lanes, median widths, side slopes, etc.).
B) Get latest topography map available.
C) Plot proposed alignment on topo map.
D) Develop profile using topo controls such as existing roads, streams, rivers and design manual.
E) Calculate Areas for the typical section in 1 foot increments of cut or fill.
F) At 10 to 60 foot intervals (depending on frequency of X-section changes) calculate the earthwork.
G) Calculate any other significant earthwork (ramps, cross-roads, etc.).
H) Make appropriate earthwork corrections for the pavement box and striping. Use 21 inch depth for rigid pavement, 26 inch depth for all flexible pavement and 4 inch depth for stripping.
I) Deduct any roadway excavation from borrow required to calculate Borrow Excavation Zone 3.
J) See Construction Cost Estimate Work Sheet (Section 3.1). This worksheet must be utilized for the most recent price information.
K) 11.2 to 12.5 , based on the quantity, location and type of project.

PAVEMENT

12 FOOT WIDE LANE (from subgrade up)

Pav't. Type	Description of Pavement	Cost/Linear Foot
A	10 inch R.C. Pavement	156
B	2 inch HMA Surf. Crs. \& 8 inch HMA Base	61
C	3 inch HMA Surf. Crs. \& 4 inch HMA Base	46
D	2 inch HMA Surf. Crs. \& 2 inch HMA Base	22
E	Bridge Approach \& Transition Slabs	156

Computation Table for Pavement. Cost

Type	Cost from table above	x Length	x Pavement *W.F.	= Amount
B	61	845	2.08	107,214
B	61	845	2.5	128,863
B	61	344	3	62,952
E	156	200	3.33	103,896
				0
				0
				0
				0
				0

PAVEMENT TOTAL

*Width Factors = Ratio of 12 foot wide lane to actual pavement width.
Example $=$ actual pavement width $=25$ foot $=25 / 12=2.08$ W.F.

CONTEXT SENSITIVE DESIGN

Attach additional sheet detailing items and costs of context sensitive design work

CULVERTS

|/

COVER

Type $1 \mathrm{~W}<20$ Feet

Type $2 W>20$ feet

Type	Layout (3)	Skew (1)	Cover (2)	$\begin{aligned} & \text { Cost Per Sq. } \\ & \text { Foot } \\ & \hline \end{aligned}$
Type 1	Area w x L exceeds 1000 Sq. Feet	$0-60$ degrees	0 to 10'	114.75
			10' to 20'	147.25
	Short Culverts Difficult Conditions under 1000 Square Feet	$0-60$ degrees	0 to 10'	203.50
			10' to 20'	235.00
Type 2	Area w x L exceeds 1000 Sq. Feet	0-60	0 to 10'	121.75
		degrees	10' to 20'	152.50
	Short Culverts Difficult Conditions under 1000 Square Feet	$\begin{aligned} & 0-60 \\ & \text { degrees } \\ & \hline \end{aligned}$	0 to 10'	203.50
			10' to 20'	235.00

For skews over 60 degrees it will be necessary to make a special analysis and establish a square meter price comparable to above.

Description	Area Computation	x Cost per Sq. Foot	$=$ Amount
			0
			0
			0
			0

BRIDGES

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet)
$\mathrm{H}=$ Clear Height 14 To 23 feet (4)
$\mathrm{L}=100$ to 400 feet \& all viaducts over 400 feet (5)

Class	Layout	Skew (1)	Foundation (2)	Cost per Sq. Foot
I	Width at Least 45 feet	0 to 40 Degrees	No Piles	134.75
			Piles at Stub Abut.	159.75
			Piles at Piers \& Stul	174.75

Class 1 - New Construction

40 to 60	No Piles	145.00
Degrees	Piles at Stub Abut.	168.25
	Piles at Piers \& Stul	181.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet) (3)
$H=$ Clear Height 14 feet (4)
$L=$ under 400 feet

Class	Layout	Skew (1)	Foundation (2)	$\begin{array}{\|l\|} \hline \text { Cost per Sq. } \\ \text { Foot } \\ \hline \end{array}$
II	L exceeds W Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	176.50
		Degrees	On Piles	187.25
		40 to 60	No Piles	219.75
		Degrees	On Piles	273.25
III	W exceeds LArea L x Wexceeds 4500Sq. Feet	0 to 40	No Piles	226.75
		Degrees	On Piles	299.25
		40 to 60	No Piles	241.50
		Degrees	On Piles	310.00
IV	Width 30 -45 feetArea W x L under4500 Sq. Foot	0 to 40	No Piles	295.50
		Degrees	On Piles	396.75
		40 to 60	No Piles	318.25
		Degrees	On Piles	416.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 2 spans (Max. Span 125 feet)
H = Clear Height 14 feet (4)
L = 100 to 250 feet

1. For skews over 60 degrees it will be necessary to make a special analysis and establish a square foot price comparable to above.
2. For very bad foundation conditions requiring unusual lengths or spacing of piles, it will be necessary to establish a square foot price.
3. For longer spans, adjust the cost per square foot to reflect increased cost of structural members.
4. For span bridges, it is expected the length of the side span will be in- creased in proportion to any increase in height. Because of the resultant increase in deck area, the square foot price will remain approximately the same in the range of heights shown. For extremely high structures (particularly for viaducts), square foot prices will have to be increased.
5. For structures over 400 foot long (viaducts), reduce the cost per square foot if repetitive span length and forming can be used. Reduce by $\$ 0.50$ for lengths from 400 to 600 feet and by $\$ 1.00$ for lengths over 600 feet. (Do not forget adjustments (3) and (4) above on viaducts).
6. For statically indeterminate structures, square foot prices will have to be established.

Structure Description	Calculated Sq. Foot of Bridge Deck	x Cost Per Square Foot	= Amount
	13,000	225	2,925,000
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
Clearing Site Bridge *0-3\% of Sub Total \%		Sub Total	\$2,925,000
		0	
		BRIDGE TOTAL	\$2,925,000

*Pick appropriate percent based on the size, type and materials of existing structure

DRAINAGE (includes inlets and cross drains)

Rural		0	364356		0
	project length (miles)		x cost per mile	= Amount	
Urban		0	544280		0

The above are the total costs of basins, manholes, longitudinal and transverse pipes, underdrains, headwalls, protecting curbs, aprons, etc. for a divided highway with a depressed median. The costs are assumed to apply to 4,6 or 8 lane sections since there will be no appreciable difference in the number of basins or the sizes or lengths of pipes.

Frontage Road \& Ramp Drainage

length of ramp or frontage rd. in feet	2,034	55	111,870
DRAINAGE TOTAL	\times cost per foot	$=$ Amount	

INCIDENTAL ITEMS

Item	Cost / L.F.	X Quantity	$=$ Amount
Beam Guide Rail	16.75	2,034	34,070
Fence 6 Foot High	18.25	0	0
$9^{\prime \prime}$ X 16" Conc. Vertical Curb	13.75	4,068	55,935
$15^{\prime \prime}$ X 41" Conc. Barrier Curb	50.25	0	0
$24^{\prime \prime}$ X 41" Conc. Barrie Curb	73.25	0	0
24" X Variable Conc. Barrier Curb	46	0	0

Class 1 - New Construction

Sign Bridge	308,000	0	0
Cantilever Sign Structure	60,500	0	0
INCIDENTAL ITEMS TOTAL	$=$		$\$ 90,005$

LANDSCAPE

	Quantity	x Unit Prices	$=$ Amount
Topsoil and Seeding (Mainline) Length of Project in miles		0	112,815

NOISE ABATEMENT

| | Unit | Quantity | x Cost | $=$ Amount |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | L.F. | | 305 | 0 |
| | | | | 0 |
| | | | | 0 |
| | | | | 0 |
| Noise Wall | | 0 | | |

GENERAL ITEMS

| Item | Project Length (miles) | x Cost/Mile | $=$ Amount |
| :--- | :--- | :--- | ---: | ---: |
| Field Office | 0.39 | 44,260 | 17,261 |
| Materials Field Laboratory | 0.39 | 28,970 | 11,298 |
| Erosion Control during Constructio | 0.39 | 64,375 | 25,106 |
| GENERAL ITEMS TOTAL | $=$ | | $\$ 53,666$ |

SUMMARY

ROUTES 1/9 \&
Route
PORTWAY EXTENSIONS Section/Contract \# DELANCY ST
PM
0 UPC No. 0

Work Type	Totals from other pages
Earthwork	462,129
Pavement	402,924
Context Sensitive Design	0
Culverts	0
Bridges	$3,825,000$
Drainage	111,870
Incidental Items	90,005
Landscape	32,500

Class 1 - New Construction

Noise Abatement	0
General Items	53,666
PROJECT SUBTOTAL	$\$ 4,978,094$

Other Items	Proj. Subtotal Range	Choice	Amount	
Lighting, Traffic Stripes, Signs and Delineators		$3 \% \text { of Proj. }$ Subtotal	149,343	
Maintenance of Traffic		1.5\% of Proj. Subtotal	74,671	
Training		1\% of Proj. Subtotal	49,781	
Mobilization			448,028	
	Project Cost < 5.0 (Mil.)	9\% of Proj. Subtotal		448028
	Project Cost 5.0 \& above	10\% of Proj. Subtotal		0
Progress Schedule	Project Cost(Mil.)	\$	6,000	
	Less than 2.0	0		0
	2.0 to 5.0	6,000		6000
	5.0 to 10.0	8,000		0
	10.0 to 20.0	15,000		0
	20.0 to 30.0	30,000		0
	30.0 to 40.0	40,000		0
	40.0 \& above	58,000		0
Clearing Site	Project Cost (Mil.)	\$	45,000	
	Less than 1.0	15,000		0
	1.0 to 2.0	30,000		0
	2.0 to 5.0	45,000		45000
	5.0 to 10.0	115,000		0
	10.0 to 20.0	220,000		0
	20.0 to 30.0	240,000		0
	30.0 to 40.0	250,000		0
	40.0 \& above	490,000		0
Construction Layout	Project Cost(Mil.)	\$	42,000	
	Less than 1.0	7,000		0
	1.0 to 2.0	20,000		0
	2.0 to 5.0	42,000		42000
	5.0 to 10.0	87,000		0
	10.0 to 20.0	160,000		0
	20.0 to 30.0	220,000		0
	30.0 to 40.0	490,000		0
	40.0 \& above	890,000		0
		PROJECT TOTAL	\$5,792,917	

CONTINGENCIES \& ESCALATION	Y		2.00	1.00
$\mathrm{Y}=$ Number of Years until midpoint of construction duration plus number of years until construction start. If midpoint is less than 2 years from the date of this estimate, no escalation is required. Maximum value $=10 \%$	0.00			
5792917.115	1.00	\$5,966,705		
Project Total Contingencies (1+C)	$1(\mathrm{Y}+1)(\mathrm{Y}-$	uction e for PD		

Class 1 - New Construction

		Average Construction Droject Cost(Mil.)
$0-10$	Contingencies (C) Percent	3%
$10-20$	2.50%	1
$20-50$	2%	2
Over 50	1.50%	3

0.030
0.000
0.000 0.000

CONSTRUCTION ENGINEERING (CE)

Project Cost (Mil.)		\% of Construction Cost
Less than 1.0		28.40%
1.0 to 5.0		17.60%
5.0 to 10.0		12.20%
$10.0 \&$ above		9.50%

CONSTRUCTION CHANGE ORDER CONTINGENCIES

Total Federal Participating Items
in Millions of \$
$\$ 0$ to 0.1
0.1 to 0.5
0.5 to 5.0
5.0 to 10.0
10.0 to 15.0
15.0 and above

For State Funded Projects, Contingencies for Change orders $=0$
CHANGE ORDER CONTINGENCY AMOUNT $=\quad \$ 234,000$
UTILITIES RELOCATIONS BY COMPANIES/OWNERS

$\$ 5,966,705$		0.09	$\$ 537,003$
	x \% or + Estimate	$=$	Utility Relocation
Construction Cost for Initial	Use \% or utilities detailed estimate	Cost for Initial Estimate	Estimate

If there are no utility relocations on the project indicate "No Utilities" in the box above.
RIGHT OF WAY COST
If there is no ROW cost on the project indicate "No ROW" the box
SUMMARY
Construction Estimate for Initial
Construction Engineering (CE)
Contingencies
Utilities Relocations
Total Construction Cost

Right of Way Cost

Classification Number 1 - NEW CONSTRUCTION - English
Route PORTWAY EXTENSIONS Section/Contract \# NJ TURNPIKE INTERCHANGE 13A PM UPC No.

EARTHWORK (must be calculated)

	Unit	Quantity	x Unit Price	Amount
Stripping (4-6" Depth)	Acre	15	4,050	60,750
Roadway Exc. Unclassified, See (J)	C.Y.	0	15	0
Removal of Conc. Base \& Conc. Surface Courses, See (K)	S.Y.	0		0
Channel Excavation	C.Y.	0	12.25	0
Ditch Excavation	C.Y.	0	10	0
```\|\begin{array}{l}{\mathrm{ Borrow Excavation Zone 3, See}}\\{(J)}\end{array}```	C.Y.	97,437	12	1,169,244
		0		0
EARTHWORK TOTAL	=			\$1,229,994

Suggested procedure for calculating earthwork:
A) Determine Typical section (number of lanes, median widths, side slopes, etc.).
B) Get latest topography map available.
C) Plot proposed alignment on topo map.
D) Develop profile using topo controls such as existing roads, streams, rivers and design manual.
E) Calculate Areas for the typical section in 1 foot increments of cut or fill.
F) At 10 to 60 foot intervals (depending on frequency of $X$-section changes) calculate the earthwork.
G) Calculate any other significant earthwork (ramps, cross-roads, etc.).
H) Make appropriate earthwork corrections for the pavement box and striping. Use 21 inch depth for rigid pavement, 26 inch depth for all flexible pavement and 4 inch depth for stripping.
I) Deduct any roadway excavation from borrow required to calculate Borrow Excavation Zone 3.
J) See Construction Cost Estimate Work Sheet (Section 3.1). This worksheet must be utilized for the most recent price information.
K) 11.2 to 12.5 , based on the quantity, location and type of project.

## PAVEMENT

12 FOOT WIDE LANE (from subgrade up)

Pav't. Type	Description of Pavement	Cost/Linear Foot
A	10 inch R.C. Pavement	156
B	2 inch HMA Surf. Crs. \& 8 inch HMA Base	61
C	3 inch HMA Surf. Crs. \& 4 inch HMA Base	46
D	2 inch HMA Surf. Crs. \& 2 inch HMA Base	22
E	Bridge Approach \& Transition Slabs	156

Computation Table for Pavement. Cost

Type	Cost from table above	x Length	x Pavement *W.F.	= Amount
B	61	13,154	2.08	1,668,980
E	156	1,600	2.08	519,168
				0
				0
				0
				0
				0
				0
				0
PAVEMENT TOTAL			=	\$2,188,148

*Width Factors = Ratio of 12 foot wide lane to actual pavement width.
Example $=$ actual pavement width $=25$ foot $=25 / 12=2.08$ W.F.

## CONTEXT SENSITIVE DESIGN

Attach additional sheet detailing items and costs of context sensitive design work


## CULVERTS


COVER


Type	Layout (3)	Skew (1)	Cover (2)	Cost Per Sq. Foot
Type 1	Area w x L exceeds 1000 Sq. Feet	$\begin{array}{\|l\|} \hline 0-60 \\ \text { degrees } \end{array}$	0 to 10'	114.75
			10' to 20'	147.25
	Short Culverts Difficult   Conditions under 1000 Square Feet	0-60degrees	0 to 10'	203.50
			10' to 20'	235.00
Type 2	Area w x L exceeds 1000 Sq. Feet	0-60	0 to 10'	121.75
		degrees	10' to 20'	152.50
	Short Culverts Difficult   Conditions under 1000 Square   Feet	$\begin{aligned} & \hline 0-60 \\ & \text { degrees } \\ & \hline \end{aligned}$	0 to 10'	203.50
			10' to 20'	235.00

For skews over 60 degrees it will be necessary to make a special analysis and establish a square meter price comparable to above.

Description	Area Computation	$x$ Cost per Sq. Foot	$=$ Amount
			0
			0
			0
			0

## BRIDGES

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet)
H = Clear Height 14 To 23 feet (4)
$\mathrm{L}=100$ to 400 feet \& all viaducts over 400 feet (5)

Class	Layout	Skew (1)	Foundation (2)	Cost per Sq. Foot
I	Width at Least 45 feet	0 to 40 Degrees	No Piles	134.75
			Piles at Stub Abut.	159.75
			Piles at Piers \& Stu	174.75
		40 to 60 Degrees	No Piles	145.00
			Piles at Stub Abut.	168.25
			Piles at Piers \& Stu	181.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet) (3)
$\mathrm{H}=$ Clear Height 14 feet (4)
$L=$ under 400 feet

Class	Layout	Skew (1)	Foundation (2)	Cost per Sq. Foot
II	L exceeds W Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	176.50
		Degrees	On Piles	187.25
		40 to 60	No Piles	219.75
		Degrees	On Piles	273.25
III	W exceeds L Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	226.75
		Degrees	On Piles	299.25
		40 to 60	No Piles	241.50
		Degrees	On Piles	310.00
IV	Width 30 -45 feetArea W $\times$ L under4500 Sq. Foot	0 to 40	No Piles	295.50
		Degrees	On Piles	396.75
		40 to 60	No Piles	318.25
		Degrees	On Piles	416.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 2 spans (Max. Span 125 feet)
H = Clear Height 14 feet (4)
$L=100$ to 250 feet


1. For skews over 60 degrees it will be necessary to make a special analysis and establish a square foot price comparable to above.
2. For very bad foundation conditions requiring unusual lengths or spacing of piles, it will be necessary to establish a square foot price.
3. For longer spans, adjust the cost per square foot to reflect increased cost of structural members.
4. For span bridges, it is expected the length of the side span will be in- creased in proportion to any increase in height. Because of the resultant increase in deck area, the square foot price will remain approximately the same in the range of heights shown. For extremely high structures (particularly for viaducts), square foot prices will have to be increased.
5. For structures over 400 foot long (viaducts), reduce the cost per square foot if repetitive span length and forming can be used. Reduce by $\$ 0.50$ for lengths from 400 to 600 feet and by $\$ 1.00$ for lengths over 600 feet. (Do not forget adjustments (3) and (4) above on viaducts).
6. For statically indeterminate structures, square foot prices will have to be established.

Structure Description	Calculated Sq. Foot of Bridge Deck	x Cost Per Square Foot	= Amount
\#1	22,200	225	4,995,000
\#2	11,100	225	2,497,500
\#3	27,750	225	6,243,750
\#4	13,875	225	3,121,875
\#5	8,325	225	1,873,125
\#6	33,300	225	7,492,500
\#7	3,000	225	675,000
\#8	5,550	225	1,248,750
			0
			0
			0
			0
Clearing Site Bridge *0-3\% of Sub Total $\%$		Sub Total	\$28,147,500
		0	
		BRIDGE TOTAL	\$28,147,500

*Pick appropriate percent based on the size, type and materials of existing structure

DRAINAGE (includes inlets and cross drains)

Rural		0	364356	0						
								project length (miles)	$x$ cost per mile	$=$ Amount

The above are the total costs of basins, manholes, longitudinal and transverse pipes, underdrains, headwalls, protecting curbs, aprons, etc. for a divided highway with a depressed median. The costs are assumed to apply to 4, 6 or 8 lane sections since there will be no appreciable difference in the number of basins or the sizes or lengths of pipes.

Frontage Road \& Ramp Drainage

	13,154		55	723,470
length of ramp or frontage rd. in feet		x cost per foot		= Amount
DRAINAGE TOTAL		=		\$723,470

## INCIDENTAL ITEMS

Item	Cost / L.F.	X Quantity	$=$ Amount
Beam Guide Rail	16.75	13,154	220,330
Fence 6 Foot High	18.25	0	0
$9 "$ X 16" Conc. Vertical Curb	13.75	26,308	361,735
$15 "$ X 41" Conc. Barrier Curb	50.25	0	0
$24 "$ X 41" Conc. Barrier Curb	73.25	0	0
24" X Variable Conc. Barrier Curb	46	0	0
Sign Bridge	308,000	0	0
Cantilever Sign Structure	60,500	0	0
INCIDENTAL ITEMS TOTAL	$=$		$\$ 582,065$

## LANDSCAPE

	Quantity		x Unit Prices	= Amount
Topsoil and Seeding (Mainline) Length of Project in miles		0	112,815	0
Planting (Mainline) Length of Project in miles		0	64,500	0
Topsoil, Seeding, Planting (Finger Ramp     Number of Finger Ramps 0 12,500				
Topsoil, Seeding, Planting (Loop Ramp)				
Topsoil, Seeding (Access Road) Length of Access Road in Feet		13,154	7.9	103,917
LANDSCAPE TOTAL				\$103,917

NOISE ABATEMENT

	Unit	Quantity	$x$ Cost	$=$ Amount	
	L.F.		0	305	0
				0	
				0	
				0	
			0		

## GENERAL ITEMS

Item	Project Length (miles)	x Cost/Mile	$=$ Amount
Field Office	2.5	44,260	110,650
Materials Field Laboratory	2.5	28,970	72,425
Erosion Control during Constructio	2.5	64,375	160,938
GENERAL ITEMS TOTAL	$=$		$\$ 344,013$

## SUMMARY

			NJ TURNPIKE	
			INTERCHANGE	
Route	PORTWAY EXTENSIONS	Section/Contract \#	13A	
PM		0 UPC No.	0	


Work Type	Totals from other		
pages		,	$1,229,994$
:---			
Earthwork			
Pavement			
Context Sensitive Design			
Culverts			
Bridges			
Drainage			
Incidental Items			
Landscape			
Noise Abatement			
General Items			
PROJECT SUBTOTAL			

Class 1 - New Construction

Other Items	Proj. Subtotal Range	Choice	Amount	
Lighting, Traffic Stripes, Signs and Delineators		$\begin{array}{\|l\|} \hline 3 \% \text { of Proj. } \\ \text { Subtotal } \\ \hline \end{array}$	999,573	
Maintenance of Traffic		$\begin{aligned} & 1.5 \% \text { of Proj. } \\ & \text { Subtotal } \end{aligned}$	499,787	
Training		$1 \%$ of Proj. Subtotal	333,191	
Mobilization			3,331,911	
	Project Cost < 5.0 (Mil.)	9\% of Proj. Subtotal		0
	Project Cost 5.0 \& above	10\% of Proj. Subtotal		3331911
Progress Schedule	Project Cost(Mil.)	\$	40,000	
	Less than 2.0	0		0
	2.0 to 5.0	6,000		0
	5.0 to 10.0	8,000		0
	10.0 to 20.0	15,000		0
	20.0 to 30.0	30,000		0
	30.0 to 40.0	40,000		40000
	40.0 \& above	58,000		0
Clearing Site	Project Cost (Mil.)	\$	250,000	
	Less than 1.0	15,000		0
	1.0 to 2.0	30,000		0
	2.0 to 5.0	45,000		0
	5.0 to 10.0	115,000		0
	10.0 to 20.0	220,000		0
	20.0 to 30.0	240,000		0
	30.0 to 40.0	250,000		250000
	40.0 \& above	490,000		0
Construction Layout	Project Cost(Mil.)	\$	490,000	
	Less than 1.0	7,000		0
	1.0 to 2.0	20,000		0
	2.0 to 5.0	42,000		0
	5.0 to 10.0	87,000		0
	10.0 to 20.0	160,000		0
	20.0 to 30.0	220,000		0
	30.0 to 40.0	490,000		490000
	40.0 \& above	890,000		0
		PROJECT TOTAL	\$39,263,566	



	Contingencies (C) Percent	Average   Construction   Duration in Years
Project Cost(Mil.)	$3 \%$	1
$0-10$	$2.50 \%$	2
$10-20$	$2 \%$	3
$20-50$	$1.50 \%$	4
Over 50		4

## CONSTRUCTION ENGINEERING (CE)

Project Cost (Mil.)		\% of Construction   Cost
Less than 1.0		$28.40 \%$
1.0 to 5.0		$17.60 \%$
5.0 to 10.0		$12.20 \%$
$10.0 \&$ above		$9.50 \%$
CONSTRUCTION ENGINEERING AMOUNT		$\$ 3,730,038.81$

## CONSTRUCTION CHANGE ORDER CONTINGENCIES

## Total Federal Participating Items

in Millions of \$	Construction Change Order Contingency Amount	
\$0 to 0.1	\$6,000	0
0.1 to 0.5	25,000	0
0.5 to 5.0	25,000 + 4\% of amount in excess of \$500,000	0
5.0 to 10.0	$205,000+3 \%$ of amount in excess of \$5,000,000	0
10.0 to 15.0	$355,000+2 \%$ of amount in excess of \$10,000,000	0
15.0 and above	$455,000+1.5 \%$ of amount in excess of \$15,000,000-\$500,000 max	500000
		819000

For State Funded Projects, Contingencies for Change orders $=0$
CHANGE ORDER CONTINGENCY AMOUNT =
\$500,000
UTILITIES RELOCATIONS BY COMPANIES/OWNERS

$\$ 39,263,566$			0.09
	x \% or + Estimate	=	
		Utility Relocation	
Construction Cost for Initial	Use \% or utilities detailed   estimate	Cost for Initial	
Estimate	Estimate		

If there are no utility relocations on the project indicate "No Utilities" in the box above.
RIGHT OF WAY COST
If there is no ROW cost on the project indicate "No ROW" the box
SUMMARY

Construction Estimate for Initial	
Construction Engineering (CE)	$39,263,566$
Contingencies	$3,730,039$
Utilities Relocations	500,000
Total Construction Cost	$3,533,721$

Right of Way Cost
0

Classification Number 1 - NEW CONSTRUCTION - English
Route PORTWAY EXTENSIONS Section/Contract \# NJ TURNPIKE INTERCHANGE 13 PM UPC No.

EARTHWORK (must be calculated)

	Unit	Quantity	x Unit Price	Amount
Stripping (4-6" Depth)	Acre	3.8	4,050	15,390
Roadway Exc. Unclassified, See				
(J)	C.Y.	0	15	0
Removal of Conc. Base \& Conc.		0		
Surface Courses, See (K)	S.Y.	0	12.25	0
Channel Excavation	C.Y.	0	10	0
Ditch Excavation	C.Y.	27,496	0	
Borrow Excavation Zone 3, See   (J)	C.Y.	0	12	329,952
			0	
EARTHWORK TOTAL	$=$		$\$ 345,342$	

Suggested procedure for calculating earthwork:
A) Determine Typical section (number of lanes, median widths, side slopes, etc.).
B) Get latest topography map available.
C) Plot proposed alignment on topo map.
D) Develop profile using topo controls such as existing roads, streams, rivers and design manual.
E) Calculate Areas for the typical section in 1 foot increments of cut or fill.
F) At 10 to 60 foot intervals (depending on frequency of $X$-section changes) calculate the earthwork.
G) Calculate any other significant earthwork (ramps, cross-roads, etc.).
H) Make appropriate earthwork corrections for the pavement box and striping. Use 21 inch depth for rigid pavement, 26 inch depth for all flexible pavement and 4 inch depth for stripping.
I) Deduct any roadway excavation from borrow required to calculate Borrow Excavation Zone 3.
J) See Construction Cost Estimate Work Sheet (Section 3.1). This worksheet must be utilized for the most recent price information.
K) 11.2 to 12.5 , based on the quantity, location and type of project.

## PAVEMENT

12 FOOT WIDE LANE (from subgrade up)

Pav't. Type	Description of Pavement	Cost/Linear Foot
A	10 inch R.C. Pavement	156
B	2 inch HMA Surf. Crs. \& 8 inch HMA Base	61
C	3 inch HMA Surf. Crs. \& 4 inch HMA Base	46
D	2 inch HMA Surf. Crs. \& 2 inch HMA Base	22
E	Bridge Approach \& Transition Slabs	156

Computation Table for Pavement. Cost

Type	Cost from table above	x Length	x Pavement *W.F.	= Amount
B	61	3,700	2.08	469,456
E	156	900	2.08	292,032
				0
				0
				0
				0
				0
				0
				0
PAVEMENT TOTAL				\$761,488

*Width Factors = Ratio of 12 foot wide lane to actual pavement width.
Example $=$ actual pavement width $=25$ foot $=25 / 12=2.08$ W.F.

## CONTEXT SENSITIVE DESIGN

Attach additional sheet detailing items and costs of context sensitive design work


## CULVERTS


COVER


Type	Layout (3)	Skew (1)	Cover (2)	Cost Per Sq. Foot
Type 1	Area w x L exceeds 1000 Sq. Feet	$\begin{array}{\|l\|} \hline 0-60 \\ \text { degrees } \end{array}$	0 to 10'	114.75
			10' to 20'	147.25
	Short Culverts Difficult   Conditions under 1000 Square Feet	0-60degrees	0 to 10'	203.50
			10' to 20'	235.00
Type 2	Area w x L exceeds 1000 Sq. Feet	0-60	0 to 10'	121.75
		degrees	10' to 20'	152.50
	Short Culverts Difficult   Conditions under 1000 Square   Feet	$\begin{aligned} & \hline 0-60 \\ & \text { degrees } \\ & \hline \end{aligned}$	0 to 10'	203.50
			10' to 20'	235.00

For skews over 60 degrees it will be necessary to make a special analysis and establish a square meter price comparable to above.

Description	Area Computation	$x$ Cost per Sq. Foot	$=$ Amount
			0
			0
			0
			0

## BRIDGES

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet)
H = Clear Height 14 To 23 feet (4)
$\mathrm{L}=100$ to 400 feet \& all viaducts over 400 feet (5)

Class	Layout	Skew (1)	Foundation (2)	$\begin{aligned} & \text { Cost per Sq. } \\ & \text { Foot } \end{aligned}$
I	Width at Least 45 feet	$\begin{array}{\|l\|} \hline 0 \text { to } 40 \\ \text { Degrees } \end{array}$	No Piles	134.75
			Piles at Stub Abut.	159.75
			Piles at Piers \& Stu	174.75
		40 to 60 Degrees	No Piles	145.00
			Piles at Stub Abut.	168.25
			Piles at Piers \& Stu	181.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet) (3)
$\mathrm{H}=$ Clear Height 14 feet (4)
$L=$ under 400 feet

Class	Layout	Skew (1)	Foundation (2)	$\begin{aligned} & \text { Cost per Sq. } \\ & \text { Foot } \end{aligned}$
II	L exceeds W Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	176.50
		Degrees	On Piles	187.25
		40 to 60	No Piles	219.75
		Degrees	On Piles	273.25
III	W exceeds L Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	226.75
		Degrees	On Piles	299.25
		40 to 60	No Piles	241.50
		Degrees	On Piles	310.00
IV	Width 30 -45 feetArea $W \times L$ under4500 Sq. Foot	0 to 40	No Piles	295.50
		Degrees	On Piles	396.75
		40 to 60	No Piles	318.25
		Degrees	On Piles	416.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 2 spans (Max. Span 125 feet)
H = Clear Height 14 feet (4)
$L=100$ to 250 feet


1. For skews over 60 degrees it will be necessary to make a special analysis and establish a square foot price comparable to above.
2. For very bad foundation conditions requiring unusual lengths or spacing of piles, it will be necessary to establish a square foot price.
3. For longer spans, adjust the cost per square foot to reflect increased cost of structural members.
4. For span bridges, it is expected the length of the side span will be in- creased in proportion to any increase in height. Because of the resultant increase in deck area, the square foot price will remain approximately the same in the range of heights shown. For extremely high structures (particularly for viaducts), square foot prices will have to be increased.
5. For structures over 400 foot long (viaducts), reduce the cost per square foot if repetitive span length and forming can be used. Reduce by $\$ 0.50$ for lengths from 400 to 600 feet and by $\$ 1.00$ for lengths over 600 feet. (Do not forget adjustments (3) and (4) above on viaducts).
6. For statically indeterminate structures, square foot prices will have to be established.

*Pick appropriate percent based on the size, type and materials of existing structure

DRAINAGE (includes inlets and cross drains)

Rural		0	364356		0
	project length (miles)		mile	= Amount	
Urban		0	544280		0

The above are the total costs of basins, manholes, longitudinal and transverse pipes, underdrains, headwalls, protecting curbs, aprons, etc. for a divided highway with a depressed median. The costs are assumed to apply to 4, 6 or 8 lane sections since there will be no appreciable difference in the number of basins or the sizes or lengths of pipes.

Frontage Road \& Ramp Drainage

	3,712		55
length of ramp or frontage rd. in feet	204,160		
DRAINAGE TOTAL	$=$	$=$ Amount	

## INCIDENTAL ITEMS

Item	Cost / L.F.	X Quantity	$=$ Amount
Beam Guide Rail	16.75	1,856	31,088
Fence 6 Foot High	18.25	0	0
$9 "$ X 16" Conc. Vertical Curb	13.75	7,424	102,080
$15^{\prime \prime}$ X 41" Conc. Barrier Curb	50.25	0	0
$24 "$ X 41" Conc. Barrier Curb	73.25	0	0
24" X Variable Conc. Barrier Curb	46	0	0
Sign Bridge	308,000	0	0
Cantilever Sign Structure	60,500	0	0
INCIDENTAL ITEMS TOTAL	$=$		$\$ 133,168$

## LANDSCAPE

	Quantity		x Unit Prices	= Amount
Topsoil and Seeding (Mainline) Length of Project in miles		0	112,815	0
Planting (Mainline) Length of Project in miles		0	64,500	0
Topsoil, Seeding, Planting (Finger   Number of Finger Ramps	Ramp	Topsoil, Seeding, Planting (Finger Ramp	12,500	50,000
Topsoil, Seeding, Planting (Loop Ramp) 3    Number of Loop Ramps 3    20,000				
Topsoil, Seeding (Access Road) Length of Access Road in Feet		0	7.9	0
LANDSCAPE TOTAL				\$110,000

NOISE ABATEMENT

	Unit	Quantity	$x$ Cost	$=$ Amount	
	L.F.		0	305	0
				0	
				0	
				0	
			0		

## GENERAL ITEMS

Item	Project Length (miles)	x Cost/Mile	$=$ Amount
Field Office	0.7	44,260	30,982
Materials Field Laboratory	0.7	28,970	20,279
Erosion Control during Constructio	0.7	64,375	45,063
GENERAL ITEMS TOTAL	$=$	0	$\$ 96,324$

## SUMMARY

		NJ TURNPIKE		
			INTERCHANGE	
Route	PORTWAY EXTENSIONS	Section/Contract \#	13	
PM		0 UPC No.	0	


Work Type	Totals from other   pages
Earthwork	345,342
Pavement	761,488
Context Sensitive Design	0
Culverts	0
Bridges	$26,437,500$
Drainage	204,160
Incidental Items	133,168
Landscape	110,000
Noise Abatement	0
General Items	96,324
	$\$ 28,087,982$

Class 1 - New Construction


0


	Contingencies (C) Percent	Average   Construction   Duration in Years
Project Cost(Mil.)	$3 \%$	1
$0-10$	$2.50 \%$	2
$10-20$	$2 \%$	3
$20-50$	$1.50 \%$	4
Over 50		4

## CONSTRUCTION ENGINEERING (CE)

Project Cost (Mil.)		\% of Construction   Cost
Less than 1.0		$28.40 \%$
1.0 to 5.0		$17.60 \%$
5.0 to 10.0		$12.20 \%$
10.0 \& above		$9.50 \%$
CONSTRUCTION ENGINEERING AMOUNT		$\$ 3,128,503.77$

CONSTRUCTION CHANGE ORDER CONTINGENCIES

Total Federal Participating Items		
in Millions of $\$$	Construction Change Order Contingency Amount	
$\$ 0$ to 0.1	$\$ 6,000$	0
0.1 to 0.5	25,000	0
0.5 to 5.0	$25,000+4 \%$ of amount in excess of $\$ 500,000$	0
5.0 to 10.0	$205,000+3 \%$ of amount in excess of $\$ 5,000,000$	0
10.0 to 15.0	$355,000+2 \%$ of amount in excess of $\$ 10,000,000$	0
15.0 and above	$455,000+1.5 \%$ of amount in excess of $\$ 15,000,000-\$ 500,000$ max	500000
		724000

For State Funded Projects, Contingencies for Change orders $=0$
CHANGE ORDER CONTINGENCY AMOUNT =
\$500,000
UTILITIES RELOCATIONS BY COMPANIES/OWNERS

$\$ 32,931,619$		0.09	$\$ 2,963,846$
	$\mathrm{x} \%$ or + Estimate	$=$	Utility Relocation
Construction Cost for Initial	Use \% or utilities detailed   estimate	Cost for Initial	
Estimate	Estimate		

If there are no utility relocations on the project indicate "No Utilities" in the box above.
RIGHT OF WAY COST
If there is no ROW cost on the project indicate "No ROW" the box
SUMMARY

Construction Estimate for Initial	32,931,619
Construction Engineering (CE)	3,128,504
Contingencies	500,000
Utilities Relocations	2,963,846
Total Construction Cost	\$39,523,968

Right of Way Cost
0

Classification Number 1 - NEW CONSTRUCTION - English
Route PORTWAY EXTENSIONS Section/Contract \# NJ TURNPIKE INTERCHANGE 12 PM UPC No.

EARTHWORK (must be calculated)

	Unit	Quantity	x Unit Price	Amount
Stripping (4-6" Depth)	Acre	4	4,050	16,200
Roadway Exc. Unclassified, See (J)	C.Y.	32,593	15	488,895
Removal of Conc. Base \& Conc. Surface Courses, See (K)	S.Y.	0		0
Channel Excavation	C.Y.	0	12.25	0
Ditch Excavation	C.Y.	0	10	0
```\|\begin{array}{l}{\mathrm{ Borrow Excavation Zone 3, See}}\\{(J)}\end{array}```	C.Y.	0	12	0
		0		0
EARTHWORK TOTAL	=			\$505,095

Suggested procedure for calculating earthwork:
A) Determine Typical section (number of lanes, median widths, side slopes, etc.).
B) Get latest topography map available.
C) Plot proposed alignment on topo map.
D) Develop profile using topo controls such as existing roads, streams, rivers and design manual.
E) Calculate Areas for the typical section in 1 foot increments of cut or fill.
F) At 10 to 60 foot intervals (depending on frequency of X-section changes) calculate the earthwork.
G) Calculate any other significant earthwork (ramps, cross-roads, etc.).
H) Make appropriate earthwork corrections for the pavement box and striping. Use 21 inch depth for rigid pavement, 26 inch depth for all flexible pavement and 4 inch depth for stripping.
I) Deduct any roadway excavation from borrow required to calculate Borrow Excavation Zone 3.
J) See Construction Cost Estimate Work Sheet (Section 3.1). This worksheet must be utilized for the most recent price information.
K) 11.2 to 12.5 , based on the quantity, location and type of project.

PAVEMENT

12 FOOT WIDE LANE (from subgrade up)

Pav't. Type	Description of Pavement	Cost/Linear Foot
A	10 inch R.C. Pavement	156
B	2 inch HMA Surf. Crs. \& 8 inch HMA Base	61
C	3 inch HMA Surf. Crs. \& 4 inch HMA Base	46
D	2 inch HMA Surf. Crs. \& 2 inch HMA Base	22
E	Bridge Approach \& Transition Slabs	156

Computation Table for Pavement. Cost

Type	Cost from table above	x Length	x Pavement *W.F.	= Amount
B	61	8,800	4.17	2,238,456
				0
				0
				0
				0
				0
				0
				0
				0
PAVEMENT TOTAL				\$2,238,456

*Width Factors = Ratio of 12 foot wide lane to actual pavement width.
Example $=$ actual pavement width $=25$ foot $=25 / 12=2.08$ W.F.

CONTEXT SENSITIVE DESIGN

Attach additional sheet detailing items and costs of context sensitive design work

CULVERTS

COVER

Type	Layout (3)	Skew (1)	Cover (2)	Cost Per Sq. Foot
Type 1	Area w x L exceeds 1000 Sq. Feet	$\begin{array}{\|l\|} \hline 0-60 \\ \text { degrees } \end{array}$	0 to 10'	114.75
			10' to 20'	147.25
	Short Culverts Difficult Conditions under 1000 Square Feet	0-60degrees	0 to 10'	203.50
			10' to 20'	235.00
Type 2	Area w x L exceeds 1000 Sq. Feet	0-60	0 to 10'	121.75
		degrees	10' to 20'	152.50
	Short Culverts Difficult Conditions under 1000 Square Feet	$\begin{aligned} & \hline 0-60 \\ & \text { degrees } \\ & \hline \end{aligned}$	0 to 10'	203.50
			10' to 20'	235.00

For skews over 60 degrees it will be necessary to make a special analysis and establish a square meter price comparable to above.

Description	Area Computation	x Cost per Sq. Foot	$=$ Amount
			0
			0
			0
			0

BRIDGES

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet)
H = Clear Height 14 To 23 feet (4)
$\mathrm{L}=100$ to 400 feet \& all viaducts over 400 feet (5)

Class	Layout	Skew (1)	Foundation (2)	Cost per Sq. Foot
I	Width at Least 45 feet	0 to 40 Degrees	No Piles	134.75
			Piles at Stub Abut.	159.75
			Piles at Piers \& Stu	174.75
		40 to 60 Degrees	No Piles	145.00
			Piles at Stub Abut.	168.25
			Piles at Piers \& Stu	181.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet) (3)
$\mathrm{H}=$ Clear Height 14 feet (4)
$L=$ under 400 feet

Class	Layout	Skew (1)	Foundation (2)	Cost per Sq. Foot
II	L exceeds W Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	176.50
		Degrees	On Piles	187.25
		40 to 60	No Piles	219.75
		Degrees	On Piles	273.25
III	W exceeds L Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	226.75
		Degrees	On Piles	299.25
		40 to 60	No Piles	241.50
		Degrees	On Piles	310.00
IV	Width 30 -45 feetArea W \times L under4500 Sq. Foot	0 to 40	No Piles	295.50
		Degrees	On Piles	396.75
		40 to 60	No Piles	318.25
		Degrees	On Piles	416.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 2 spans (Max. Span 125 feet)
H = Clear Height 14 feet (4)
$L=100$ to 250 feet

1. For skews over 60 degrees it will be necessary to make a special analysis and establish a square foot price comparable to above.
2. For very bad foundation conditions requiring unusual lengths or spacing of piles, it will be necessary to establish a square foot price.
3. For longer spans, adjust the cost per square foot to reflect increased cost of structural members.
4. For span bridges, it is expected the length of the side span will be in- creased in proportion to any increase in height. Because of the resultant increase in deck area, the square foot price will remain approximately the same in the range of heights shown. For extremely high structures (particularly for viaducts), square foot prices will have to be increased.
5. For structures over 400 foot long (viaducts), reduce the cost per square foot if repetitive span length and forming can be used. Reduce by $\$ 0.50$ for lengths from 400 to 600 feet and by $\$ 1.00$ for lengths over 600 feet. (Do not forget adjustments (3) and (4) above on viaducts).
6. For statically indeterminate structures, square foot prices will have to be established.

Structure Description	Calculated Sq. Foot of Bridge Deck	x Cost Per Square Foot	= Amount
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
Clearing Site Bridge *0-3\% of Sub Total $\%$		Sub Total	\$0
		0	
		BRIDGE TOTAL	\$0

*Pick appropriate percent based on the size, type and materials of existing structure

DRAINAGE (includes inlets and cross drains)

Rural		0	364356	0	
	project length (miles)		mile	= Amount	
Urban		1.7\|	544280\|		925,276

The above are the total costs of basins, manholes, longitudinal and transverse pipes, underdrains, headwalls, protecting curbs, aprons, etc. for a divided highway with a depressed median. The costs are assumed to apply to 4, 6 or 8 lane sections since there will be no appreciable difference in the number of basins or the sizes or lengths of pipes.

Frontage Road \& Ramp Drainage

INCIDENTAL ITEMS

Item	Cost / L.F.	\times Quantity	$=$ Amount
Beam Guide Rail	16.75	0	0
Fence 6 Foot High	18.25	0	0
$9 "$ X 16" Conc. Vertical Curb	13.75	17,600	242,000
$15 "$ X 41" Conc. Barrier Curb	50.25	0	0
24" X 41" Conc. Barrier Curb	73.25	0	0
24" X Variable Conc. Barrier Curb	46	0	0
Sign Bridge	308,000	0	0
Cantilever Sign Structure	60,500	0	0
INCIDENTAL ITEMS TOTAL	$=$		$\$ 242,000$

LANDSCAPE

	Quantity	x Unit Prices	$=$ Amount	
Topsoil and Seeding (Mainline) Length of Project in miles		1.7	112,815	191,786
Planting (Mainline) Length of Project in miles		1.7		
Topsoil, Seeding, Planting (Finger Ramp Number of Finger Ramps		64,500	109,650	
Topsoil, Seeding, Planting (Loop Ramp) Number of Loop Ramps	0	12,500		
Topsoil, Seeding (Access Road) Length of Access Road in Feet	0		0	
LANDSCAPE TOTAL	0	20,000		

NOISE ABATEMENT

	Unit	Quantity	x Cost	$=$ Amount	
	L.F.		0	305	0
				0	
				0	
				0	
			0		

GENERAL ITEMS

Item	Project Length (miles)	x Cost/Mile	$=$ Amount
Field Office	1.7	44,260	75,242
Materials Field Laboratory		1.7	28,970
Erosion Control during Constructio	1.7	64,375	49,249
GENERAL ITEMS TOTAL	$=$		109,438

SUMMARY

$\left.\begin{array}{lllll} & & & & \\ & & \text { NJ TURNPIKE } \\ \text { INTERCHANGE }\end{array}\right]$

Work Type	Totals from other pages
Earthwork	505,095
Pavement	2,238,456
Context Sensitive Design	0
Culverts	0
Bridges	0
Drainage	925,276
Incidental Items	242,000
Landscape	301,436
Noise Abatement	0
General Items	233,929
PROJECT SUBTOTAL	\$4,446,191

Class 1 - New Construction

Other Items	Proj. Subtotal Range	Choice	Amount
Lighting, Traffic Stripes, Signs and Delineators		3\% of Proj. Subtotal	133,386
Maintenance of Traffic		$\begin{array}{\|l\|} \hline 1.5 \% \text { of Proj. } \\ \text { Subtotal } \end{array}$	66,693
Training		$\begin{array}{\|l\|} \hline 1 \% \text { of Proj. } \\ \text { Subtotal } \\ \hline \end{array}$	44,462
Mobilization			400,157
	Project Cost < 5.0 (Mil.)	9% of Proj. Subtotal	
	Project Cost 5.0 \& above	10\% of Proj. Subtotal	
Progress Schedule	Project Cost(Mil.)	\$	6,000
	Less than 2.0	0	
	2.0 to 5.0	6,000	
	5.0 to 10.0	8,000	
	10.0 to 20.0	15,000	
	20.0 to 30.0	30,000	
	30.0 to 40.0	40,000	
	40.0 \& above	58,000	
Clearing Site	Project Cost (Mil.)	\$	45,000
	Less than 1.0	15,000	
	1.0 to 2.0	30,000	
	2.0 to 5.0	45,000	
	5.0 to 10.0	115,000	
	10.0 to 20.0	220,000	
	20.0 to 30.0	240,000	
	30.0 to 40.0	250,000	
	40.0 \& above	490,000	
Construction Layout	Project Cost(Mil.)	\$	42,000
	Less than 1.0	7,000	
	1.0 to 2.0	20,000	
	2.0 to 5.0	42,000	
	5.0 to 10.0	87,000	
	10.0 to 20.0	160,000	
	20.0 to 30.0	220,000	
	30.0 to 40.0	490,000	
	40.0 \& above	890,000	
		PROJECT TOTAL	\$5,183,889

		Average Construction Droject Cost(Mil.)
$0-10$	Contingencies (C) Percent	3%
$10-20$	2.50%	1
$20-50$	2%	2
Over 50	1.50%	3

CONSTRUCTION ENGINEERING (CE)

Project Cost (Mil.)		\% of Construction Cost
Less than 1.0		28.40%
1.0 to 5.0		17.60%
5.0 to 10.0		12.20%
$10.0 \&$ above		9.50%
CONSTRUCTION ENGINEERING AMOUNT		

CONSTRUCTION ENGINEERING AMOUNT \$651,407.45

in Millions of $\$$	Construction Change Order Contingency Amount	
$\$ 0$ to 0.1	$\$ 6,000$	
0.1 to 0.5		25,000
0.5 to 5.0	$25,000+4 \%$ of amount in excess of $\$ 500,000$	0
5.0 to 10.0	$205,000+3 \%$ of amount in excess of $\$ 5,000,000$	0
10.0 to 15.0	$355,000+2 \%$ of amount in excess of $\$ 10,000,000$	0
15.0 and above	$455,000+1.5 \%$ of amount in excess of $\$ 15,000,000-\$ 500,000$ max	0
		0

For State Funded Projects, Contingencies for Change orders $=0$ CHANGE ORDER CONTINGENCY AMOUNT =
$=\quad \$ 215,200$

UTILITIES RELOCATIONS BY COMPANIES/OWNERS

$\$ 5,339,405$			0.09
	x \% or + Estimate	$\$ 480,546$	
		Utility Relocation	
Construction Cost for Initial	Use \% or utilities detailed estimate	Cost for Initial	
Estimate	Estimate		

If there are no utility relocations on the project indicate "No Utilities" in the box above.
RIGHT OF WAY COST
If there is no ROW cost on the project indicate "No ROW" the box
SUMMARY

Construction Estimate for Initial	$5,339,405$
Construction Engineering (CE)	651,407
Contingencies	215,200
Utilities Relocations	480,546
	$\$ 6,686,559$

Right of Way Cost \qquad
0

Classification Number 1 - NEW CONSTRUCTION - English
Route PORTWAY EXTENSIONS Section/Contract \# NJ TURNPIKE INTERCHANGE 10 PM UPC No.

EARTHWORK (must be calculated)

	Unit	Quantity	x Unit Price	Amount
Stripping (4-6" Depth)	Acre	5.8	4,050	23,490
Roadway Exc. Unclassified, See (J)	C.Y.	0	15	0
Removal of Conc. Base \& Conc. Surface Courses, See (K)	S.Y.	0		0
Channel Excavation	C.Y.	0	12.25	0
Ditch Excavation	C.Y.	0	10	0
Borrow Excavation Zone 3, See (J)	C.Y.	93,541	12	1,122,492
		0		0
EARTHWORK TOTAL	=			\$1,145,982

Suggested procedure for calculating earthwork:
A) Determine Typical section (number of lanes, median widths, side slopes, etc.).
B) Get latest topography map available.
C) Plot proposed alignment on topo map.
D) Develop profile using topo controls such as existing roads, streams, rivers and design manual.
E) Calculate Areas for the typical section in 1 foot increments of cut or fill.
F) At 10 to 60 foot intervals (depending on frequency of X-section changes) calculate the earthwork.
G) Calculate any other significant earthwork (ramps, cross-roads, etc.).
H) Make appropriate earthwork corrections for the pavement box and striping. Use 21 inch depth for rigid pavement, 26 inch depth for all flexible pavement and 4 inch depth for stripping.
I) Deduct any roadway excavation from borrow required to calculate Borrow Excavation Zone 3.
J) See Construction Cost Estimate Work Sheet (Section 3.1). This worksheet must be utilized for the most recent price information.
K) 11.2 to 12.5 , based on the quantity, location and type of project.

PAVEMENT

12 FOOT WIDE LANE (from subgrade up)

Pav't. Type	Description of Pavement	Cost/Linear Foot
A	10 inch R.C. Pavement	156
B	2 inch HMA Surf. Crs. \& 8 inch HMA Base	61
C	3 inch HMA Surf. Crs. \& 4 inch HMA Base	46
D	2 inch HMA Surf. Crs. \& 2 inch HMA Base	22
E	Bridge Approach \& Transition Slabs	156

Computation Table for Pavement. Cost

Type	Cost from table above	x Length	x Pavement *W.F.	Amount
B	61	12,628	2.08	1,602,241
E	156	200	2.08	64,896
				0
				0
				0
				0
				0
				0
				0
PAVEMENT TOTAL				\$1,667,137

*Width Factors = Ratio of 12 foot wide lane to actual pavement width.
Example $=$ actual pavement width $=25$ foot $=25 / 12=2.08$ W.F.

CONTEXT SENSITIVE DESIGN

Attach additional sheet detailing items and costs of context sensitive design work

CULVERTS

COVER

Type	Layout (3)	Skew (1)	Cover (2)	Cost Per Sq. Foot
Type 1	Area w x L exceeds 1000 Sq. Feet	$\begin{array}{\|l\|} \hline 0-60 \\ \text { degrees } \end{array}$	0 to 10'	114.75
			10' to 20'	147.25
	Short Culverts Difficult Conditions under 1000 Square Feet	0-60degrees	0 to 10'	203.50
			10' to 20'	235.00
Type 2	Area w x L exceeds 1000 Sq. Feet	0-60	0 to 10'	121.75
		degrees	10' to 20'	152.50
	Short Culverts Difficult Conditions under 1000 Square Feet	$\begin{aligned} & \hline 0-60 \\ & \text { degrees } \\ & \hline \end{aligned}$	0 to 10'	203.50
			10' to 20'	235.00

For skews over 60 degrees it will be necessary to make a special analysis and establish a square meter price comparable to above.

Description	Area Computation	x Cost per Sq. Foot	$=$ Amount
			0
			0
			0
			0

BRIDGES

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet)
H = Clear Height 14 To 23 feet (4)
$\mathrm{L}=100$ to 400 feet \& all viaducts over 400 feet (5)

Class	Layout	Skew (1)	Foundation (2)	$\begin{aligned} & \text { Cost per Sq. } \\ & \text { Foot } \end{aligned}$
I	Width at Least 45 feet	$\begin{array}{\|l\|} \hline 0 \text { to } 40 \\ \text { Degrees } \end{array}$	No Piles	134.75
			Piles at Stub Abut.	159.75
			Piles at Piers \& Stu	174.75
		40 to 60 Degrees	No Piles	145.00
			Piles at Stub Abut.	168.25
			Piles at Piers \& Stu	181.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 3 spans and 2 side spans (Max. Span 100 feet) (3)
$\mathrm{H}=$ Clear Height 14 feet (4)
$L=$ under 400 feet

Class	Layout	Skew (1)	Foundation (2)	Cost per Sq. Foot
II	L exceeds W Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	176.50
		Degrees	On Piles	187.25
		40 to 60	No Piles	219.75
		Degrees	On Piles	273.25
III	W exceeds L Area L x W exceeds 4500 Sq. Feet	0 to 40	No Piles	226.75
		Degrees	On Piles	299.25
		40 to 60	No Piles	241.50
		Degrees	On Piles	310.00
IV	Width 30 -45 feetArea W \times L under4500 Sq. Foot	0 to 40	No Piles	295.50
		Degrees	On Piles	396.75
		40 to 60	No Piles	318.25
		Degrees	On Piles	416.25

For the Bridge Sketch see the Construction Cost Estimation Preparation Manual
1 to 2 spans (Max. Span 125 feet)
H = Clear Height 14 feet (4)
$L=100$ to 250 feet

1. For skews over 60 degrees it will be necessary to make a special analysis and establish a square foot price comparable to above.
2. For very bad foundation conditions requiring unusual lengths or spacing of piles, it will be necessary to establish a square foot price.
3. For longer spans, adjust the cost per square foot to reflect increased cost of structural members.
4. For span bridges, it is expected the length of the side span will be in- creased in proportion to any increase in height. Because of the resultant increase in deck area, the square foot price will remain approximately the same in the range of heights shown. For extremely high structures (particularly for viaducts), square foot prices will have to be increased.
5. For structures over 400 foot long (viaducts), reduce the cost per square foot if repetitive span length and forming can be used. Reduce by $\$ 0.50$ for lengths from 400 to 600 feet and by $\$ 1.00$ for lengths over 600 feet. (Do not forget adjustments (3) and (4) above on viaducts).
6. For statically indeterminate structures, square foot prices will have to be established.

Structure Description	Calculated Sq. Foot of Bridge Deck	x Cost Per Square Foot	= Amount
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
Clearing Site Bridge *0-3\% of Sub Total $\%$		Sub Total	\$0
		0	
		BRIDGE TOTAL	\$0

*Pick appropriate percent based on the size, type and materials of existing structure

DRAINAGE (includes inlets and cross drains)

Rural		0	364356		0
	project length (miles)		mile	= Amount	
Urban		0	544280\|		0

The above are the total costs of basins, manholes, longitudinal and transverse pipes, underdrains, headwalls, protecting curbs, aprons, etc. for a divided highway with a depressed median. The costs are assumed to apply to 4, 6 or 8 lane sections since there will be no appreciable difference in the number of basins or the sizes or lengths of pipes.

Frontage Road \& Ramp Drainage

	12,628		55		694,540
length of ramp or frontage rd. in feet		x cost per foot		= Amount	
DRAINAGE TOTAL		=			\$694,540

INCIDENTAL ITEMS

Item	Cost / L.F.	X Quantity	$=$ Amount
Beam Guide Rail	16.75	6,314	105,760
Fence 6 Foot High	18.25	0	0
$9 "$ X 16" Conc. Vertical Curb	13.75	25,256	347,270
15" X 41" Conc. Barrier Curb	50.25	0	0
24" X 41" Conc. Barrier Curb	73.25	0	0
24" X Variable Conc. Barrier Curb	46	0	0
Sign Bridge	308,000	0	0
Cantilever Sign Structure	60,500	0	0
INCIDENTAL ITEMS TOTAL	$=$		$\$ 453,030$

LANDSCAPE

	Quantity	x Unit Prices	$=$ Amount	
Topsoil and Seeding (Mainline) Length of Project in miles		0	112,815	
Planting (Mainline) Length of Project in miles				
Topsoil, Seeding, Planting (Finger Ramp Number of Finger Ramps		64,500		
Topsoil, Seeding, Planting (Loop Ramp) Number of Loop Ramps	2		0	
Topsoil, Seeding (Access Road) Length of Access Road in Feet	12,500	25,000		
LANDSCAPE TOTAL	1	20,000	20,000	

NOISE ABATEMENT

	Unit	Quantity	x Cost	$=$ Amount	
	L.F.		0	305	0
				0	
				0	
				0	
			0		

GENERAL ITEMS

Item	Project Length (miles)	x Cost/Mile	$=$ Amount
Field Office	2.4	44,260	106,224
Materials Field Laboratory	2.4	28,970	69,528
Erosion Control during Constructio	2.4	64,375	154,500
GENERAL ITEMS TOTAL	$=$		$\$ 330,252$

SUMMARY

			NJ TURNPIKE	
			INTERCHANGE	
Route	PORTWAY EXTENSIONS	Section/Contract \#	10	
PM		0 UPC No.	0	

Work Type	Totals from other		
pages		,	$1,145,982$
:---			
Earthwork			
Pavement			
Context Sensitive Design			
Culverts			
Bridges			
Drainage			
Incidental Items			
Landscape			
Noise Abatement			
General Items			
PROJECT SUBTOTAL			

Class 1 - New Construction

0
714844
0
0
8000
0
0
0
0
0
0
0
115000
0
0
0
0

0
0
0
87000
0
0
0
0

$\mathrm{Y}=$ Number of Years until midpoint of construction duration plus number of years until construction start. If midpoint is less than 2 years from the date of this estimate, no escalation is required. Maximum value $=10 \%$	0.00	
8466448.362 1.030	1.00	\$8,720,442
Project Total Contingencies (1+C)	$1+[0.01(\mathrm{Y}+1)(\mathrm{Y}-$ Construction	
		e for PD

		Average Construction Droject Cost(Mil.)
$0-10$	Contingencies (C) Percent	3%
$10-20$	2.50%	1
$20-50$	2%	2
Over 50	1.50%	3

CONSTRUCTION ENGINEERING (CE)

Project Cost (Mil.)		\% of Construction Cost
Less than 1.0		28.40%
1.0 to 5.0		17.60%
5.0 to 10.0		12.20%
$10.0 \&$ above		9.50%
CONSTRUCTION ENGINEERING AMOUNT		$\$ 1,063,893.90$

CONSTRUCTION CHANGE ORDER CONTINGENCIES

Total Federal Participating Items

in Millions of $\$$	Construction Change Order Contingency Amount	
$\$ 0$ to 0.1		$\$ 6,000$
0.1 to 0.5	25,000	0
0.5 to 5.0	$25,000+4 \%$ of amount in excess of $\$ 500,000$	0
5.0 to 10.0	$205,000+3 \%$ of amount in excess of $\$ 5,000,000$	0
10.0 to 15.0	$355,000+2 \%$ of amount in excess of $\$ 10,000,000$	316600
15.0 and above	$455,000+1.5 \%$ of amount in excess of $\$ 15,000,000-\$ 500,000$ max	0
		0
		0

For State Funded Projects, Contingencies for Change orders $=0$
CHANGE ORDER CONTINGENCY AMOUNT $=\quad \$ 316,600$

UTILITIES RELOCATIONS BY COMPANIES/OWNERS

$\$ 8,720,442$		0.09	$\$ 784,840$
	$\mathrm{x} \%$ or + Estimate	$=$	Utility Relocation
Construction Cost for Initial	Use \% or utilities detailed estimate	Cost for Initial	
Estimate	Estimate		

If there are no utility relocations on the project indicate "No Utilities" in the box above.
RIGHT OF WAY COST
If there is no ROW cost on the project indicate "No ROW" the box
SUMMARY

Construction Estimate for Initial	8,720,442
Construction Engineering (CE)	1,063,894
Contingencies	316,600
Utilities Relocations	784,840
Total Construction Cost	\$10,885,775

Right of Way Cost
0

Table F-1

Portway Extensions Concept Development Study Recommended Infrastructure Improvements

Preliminary Construction Cost Estimates

Figure Number	Alternative Concept Description	Cost Estimate
X.3	Northern Extensions	$\mathbf{6 4 , 2 3 7 , 8 5 3}$
X.4	NJ Turnpike Interchange 15-W Area	$\$$
X.5	Hackensack River Bridge	$108,007,262$
X.6	NJ Turnpike Interchange 14-A Scheme 1	$160,606,761$
X.7	NJ Turnpike Interchange 14-A Scheme 2	$37,505,127$
X.8	NJ Turnpike Interchange 14	$4,252,143$
X.9	Interim Newark Bay Bridge Improvement	$185,342,302$
X.10	Bayonne Bridge	$3,292,356$
X.11	Routes 1\&9 Northbound at Delancy Street	$3,292,356$
X.12	NJ Turnpike Interchange 13-A - Kapkowski Road Area	$47,027,326$
X.13	NJ Turnpike Interchange 13	$39,523,968$
X.14	NJ Turnpike Interchange 12 Area	$6,686,559$
X.15	NJ Turnpike Interchange 10 Area	$10,885,775$
	Total (w/14-A Scheme 1)	$\mathbf{6 4 6 , 9 5 9 , 7 8 8}$
	Total (w/14-A Scheme 2)	$\mathbf{6 7 0 , 7 3 5 , 9 5 0}$

